
Artificial Intelligence 229 (2015) 33–104
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

On updates of hybrid knowledge bases composed

of ontologies and rules ✩

Martin Slota ∗, João Leite ∗∗, Theresa Swift ∗

NOVA LINCS & Departamento de Informática, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 January 2014
Received in revised form 27 July 2015
Accepted 30 July 2015
Available online 4 August 2015

Keywords:
Hybrid knowledge bases
Ontologies
Description logics
Logic programs
Rules
Stable models
Answer sets
Belief change
Update

Throughout the last decade, two distinct knowledge representation paradigms have been
standardised to capture rich metadata on the Web: ontology languages based on Classical
Logic and reasoning rules based on Logic Programming. Both offer important features for
knowledge representation and the interest in their integration has recently resulted in
frameworks for hybrid knowledge bases that consist of an ontology and a rule component.
Instead of the usual static view of hybrid knowledge, in this paper we address its dynamics
and in particular focus on updates. We develop two hybrid update semantics that fit the
needs of particular use cases of hybrid knowledge and provide the expected results when
used in specific application domains. The first semantics uses a given ontology update
operator to update the ontology component of a hybrid knowledge base in the presence
of static rules. Inspired by a realistic application, and based on a generalised notion of
splitting, known from Logic Programming, the second semantics offers a way to modularly
combine an ontology update operator with a rule update semantics. It can be used for
performing updates of hybrid knowledge bases consisting of ontology and rule layers that
share information through a rule-based interface.
Both of these developments constitute solutions to the problem of hybrid updates for
restricted classes of hybrid knowledge bases. We examine their fundamental formal
properties and show that despite the different ideas behind each of them, they are fully
compatible with one another, i.e. when both are applicable, they lead to the same result.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent standardisation efforts gave rise to widely accepted knowledge representation languages such as the Web
Ontology Language (OWL)1 and Rule Interchange Format (RIF),2 based on Description Logics [11] and Logic Program-
ming [22,42,61,74], respectively. This has fostered a large number of ontologies and rule bases with different levels of
complexity and scale. Whereas description-logic based ontologies provide the logical underpinning of intelligent access and

✩ This is a combined, revised and extended version of the material presented in [83,84,91].

* Corresponding author.

** Primary corresponding author.
E-mail addresses: martin.slota@gmail.com (M. Slota), jleite@fct.unl.pt (J. Leite), theresasturn@gmail.com (T. Swift).

1 http :/ /www.w3 .org /TR /owl-overview/.
2 http :/ /www.w3 .org /2005 /rules /wiki /RIF _Working _Group.
http://dx.doi.org/10.1016/j.artint.2015.07.008
0004-3702/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2015.07.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:martin.slota@gmail.com
mailto:jleite@fct.unl.pt
mailto:theresasturn@gmail.com
http://www.w3.org/TR/owl-overview/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://dx.doi.org/10.1016/j.artint.2015.07.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2015.07.008&domain=pdf

34 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
information integration, rules are widely used to represent business policies, regulations and declarative guidelines about
information.

Since both ontologies and rules offer important features for knowledge representation, considerable effort has been
invested in identifying a unified hybrid knowledge framework where expressivity of both formalisms could be seamlessly
combined. Over the years, work on hybrid knowledge bases has matured significantly and fundamental semantic as well
as computational problems have been successfully addressed (see [25,52] for an overview). MKNF Knowledge Bases [77]
form one of the most mature proposals. MKNF knowledge bases provide a tight integration of the two paradigms, allowing
predicates to be defined concurrently in the ontology and using rules, while at the same time being faithful to the semantics
both of their ontology component and their rules component. Further, they have thoroughly examined decidability and
complexity properties including a tractable variant of the formalism based on the well-founded semantics [41,59].

While such formalisms make it possible to seamlessly combine rules and ontologies in a single unified framework,
they do not take into account the dynamic character of application areas where they are to be used. More particularly, the
essential support for keeping a hybrid knowledge base up to date, by incorporating new and possibly conflicting information,
is still missing. Nonetheless, this topic has been extensively addressed in the context of both Description Logics and Logic
Programs, when taken separately.

The formal underpinning of ontology updates originates in the ample area of belief change [3], more particularly in the
principles and operators used to deal with change in action theories and relational databases with incomplete informa-
tion [56,57,95,96]. An update is generally understood as a change operation that consists in bringing a knowledge base up to
date when the world described by it changes [56]. More technically, update operators are based on the idea that the models of
a knowledge base correspond to possible states of the represented world. When a change in the world needs to be recorded,
inertia is applied to each of these possible states, making only the smallest necessary modifications to reflect the change,
arriving at a new collection of possible states that represent the world after the update. Later, these ideas, and particularly
Winslett’s update operator [57,95], were applied to perform updates of Description Logic ontologies [15,27–29,36,58,73].

When updates were tackled in the context of Logic Programming, it was only natural to consider adapting the classical
update postulates and operators to deal with them. However, this led to counterintuitive results because simply applying
inertia to the current stable model, or even a richer semantic characterisation, such as SE-models [93], results in the loss
of essential relationships between literals that are encoded in the rules [66,85,90]. Although state-of-the-art approaches to
rule updates are guided by the same basic intuitions and aspirations as ontology updates, they build upon fundamentally
different principles and methods.

Many are based on the causal rejection principle [6,7,37,66,78], while others employ syntactic transformations and other
methods, such as abduction [80], forgetting [98], prioritisation [97], preferences [31], or dependencies on defeasible assump-
tions [82]. Inertia, instead of being applied to the current state, is applied to rules. Furthermore, rather than operating on
the models of a logic program, rule update semantics refer to its syntactic structure: the individual rules and, in many cases,
also the literals in heads and bodies of these rules. These properties render them seemingly irreconcilable with ontology
updates where state inertia and syntax-independence are central.

In order to define generic hybrid update operators i.e., update operators that can deal with arbitrary hybrid knowledge
bases, these apparently irreconcilable approaches to dealing with knowledge updates must first be integrated, both seman-
tically and computationally. Despite the recent developments, which already provide a narrow bridge between ontology and
rule updates [87–89], this problem is still far from having a suitable solution.

In Section 3 we take an important first step to defining a generic hybrid update operator by following a different ap-
proach. In particular, we show how the static semantics for MKNF knowledge bases can be adapted to allow for updates of
the ontology component of a hybrid knowledge base while the rule component remains static. This encompasses practical ap-
plications of hybrid knowledge bases where the ontology contains highly dynamic information and rules represent business
policies, preferences or behaviour that does not change or can be maintained manually, and can be overridden by ontology
updates when necessary. For illustrative purposes, consider the following simple scenario:

Example 1 (Electronic marketplace). An electronic marketplace where agents sell and exchange items, resources and services
needs to keep track of all the active users and sellers, available offers, product categorisation, etc. Though most of this
information is kept within a Description Logic ontology, rules are used where the Closed World Assumption or reasoning
with exceptions is needed. A small fragment of this hybrid knowledge looks as follows:

Seller� User (1)

ProspectiveSeller≡¬Seller � ∃RecommendedBy.Seller (2)

¬User(x)←∼User(x). (3)

PaysServiceFee(x)← Seller(x),∼Student(x). (4)

Ontology axioms (1) and (2) express that every Seller in the marketplace is also its User and that every individual that
is currently not a seller but has been recommended by some seller is considered a ProspectiveSeller (e.g. for marketing
purposes). Rule (3) expresses that the concept User is interpreted under the Closed World Assumption, i.e. it is assumed

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 35
that all of the current users are already recorded in the knowledge base, so any other individual is certainly not a user.
Finally, rule (4) says that all sellers not known to be students are expected to pay a service fee.

While these axioms and rules remain pretty much the same throughout the lifetime of the knowledge base, information
about particular products and users is highly dynamic and can be handled by updating the part of the ABox of the ontology.

The resulting framework allows for a seamless two-way interaction between Logic Programming rules and Description
Logic axioms and is significantly more expressive than other approaches to ontology updates with a firm formal underpin-
ning but without support for rules [15,27–29,36,58,73].

However, its applicability is limited since in many cases all parts of a knowledge base are subject to change. As an
example, consider the following scenario where both an ontology and rules are needed to assess the risk of imported cargo.

Example 2 (MKNF knowledge base for cargo imports). The customs service for any developed country assesses imported cargo
for a variety of risk factors including terrorism, narcotics, food and consumer safety, pest infestation, tariff violations, and in-
tellectual property rights.3 Assessing this risk, even at a preliminary level, involves extensive knowledge about commodities,
business entities, trade patterns, government policies and trade agreements. Some of this knowledge may be external to a
given customs agency: for instance the broad classification of commodities according to the international Harmonized Tariff
System (HTS), or international trade agreements. Other knowledge may be internal to a customs agency, such as lists of
suspected violators or of importers who have a history of good compliance with regulations. While some of this knowledge
is relatively stable, much of it changes rapidly. Changes are made not only at a specific level, such as knowledge about the
expected arrival date of a shipment; but at a more general level as well. For instance, while the broad HTS code for tomatoes
(0702) does not change, the full classification and tariffs for cherry tomatoes for import into the US changes seasonally.

Fig. 1 shows a knowledge base, K which represents a simplified fragment of this domain. K consists of both an on-
tology component O and a program component P which together define attributes of a shipment such as the country
of its origination, the commodity it contains, its importer and producer. In particular, the ontology contains a geographic
classification (e.g., the predicate EUCountry), along with information about producers who are located in various coun-
tries (RegisteredProducer). It also contains a classification of commodities based on their harmonised tariff information
(HTSChapter, HTSHeading, and HTSCode cf. http :/ /www.usitc .gov /tata /hts). Tariff information is also present, based on the
classification of commodities (TariffCharge). Finally, the ontology contains (partial) information about three shipments: s1 ,
s2 and s3 . There is also a set of rules indicating information about importers (e.g., SuspectedBadGuy), and about whether
to inspect a shipment either to check for compliance of tariff information or for food safety issues (PartialInspection and
FullInspection).

In order to address scenarios such as the one described above, we define a hybrid update semantics that is parameterised
by a first-order update operator and a rule update semantics. It can deal with an interesting class of hybrid knowledge bases
in which the interaction between the ontology and rules is limited, but where both the ontology and rules can be updated.
One way to look at this semantics is as a modular combination of a first-order update operator with a rule update semantics.

The main ideas for identifying this class of hybrid knowledge bases come from the splitting theorems for Logic Pro-
grams [71]. We extract the essence of this work as Abstract Splitting Properties to characterise modular combinations of
hybrid knowledge bases as well as of update sequences of ontologies, programs and hybrid knowledge bases. Subsequently
we show that for many semantics, such as MKNF models of MKNF knowledge bases, both the models assigned by Winslett’s
update operator to a sequence of ontologies, and the dynamic stable models assigned to a sequence of programs by a
number of rule update semantics.

Ultimately, these results enable us to define an update semantics for those hybrid knowledge bases that can be split
into a sequence of ontology and rule layers that share information. Each ontology layer is updated using a first-order update
operator, each rule layer is updated using a rule update semantics, and the partial results are combined to obtain an overall
model.

The main contributions of this paper are thus as follows:

• We define a semantics for performing ontology updates in the presence of static rules, parametrised by an ontology
update operator.

• We reformulate the splitting properties of [71] in an abstract manner, so they can be easily formulated for any semantic
framework. We also show that prominent static hybrid semantics, ontology update operators and rule update semantics
all satisfy these properties.

• We tackle updates of hybrid knowledge bases that can be split into a sequence of ontology and rule layers, and propose
a semantics for it, parameterised by an ontology update operator and a rule update semantics.

• We examine the fundamental formal properties of both proposed hybrid update semantics, showing that they are
faithful to the static MKNF semantics as well as to the update semantics by which they are parameterised, and that
they are fully compatible with one another.

3 The system described here is not intended to reflect the policies of any country or agency.

http://www.usitc.gov/tata/hts

36 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
* * * O * * *

Commodity≡ (∃HTSCode.) EdibleVegetable≡ (∃HTSChapter.{ ‘07’ })
CherryTomato≡ (∃HTSCode.{ ‘07020020’ }) Tomato≡ (∃HTSHeading.{ ‘0702’ })
GrapeTomato≡ (∃HTSCode.{ ‘07020010’ }) Tomato� EdibleVegetable
CherryTomato� Tomato GrapeTomato� Tomato
CherryTomato � Bulk≡ (∃TariffCharge.{ $0 }) CherryTomato �GrapeTomato�⊥
GrapeTomato � Bulk≡ (∃TariffCharge.{ $40 }) Bulk � Prepackaged�⊥
CherryTomato � Prepackaged≡ (∃TariffCharge.{ $50 })
GrapeTomato � Prepackaged≡ (∃TariffCharge.{ $100 })
EURegisteredProducer≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity≡ (∃ExpeditableImporter.) � (∃CommodCountry.EUCountry)

ShpmtCommod(s1, c1) ShpmtDeclHTSCode(s1, ‘07020020’)
ShpmtImporter(s1, i1) CherryTomato(c1) Bulk(c1)

ShpmtCommod(s2, c2) ShpmtDeclHTSCode(s2, ‘07020020’)
ShpmtImporter(s2, i2) CherryTomato(c2) Prepackaged(c2)

ShpmtCountry(s2,portugal)
ShpmtCommod(s3, c3) ShpmtDeclHTSCode(s3, ‘07020010’)
ShpmtImporter(s3, i3) GrapeTomato(c3) Bulk(c3)

ShpmtCountry(s3,portugal) ShpmtProducer(s3,p1)

RegisteredProducer(p1,portugal) EUCountry(portugal)
RegisteredProducer(p2, slovakia) EUCountry(slovakia)

* * * P * * *

AdmissibleImporter(x)←∼SuspectedBadGuy(x). SuspectedBadGuy(i1).
ApprovedImporterOf(i2,x)← EdibleVegetable(x).
ApprovedImporterOf(i3,x)←GrapeTomato(x).
CommodCountry(x,y)← ShpmtCommod(z,x),ShpmtCountry(z,y).
ExpeditableImporter(x,y)← ShpmtCommod(z,x),ShpmtImporter(z,y),

AdmissibleImporter(y),ApprovedImporterOf(y,x).
CompliantShpmt(x)← ShpmtCommod(x,y),HTSCode(y, z),ShpmtDeclHTSCode(x, z).
RandomInspection(x)← ShpmtCommod(x,y),Random(y).
PartialInspection(x)← RandomInspection(x).
PartialInspection(x)← ShpmtCommod(x,y),∼LowRiskEUCommodity(y).
FullInspection(x)←∼CompliantShpmt(x).
FullInspection(x)← ShpmtCommod(x,y),Tomato(y),ShpmtCountry(x, slovakia).

Fig. 1. MKNF knowledge base for Cargo Imports.

• We show how the semantics can be applied to properly deal with non-trivial updates in the scenarios from Examples 1
and 2.

The remainder of this paper is structured as follows: We present the necessary theoretical background in Section 2
while in Section 3 we define the semantics for ontology updates in the presence of static rules, examine its properties and
illustrate its use in the context of Example 1. In Section 4 we formulate the Abstract Splitting Properties and show that
a variety of semantics satisfy them. Based on these results, in Section 5 we define another hybrid update semantics that
modularly combines a given first-order update operator and a rule update semantics, analyse its formal properties and show
how it can deal with non-trivial updates of the hybrid knowledge base in Example 2. Finally, we discuss our results and
conclude in Section 7. The proofs of all formal results are presented in Appendices A–D.

2. Background

2.1. First-order logic and description logics

We first briefly summarise aspects of first-order logic that are relevant to the theoretical results that follow, along with
special assumptions that are made throughout the paper. We assume a first-order language, L that will form the basis for
representing both ontological and rule-based knowledge. L is function-free apart from constant functions so that first-order
atomic predicates, formulas, and sentences, defined inductively over disjoint sets of constant symbols C, predicate symbols P,
along with a countably infinite set of variable symbols. A first-order formula is ground if it contains no variables. The set of
all first-order sentences is denoted by �. A first-order theory is a set of first-order sentences.

An interpretation is a set of atoms. Throughout the paper we adopt the Standard Name Assumption about interpretations
from [77].

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 37
Table 1
Interpretation of ALCIO expressions (under the Standard Names Assumption).

Expression Notation Interpretation

Role expressions
Role name R R I

Inverse role R− { (d, e) ∈�×� | (e,d) ∈ R I }
Concept expressions
Universal concept 	 �

Empty concept ⊥ ∅
Concept name A AI

Concept intersection C � D C I ∩ D I

Concept union C � D C I ∪ D I

Concept negation ¬C � \ C I

Universal restriction ∀R.C
{

d ∈� | ∀e ∈� : (d, e) ∈ R I =⇒ e ∈ C I
}

Existential restriction ∃R.C
{

d ∈� | ∃e ∈� : (d, e) ∈ R I ∧ e ∈ C I
}

Nominal { a } { a }

Definition 3. A first-order interpretation I over L employs the Standard Name Assumption if

• Condition 1: The universe LU of I contains all constant symbols in C along with a countably infinite number of addi-
tional constants called parameters, CParam .

• Condition 2: cI = c for each c ∈ C.
• Condition 3: The predicate ≈ is interpreted in I as a congruence relation – that is, it is reflexive, symmetric, transitive,

and it allows the replacement of equals by equals.

If I employs the Standard Name Assumption, we term it an SNA interpretation, and we denote the set of all SNA interpreta-
tions of L as IL .

Using condition 3 of Definition 3 allows us to introduce the relation ≡ in ontologies by treating it as a congruence
relation rather than as true equality (i.e., syntactic identity). However condition 2 also implies that any interpretation that
satisfies the Standard Names Assumption is a Herbrand interpretation for L. As will be discussed below, this assumption will
support the logic programming semantics that will be used for rules. At the same time, Proposition 3.2 of [77] shows that
any first-order formula is satisfiable if and only if it is satisfiable in a model that employs the Standard Name Assumption.

We denote the set of all SNA interpretations that are models of a first-order theory T by �T � and we write I |= T
whenever I belongs to �T �. Given two first-order theories T , S , we say that T entails S , denoted by T |= S , if �T � ⊆ �S�,
and that T is equivalent to S , denoted by T ≡ S , if �T � = �S�. The models, entailment and equivalence are specialised to
first-order sentences by treating every sentence φ as the theory { φ }.

2.1.1. Description logics
Description Logics (DLs) are specialised logics for which the standard reasoning tasks, such as satisfiability and entail-

ment, are usually decidable; in this paper attention is restricted to DLs that are in fact fragments of first-order logic. We
assume a basic familiarity with DLs (cf. e.g., [11]), although we review certain aspects of DLs here. DL formulas usually are
written in a variable-free syntax, which we use in this paper (e.g., in the ontology portion, O of Fig. 1). A DL is used to
describe an ontology, i.e. to specify a shared conceptualisation of a domain of interest: thus (for our purposes) an ontology
corresponds to a theory formulated in a fragment of first-order logic.

As a specific instance, we briefly review the syntax and direct semantics of the DL ALCIO , an extension of the DL ALC
(Attributive concept Language with Complements) with inverse roles (I) and nominals (O) that is used in examples throughout
this work.

Definition 4 (ALCIO syntax). We start with a set of atomic concept and role names.
The set of ALCIO role expressions is the smallest set containing all atomic role names, and the expression R− for all

role expressions R .
The set of ALCIO concept expressions is the smallest set containing 	, ⊥, all atomic concept names and the expres-

sions ¬C , C � D , C � D , ∀R.C , ∃R.C and { a } for all concept expressions C , D , all role expressions R and every individual
name a ∈ C.

An ALCIO TBox is a finite set of axioms of the forms C � D and C ≡ D where C , D are concept expressions.
An ALCIO ABox is a finite set of axioms (sometimes called assertions) of the forms C(a), R(a, b), ¬R(a, b), a ≈ b where

C is a concept expression, R is a role name and a, b are individual names.
An ALCIO ontology is the union of an ALCIO TBox and of an ALCIO ABox.

A direct semantics for ALCIO can be defined as in Table 1, which describes an interpretation that satisfies the Standard
Names Assumption Definition 3, for role and concept expressions. Note that by part 2 of Definition 3, the interpretation of

38 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Table 2
Satisfaction of ALCIO axioms and ontologies.

TBox axioms
I |= C � D if and only if C I ⊆ D I

I |= C ≡ D if and only if C I = D I

ABox axioms
I |= C(a) if and only if aI ∈ C I

I |= R(a,b) if and only if
(
aI ,bI

) ∈ R I

I |= ¬R(a,b) if and only if
(
aI ,bI

)
/∈ R I

Ontologies
I |=O if and only if I |= φ for all φ ∈O

a nominal expression { a } is simply the singleton set containing a. Table 2 then shows the direct satisfiability of ALCIO
axioms and ontologies. The relation (role name) ≈ is simply a congruence relation as in Definition 3, with a �≈ b shorthand
for ¬(a ≈ b).

Alternatively, a DL axiom of ALCIO can be translated to a first-order sentence, which is captured at an abstract level
by the following definition.

Definition 5 (DL semantics by translation). Let φ be a DL axiom. By κ(φ) we denote a first-order sentence that semantically
characterises φ.

For a DL ontology O, κ(O) = { κ(φ) | φ ∈O }. Given two ontologies O, O′ , we say that O entails O′ , denoted by O |=O′ ,
if κ(O) |= κ(O′), and that O is equivalent to O′, denoted by O ≡O′ , if κ(O) ≡ κ(O′). Given an ontology O and a first-order
sentence φ, we say that O entails φ, denoted by O |= φ, if κ(O) |= φ.

We note that while some DLs, such as ALC , are simply fragments of first-order logic, which are usually written in a
variable-free syntax, others, including ALCIO, can also be translated to first-order logic in a straightforward manner. Thus
for most DLs, the κ translation function is quite simple, and the difference between κ(O) and O is largely a technical
distinction. This is illustrated in the following example.

Example 6. Consider the translation of DL axioms from Example 2 into sentences in first-order logic. The axiom

LowRiskEUCommodity≡ (∃ExpeditableImporter.) � (∃CommodCountry.EUCountry)

can be translated to

∀x1.(LowRiskEUCommodity(x1)≈ (∃x2.ExpeditableImporter(x1, x2)

∧∃x2.(CommodCountry(x1, x2)∧ EUCountry(x2))))

while

GrapeTomato � Prepackaged≡ (∃TariffCharge.{ $100 })
can be translated to

∀x1.((GrapeTomato(x1)∧ Prepackaged(x1)) ≈ ∃x2.TariffCharge(x1, ‘$100’)).

Note that variables are not required in the DL syntax because a DL class expression corresponds to a logical formula with
a very strict scoping of quantifiers. In fact, a ALCIO DL axiom corresponds to a logical sentence that can be expressed in
nor more than 2 variables, and theories that contain only sentences are known to be decidable [81].

Unless stated otherwise, we do not constrain ourselves to ALCIO or to any other particular DL for representing ontolo-
gies. Our main assumption is that the semantics of the DL is given by a translation into first-order logic.

2.2. Logic programming

Similarly to Description Logics, Logic Programming has its roots in classical first-order logic. However, logic programs
diverge from first-order semantics by adopting the Closed World Assumption and allowing for non-monotonic inferences. In
what follows, we introduce the syntax of extended generalised logic programs and define the stable model semantics [42,43]
for such programs.

Syntactically, logic programs are built from atoms formed over the language L (Section 2.1). An objective literal is an atom
p or its (strong) negation ¬p. We denote the set of all objective literals by Lits and the set of ground objective literals by
LitsG . A default literal is an objective literal preceded by ∼ denoting default negation. A literal is either an objective literal or a

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 39
default literal. Given a set of literals S , we introduce the following notation: S+ = { l ∈ Lits | l ∈ S }, S− = { l ∈ Lits | ∼l ∈ S },
∼S = { ∼L | L ∈ S }. As a convention, double default negation is absorbed, so ∼∼l denotes the objective literal l.

A rule is a pair π = (Hπ , Bπ) where Hπ is a literal,4 referred to as head of π , and Bπ is a finite set of literals, referred
to as body of π . Given a rule π = (Hπ , Bπ) with Hπ = l and Bπ = {p1, . . . , pm, ∼pm+1, . . . , ∼pn}, for convenience, we often
write π as (Hπ ← B+π , ∼B−π .) or as l ← p1, . . . , pm, ∼pm+1, . . . , ∼pn . A rule is called ground if it does not contain variables;
positive if it does not contain any default literal; a fact if its body is empty. The grounding of a rule π is the set of rules
ground(π) obtained by replacing in π all variables with constant symbols from C in all possible ways. A program is a set of
rules. A program is ground if all its rules are ground; positive if all its rules are positive. The grounding of a program P is
defined as ground(P) =⋃

π∈P ground(π).
An LP interpretation is a subset of LitsG that does not contain both p and ¬p for any ground atom p. Note that LP inter-

pretations are (possibly partial) Herbrand interpretation so that any SNA interpretation (Definition 3) is an LP-interpretation.
The following conditions define when a LP interpretation J satisfies various constructs of L. For a given ground objective
literal l, ground default literal ∼l, set of ground literals S , ground rule π , and ground program P :

J |= l iff l ∈ J , J |= ∼l iff l /∈ J ,

J |= S iff J |= L for all L ∈ S , J |= π iff J |= Hπ or J �|= Bπ ,

J |= P iff J |= π for all π ∈ P .

We also say that J is a model of P if J |=P and that P is consistent if it has a model. Also, J is a stable model of P if J is a
subset-minimal model of the reduct of P relative to J :

P J = {
Hπ ← B+π . | π ∈ P ∧ J |= ∼B−π

}
.

The stable models of a non-ground program P are the stable models of ground(P). The set of all stable models of a program P
is denoted by �P�SM .5

2.3. Logic of minimal knowledge and negation as failure

The logic of Minimal Knowledge and Negation as Failure (MKNF) [69] was introduced with the goal of unifying several
existing approaches to nonmonotonic reasoning, such as default logic, autoepistemic logic, and logic programming. It was
latter adopted as the basis for MKNF Knowledge Bases [77], used to join DL knowledge bases and logic programs in a
seamless way. In this section we will briefly review MKNF, and leave MKNF Knowledge Bases to be reviewed in the next
section.

MKNF is an extension of first-order logic with two modal operators: K and not. MKNF sentences and theories are defined
by extending function-free first-order syntax by these modal operators in a natural way. In this paper, we assume that the
language used for an MKNF theory is based on the language L of Section 2.1.

Example 7. The theory Tprop , consisting of the set with the following sentences, is an example of an MKNF theory:

p1 ⊃ p2

K p4 ⊃ K p3

not p6 ⊃ K p5

not p5 ⊃ K p6

The semantics of MKNF theories is determined by special Kripke structures as follows.

Definition 8 (MKNF satisfiability). Let T be an MKNF theory, φ be an MKNF formula, and p an atom. An MKNF structure
is a triple (I, M, N) where I ∈ IL and M, N ⊆ IL .6 Let φ[a/x] denote the formula obtained from φ by replacing every
unbound occurrence of variable x with the constant symbol a. Satisfiability of T in (I, M, N) is defined as follows.

4 Sometimes, for convenience, we take Hπ to be a singleton containing a literal.
5 Note that, unlike in [43], we do not assign any stable models to inconsistent programs.
6 Recall that IL is the set of all SNA interpretations over L. The original formulation in [69] was not restricted to SNA interpretations.

40 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
(I,M,N) |= p if and only if I |= p

(I,M,N) |= ¬φ if and only if (I,M,N) �|= φ

(I,M,N) |= φ1 ∧ φ2 if and only if (I,M,N) |= φ1 and (I,M,N) |= φ2

(I,M,N) |= ∃x : φ if and only if (I,M,N) |= φ[a/x] for some a ∈ (C∪ CParam)

(I,M,N) |= Kφ if and only if (J ,M,N) |= φ for all J ∈M
(I,M,N) |= notφ if and only if (J ,M,N) �|= φ for some J ∈N
(I,M,N) |= T if and only if (I,M,N) |= φ for all φ ∈ T

The symbols 	, ⊥, ∨, ∀ and ⊃ are interpreted in the usual manner. Intuitively, I is used to interpret the first-order parts
of an MKNF theory while M and N can be thought of as sets of possible worlds over which the K and not modalities
are respectively evaluated. Note that as the size of M or N increases, the number of true formulas decreases for K and
increases for not.

Definition 9 (MKNF model). For any M ⊆ IL and any MKNF theory T , we write M |= T if (I, M, M) |= T for all I ∈M.
An MKNF interpretation is a non-empty subset of IL . We denote the set of all MKNF interpretations together with the empty
set by M, i.e. M = 2IL . Given an MKNF theory T , an MKNF interpretation M is an MKNF model of T if M |= T , and, for
every MKNF interpretation M′ �M, there is some I ′ ∈M′ such that (I ′, M′, M) �|= T .

Example 10. In order to provide a sense of how MKNF satisfiability and entailment function, we examine the validity of
various formulas in this logic. In the following, φ is a first-order formula and M ⊆ IL such that M is non-empty.

• M |= φ ≡ K φ, as is evident directly from Definitions 8 and 9.7

• M |= not φ ⊃ K not φ. Suppose M |= not φ. This means that for every I ∈M, (I, M, M) |= not φ, which by Definition 8
implies that M |= K not φ.

• M |= ¬φ ⊃ not φ. Let M |= ¬φ. Then by Definition 8, for some I ∈M, (I, M, M) �|= φ, which means that M |= not φ.
Note that the converse does not hold. If M |= not φ, then there is some I ∈M such that (I, M, M) �|= φ: however for
J ∈M, such that J �= I , it is not necessarily the case that (J , M, M) |= ¬φ, which must be the case, as ¬φ ≡ K¬φ.

• M |= φ ⊃ not not φ. Since φ ⊃ K φ, then for any I ∈M, φ holds. Accordingly, for some J ∈M, (J , M, M) �|= not φ, so
M |= not not φ. Note that the converse does not hold. Let M be such that for I1 ∈M, (I1, M, M) |= φ, but for all
other I ∈ φ, (I, M, M) �|= φ. Then M |= not not φ, but M �|= φ.

Example 11. Considering the MKNF theory of Example 7, Tprop , its MKNF models M are subsets of � p1 ⊃ p2 � =�¬p1 � ∪ � p2 �. Additionally, they must also be subsets of either � p5 � or � p6 �. Due to the maximality of MKNF models
that is implicit in their definition, Tprop has exactly two MKNF models:

M1 = (�¬p1 � ∪ � p2 �)∩ � p5 � and M2 = (�¬p1 � ∪ � p2 �)∩ � p6 � .

As illustrated in the preceding example, the use of the K and not modalities in MKNF allows classical models to be
combined with non-monotonic features typically present in logic programming. The example itself suggests a relationship
between MKNF sentences of the form

K p1 ∧ · · · ∧ K pm ∧ not pm+1 ∧ · · · ∧ not pn ⊃ K p

and logic programming rules of the form:

p ← p1, . . . , pm,∼pm+1, . . . ,∼pn

where the K operator captures the minimality of positive inference in logic programming, while the not operator captures
default negation.

Additionally, it turns out that MKNF supports a number of general extensions of logic programming rules beyond the
form described in Section 2.2 – for instance those whose heads contain existential variables. The relationships between
MKNF, Description Logics and Logic Programming will be made clear when we introduce MKNF Knowledge Bases in the
next subsection.

7 The validity of this equivalence is a feature distinguishing MKNF from the similar logic of Minimal Belief with Negation as Failure [70].

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 41
2.4. MKNF knowledge bases

MKNF knowledge bases [77] consist of two components – an ontology O and an MKNF program P , both formed over
the language L of Section 2.1. Their semantics is given by translation to an MKNF theory as shown below.

The programs used in MKNF knowledge bases generalise the logic programs of Section 2.2 in the following manner.
A generalised atom is a first-order formula. A generalised atom is ground if it is a sentence – if the variables it contains are
explicitly bound by a quantifier. A generalised atom base B is a set of generalised atoms such that ξ ∈ B implies ξG ∈ B

whenever ξG is obtained from ξ by replacing all its free variables with constants from C. Note that, if p is an atomic
formula, it is also a generalised atom. However, p has no quantified variables, so for atomic formulas, this new definition of
grounding specialises to the definition used in Section 2.2. Other logic programming related notions are naturally extended
for generalised atoms. A generalised default literal is a generalised atom preceded by the symbol for default negation, ∼.
A generalised literal is either a generalised atom or a generalised default literal. A K-atom is a generalised atom preceded by
the K modal operator. Given a set of generalised literals S , we introduce the following notation:

S+ = { ξ ∈B | ξ ∈ S } S− = { ξ ∈B | ∼ξ ∈ S } ∼S = { ∼L | L ∈ S } .

An MKNF rule is a pair π = (Hπ , Bπ) where Hπ is a generalised literal, referred to as head of π , and Bπ is a finite set
of generalised literals, referred to as body of π . As before, given an MKNF rule π = (Hπ , Bπ) with Hπ = {ξ} and Bπ =
{ξ1, . . . , ξm, ∼ξm+1, . . . , ∼ξn}, for convenience, we often write π as (Hπ ← B+π , ∼B−π .) or as ξ ← ξ1, . . . , ξm, ∼ξm+1, . . . , ∼ξn .
An MKNF rule is called ground if it contains only ground generalised literals; positive if it does not contain any generalised
default literal; a fact if its body is empty. An MKNF program is a set of MKNF rules. An MKNF knowledge base is a pair (O, P)

where O is an ontology and P is an MKNF program.8 The set of K-atoms occurring in the head of some rule in P is
denoted as HA(P).

The grounding of an MKNF rule π is the set of MKNF rules ground(π) obtained by replacing all free (non-quantified)
variables in π with constant symbols from C in all possible ways. An MKNF program is ground if all its rules are ground;
positive if all its rules are positive. The grounding of an MKNF program P is defined as ground(P) =⋃

π∈P ground(π). An
MKNF knowledge base is ground if P is ground; positive if P is positive. The grounding of an MKNF knowledge base K is
defined as ground(K) = (O, ground(P)).

The semantics of MKNF knowledge bases is determined by translation to an MKNF theory. To this end we extend the
function κ (introduced in Definition 5 to translate an ontology to a first-order theory) to translate any MKNF knowledge
base K to an MKNF theory κ(K).

Definition 12. Let ξ be a generalised atom, S as set of generalised literals, π a rule with a vector �x of free variables, P an
MKNF program, O and ontology, and K= (O, P) an MKNF knowledge base.

κ(ξ)= K ξ κ(∼ξ)= not ξ

κ(S)=
∧
{ κ(L) | L ∈ S } κ(π)= (∀�x : κ(Bπ)⊃ κ(Hπ))

κ(P)= { κ(π) | π ∈ P } κ(K)= κ(O)∪ κ(P)

For any such syntactic unit � we write M |=� whenever M |= κ(�). Given an MKNF knowledge base K, we say that an
MKNF interpretation M is an MKNF model of K if it is an MKNF model of κ(K).

Example 13. Consider the MKNF knowledge base K= (O, P) where

O : p1 � p2 P : p3 ← p4.

p5 ←∼p6.

p6 ←∼p5.

Then, κ(K) is the MKNF theory (discussed in Examples 7 and 11):

p1 ⊃ p2

K p4 ⊃ K p3

not p6 ⊃ K p5

not p5 ⊃ K p6

whose MKNF models are

M1 = (�¬p1 � ∪ � p2 �)∩ � p5 � and M2 = (�¬p1 � ∪ � p2 �)∩ � p6 � .

8 The definition introduced here differs from that of [77] in that we do not allow disjunctions in the heads of rules.

42 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Definitions 9 and 12 imply that an MKNF model M of an MKNF knowledge base is an SNA interpretation over L.
However, M also can be represented as a set of generalised atoms. To explain this, let M be an MKNF interpretation,
S a set of ground K atoms, and define the subset of S induced by M as the set {K ξ ∈ S |M |= ξ}. Additionally, let J be
a subset of HA(ground(P)), and define the objective knowledge of J with respect to ground(K), OBO, J , as being a first-order
theory defined as:

OBO, J = {κ(O)} ∪ J .

Theorem 14. (See [77].) Let M be a model of a ground MKNF knowledge base, ground(K), and let J be the subset of HA(ground(P))

that is induced by M. Then, M is equal to set of first order interpretations M′ = {I | I |=OBO, J }.

Thus, for the purposes of modelling MKNF knowledge bases, a subset of MKNF structures (Definition 8) are taken to be
MKNF models when they fulfil the conditions of Definition 9. Such an MKNF model can be represented as a subset of IL .
However, due to Theorem 14, it can be represented even more simply as a subset of HA(ground(P)) which, if P is a logic
program with no generalised atoms, is simply an LP-interpretation. Although the results in this paper are based directly
on MKNF models, the fact that such models can be represented by sets of head atoms is a critical feature to the practical
usefulness of MKNF knowledge bases.

We are now ready to review some of the desirable properties of MKNF knowledge bases.

Proposition 15 (Basic properties of MKNF knowledge bases). (See [77].)

(Faithfulness to DLs) Let O be an ontology and φ a first-order sentence. Then O |= φ if and only if for every MKNF model M of the
MKNF knowledge base (O, ∅) it holds that M |= φ.9

(Faithfulness to Stable Models) Let P be a logic program and K the MKNF knowledge base (∅, P). If J is a stable model of P , then
the MKNF interpretation corresponding to J is an MKNF model of K. If M is an MKNF model of K, then the LP interpretation
corresponding to M is a stable model of P .

(Grounding) The MKNF models of an MKNF knowledge base K coincide with the MKNF models of its grounding ground(K).
(Elimination of Default Negation in the Head) Let K be an MKNF knowledge base and K′ the MKNF knowledge base obtained from K

by replacing every rule with default negation in the head

∼ξ ← B+,∼B−. with the rule ⊥← ξ, B+,∼B−,

where ⊥ is a generalised atom representing a contradiction. The MKNF models of K coincide with the MKNF models of K′.

2.4.1. Decidability of queries to MKNF knowledge bases
Given that an MKNF knowledge base, K= (O, P), combines first-order logic with recursive rules, entailment of a ground

atom from K is not necessarily decidable even if entailment is decidable from O and P taken separately. In addition, as the
model of K is based on sets of interpretations, the question arises of how efficiently such a model can be computed, even
in cases when K is decidable.

These questions were addressed in [77], and we informally summarise the results here, as motivation for the work in
the following sections. At an informal level, the approach to computing the model of K follows that of computing the stable
model of a logic program P alone. To compute a stand-alone stable model, P is grounded, an LP-interpretation J is guessed,
and J is checked to determine whether it is a subset-minimal model of the reduct of P relative to J (cf. Section 2.2). To
extend this approach to an MKNF knowledge base K, ground(K) is first constructed using the constants in C, and a set
J ⊆ HA(ground(P)) is guessed.10 Then using Theorem 14, it is checked whether J corresponds to an MKNF model by
determining whether OBO, J entails all atoms in J , does not entail head atoms in HA(ground(P)) \ J , and that J is a
subset-minimal model. It was shown in [77] that the models of K coincide with those where K is grounded in the above
manner.

Clearly, computing the model of P will be decidable if HA(ground(P)) is finite, and if OBO, J is decidable for all J ⊆
HA(ground(P)). When HA(ground(P)) is finite, the latter condition will hold if the underlying DL of O is decidable, and
if HA(ground(P)) contains only Abox assertions or sentences that correspond to axioms in the underlying description logic
of O. The condition of DL-safety is sufficient to guarantee that HA(ground(P)) is finite, and is informally explained as follows
(see Theorem 6.2 of [77] for technical details). A non-DL atom is an atom whose predicate symbol only occurs in P . (The
predicate ≈, however is always considered a DL-atom.) A rule π is DL-safe if each variable in π occurs in a positive non-DL
atom in the body of π ; a program is DL-safe if all of its rules are. Clearly DL-safety, which is defined using the finite set of
predicate symbols in an MKNF knowledge base, is a decidable condition for finiteness of P ; and when entailment by O is
also decidable, DL-safety is a sufficient condition for entailment by K itself.

9 Due to the faithfulness of the MKNF semantics with respect to the underlying program and ontology of a knowledge base, we abuse notation slightly
and use |= for entailment by first-order theories, logic programs, and MKNF knowledge bases depending on the context.
10 Note that HA(ground(P)) is not an LP-interpretation as it may contain ground generalised atoms.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 43
To efficiently implement MKNF reasoners, both the reasoners for O and P must be able to call one another at a
fine-grained level. We know of no MKNF reasoners that support the full stable model semantics for P . However, in the
important special case where P is a stratified program, MKNF reasoners have been implemented based on tabled resolution
for MKNF [8].11 These include a stand-alone reasoner where the underlying DL of O is based on ALCQ [44], and the NoHR
plug-in for the Protégé ontology editor where the underlying DL of O is based on either EL [53] or DL-Lite [23].

2.5. Ontology updates

An update is typically described as an operation that brings a knowledge base up to date when the world described by it
changes [56,57,96]. From a generic perspective, update operators were studied within the context of propositional logic. We
present the relevant concepts in the next subsection and subsequently discuss their first-order generalisations that are used
to perform updates of DL ontologies [15,27–29,36,58,73].

Belief update postulates and operators Propositional update operators are formalised as functions that take two propositional
formulas, representing the original knowledge base and its update, as arguments, and return a formula representing the
updated knowledge base. Any such operator � is inductively generalised to finite sequences of propositional formulas 〈φi〉i<n
as follows: �〈φ0〉 = φ0 and �〈φi〉i<n+1 = (�〈φi〉i<n) � φn . To further specify the desired properties of update operators, the
following eight postulates for a belief update operator � and formulas φ, ψ , μ, ν were proposed [56]:

(B1) φ �μ |=μ.
(B2) If φ |=μ, then φ �μ ≡ φ.
(B3) If �φ� �= ∅ and �μ� �= ∅, then �φ �μ� �= ∅.
(B4) If φ ≡ψ and μ ≡ ν , then φ �μ ≡ψ � ν .
(B5) (φ �μ) ∧ ν |= φ � (μ ∧ ν).
(B6) If φ �μ |= ν and φ � ν |=μ, then φ �μ ≡ φ � ν .
(B7) If φ has a single model, then (φ �μ) ∧ (φ � ν) |= φ � (μ ∨ ν).
(B8) (φ ∨ψ) �μ ≡ (φ �μ) ∨ (ψ �μ).

Most of these postulates can be given a simple intuitive reading. For instance, (B1) requires that information from the
update be retained in the updated belief base. This is also frequently referred to as the principle of primacy of new informa-
tion [24]. Sometimes it also becomes useful to consider weakenings of these postulates, such as the following ones [51]:

(B2.) φ �	 ≡ φ.
(B4.1) If φ ≡ψ , then φ �μ ≡ψ �μ.
(B4.2) If μ ≡ ν , then φ �μ ≡ φ � ν .
(B8.1) (φ ∨ψ) �μ |= (φ �μ) ∨ (ψ �μ).
(B8.2) If φ |=ψ , then φ �μ |=ψ �μ.

As the reader can verify, (B2.) is an immediate consequence of (B2) while (B4.1) and (B4.2) are together equivalent
to (B4). Furthermore, in the presence of (B4.1), it can be shown that (B8.1) and (B8.2) are together equivalent to (B8).

The property expressed by (B8) is at the heart of belief updates: Alternative models of the original belief base φ are
treated as possible real states of the modelled world. Each of these models is updated independently of the others to make
it consistent with the update μ, obtaining a new set of interpretations – the models of the updated belief base. Based on
this view of updates, an important representation theorem makes it possible to constructively characterise and evaluate
every operator � that satisfies postulates (B1)–(B8) [56]:

Theorem 16 (Belief update representation theorem). (See [56].) A belief update operator � satisfies conditions (B1)–(B8) if and only if
there exist strict preorders <I for each interpretation I such that I <I J for all interpretations J �= I , and for all formulas φ , μ,

�φ �μ� = ⋃
I∈�φ�

{
J ∈ �μ� ∣∣¬∃K ∈ �μ� : K <I J

}
. (5)

In words, an updated formula has models �φ � μ� that are models of the update μ and that are minimal for the
preorder <I for some model of the original formula φ.12 Katsuno and Mendelzon’s results provide a framework for belief
update operators, each specified on the semantic level by strict preorders assigned to each propositional interpretation. The
most influential instance of this framework is the Possible Models Approach by [95], based on minimising the set of atoms

11 For non-stratified programs, the well-founded semantics for MKNF is adopted [59].
12 A preorder is a reflexive and transitive binary relation; a strict preorder is an irreflexive and transitive binary relation.

44 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
whose truth value changes when an interpretation is updated. Formally, for all interpretations I , J and K , the strict preorder
<I

W is defined as follows: J <I
W K if and only if (J ÷ I) � (K ÷ I), where ÷ denotes set-theoretic symmetric difference. The

operator �W by Winslett, unique up to equivalence of its inputs and output, thus satisfies the following equation:

�φ �W μ� = ⋃
I∈�φ�

{
J ∈ �μ� ∣∣¬∃K ∈ �μ� : (K ÷ I) � (J ÷ I)

}
.

Note that it follows from Theorem 16 that �W satisfies postulates (B1)–(B8).

First-order update postulates and operators The preceding approach to belief update can, for the most part, be generalised
from propositional theories to deal with updates of first-order theories. In this context, a first-order update operator is a
binary function on the set of all first-order theories and any such operator � is inductively generalised to finite sequences
of first-order theories 〈Ti〉i<n as follows: �〈T0〉 = T0 and �〈Ti〉i<n+1 = (�〈Ti〉i<n) � Tn . A single first-order sentence φ is
updated by treating it as the theory { φ }. Furthermore, the update postulates discussed previously, except for (B7) and
(B8.1) which require disjunction of a pair of theories to be defined, can be directly generalised to the first-order case:

(FO1) T �U |= U .
(FO2) If T |= U , then T �U ≡ T .

(FO2.) T � ∅ ≡ T .
(FO3) If �T � �= ∅ and �U� �= ∅, then �T �U� �= ∅.
(FO4) If T ≡ S and U ≡ V , then T �U ≡ S � V .

(FO4.1) If T ≡ S , then T �U ≡ S �U .
(FO4.2) If U ≡ V , then T �U ≡ T � V .

(FO5) (T �U) ∪ V |= T � (U ∪ V).
(FO6) If T �U |= V and T � V |= U , then T �U ≡ T � V .

(FO8.2) If T |= S , then T �U |= S �U .

Whereas postulates are meant to encode properties that are assumed or claimed to be true, their role in this paper is
distinct. We are not claiming that first-order update operators should obey all of these. They are simply taken as properties
that can serve to examine different classes of first-order update operators. For instance, in Section 3 we prove results that
hold for all first-order update operators that satisfy (FO8.2). Nevertheless, because they were lifted from the belief update
postulates for the propositional case, we decided to call them postulates.

Winslett’s operator for first-order theories [96] is defined just as its propositional counterpart, using equation (5), the
difference is only that the strict preorders <I

W are defined on predicate symbols in P (Section 2.1) and for all interpretations
I, J , K ∈ IL as follows. J <I

W K if and only if

∀P ∈ P :
(

P J ÷ P I
)
⊆

(
P K ÷ P I

)
∧ ∃P ∈ P :

(
P J ÷ P I

)
�

(
P K ÷ P I

)
.

Winslett’s operator also forms the formal basis for ontology updates [15,27–29,36,58,73]. The basic idea here is quite simple:
assuming that � is some first-order update operator, an update of an ontology O1 by an ontology O2 is determined by the
first-order theory κ(O1) � κ(O2). However, it may easily happen that this theory is not expressible in the Description Logic
used to encode O1 and O2 [10]. This problem has been addressed in the literature, either by identifying Description Logics
that are closed with respect to applications of Winslett’s operator, by using approximation techniques to arrive at the closest
ontology that is still expressible in the original Description Logic, or finding a more expressive Description Logic in which
the updates can be expressed. Whereas this is a very challenging, mostly open problem, it falls outside the focus point of
this paper. So, in order to be able to proceed, and focus on issues with hybrid updates, in this paper we abstract away from
these as well as the related representational issues, and will assume that they have been addressed in a suitable manner.

2.6. Rule updates

State-of-the-art rule update semantics are based on fundamentally different principles and methods when compared to
their ontology update counterparts. In the following we define one of the most advanced rule update semantics, the refined
dynamic stable models for sequences of logic programs [7].

A rule update semantics provides a way to assign stable models to a pair or sequence of programs where each component
of the pair or sequence represents an update of the preceding ones. Formally, a dynamic logic program (DLP) is a finite
sequence of logic programs and by all(P) we denote the multiset of all rules in the components of P . A rule update
semantics S assigns a set of S-models, denoted by � P �S , to P .

We concentrate on semantics based on the causal rejection principle [6,7,13,37,65,66,78] which states that a rule is
rejected if it is in a direct conflict with a more recent rule. The basic type of conflict between rules π and σ occurs when
the head literal of one rule is the default or strong negation of the head literal of the other rule. Similarly as in [65], we
consider the conflicts between an objective literal and its default negation as primary while conflicts between objective

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 45
literals are handled by expanding the DLP accordingly. In particular, whenever the DLP P contains a rule with an objective
literal l in its head, its expansion P e also contains a rule with the same body and the literal ∼l in its head, where l denotes
the literal complementary to l, i.e. l=¬p if l is the atom p and l= p if l is the objective literal ¬p. Formally:

Pe
i = Pi ∪

{
∼l← Bπ .

∣∣ π ∈ Pi ∧Hπ = l ∧ l ∈ LitsG

}
.

The additional rules in the expanded version capture the coherence principle: when an objective literal l is derived, its
complement l cannot be concurrently true and thus ∼l must be true. In this way, every conflict between conflicting objective
literals directly translates into a conflict between an objective literal and its default negation. This enables us to define a
conflict between a pair of rules as follows: we say that rules π , σ are in conflict, denoted by π � σ , if and only if Hπ =∼Hσ .

Based on such conflicts and on a stable model candidate, a set of rejected rules can be determined and it can be verified
that the candidate is indeed stable w.r.t. the remaining rules. One of the most mature of these semantics, the refined dynamic
stable models [7], or RD-semantics, is defined using a fixed point equation. Given a DLP P = 〈Pi〉i<n and an interpretation J ,
the multisets of rejected rules rej(P , J) and of default assumptions def(P , J) are defined as follows:

rej(P , J)= {
π ∈ Pi

∣∣ i < n∧ ∃ j ≥ i ∃σ ∈ P j : π � σ ∧ J |= Bσ

}
,

def(P , J)= { ∼l | l ∈ LitsG ∧¬(∃π ∈ all(P) : Hπ = l ∧ J |= Bπ) } .

The set � P �RD of RD-models of P consists of all interpretations J such that

J∗ = least
([all(P e) \ rej(P e, J)] ∪ def(P e, J)

)
(6)

where J∗ = J ∪∼(LitsG \ J) and least(·) denotes the least model of the argument program with all literals treated as atoms.

Example 17. (See [66].) Consider an agent with beliefs represented by the following program P0:

GoHome←∼Money. (7)

GoRestaurant←Money. (8)

Money. (9)

The only stable model of P0 is J ′ = { Money,GoRestaurant }, capturing that the agent has money by rule (9), so according
to rule (8) it plans to go to a restaurant. Now consider an update P1 with the following two rules:

∼Money← Robbed. Robbed.

The intended result is that, after the update by P1, GoRestaurant be false because its only justification, Money, is no longer
true. Furthermore, we expect GoHome to become true, i.e. the rule (7) should be triggered because Money became false.
With J = { Robbed, GoHome }, we have rej(〈P0, P1〉e, J) = { Money. }, and J obeys the stability condition (6). Furthermore,
J is the only interpretation with these properties.

The following more abstract example aims at illustrating, with greater detail, the concepts of rejected rules rej(P , J),
default assumptions def(P , J), and the stability condition (6).

Example 18. Consider the logic programs P0, P1, P2 with

P0 : p ← s. P1 : ∼s ← u. P2 : ∼u.

q←∼s. t ← ∼s. ¬s.

r ←¬s, t. u ← ∼r.

s.

Their expanded versions are Pe
0 , Pe

1 , Pe
2 with

Pe
0 : p ← s. ∼¬p ← s. Pe

1 : ∼s← u. Pe
2 : ∼u.

q←∼s. ∼¬q←∼s. t ←∼s. ∼¬t ←∼s. ¬s. ∼s.

r ←¬s, t. ∼¬r ←¬s, t. u ←∼r. ∼¬u.←∼r.

s. ∼¬s.

46 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
The interpretation J = { q, t, u } is the only dynamic stable model of the DLP 〈P0, P1〉. To check, we first determine that
rej(〈Pe

0 , Pe
1 〉, J) = { s. }, def(〈Pe

0 , Pe
1 〉, J) = ∼{ p, r,¬p,¬q,¬r,¬s,¬t,¬u }, and J∗ = { q, t, u } ∪ ∼{ p, r, s, ¬p, ¬q, ¬r, ¬s,

¬t, ¬u }. Then, we can confirm that

J∗ = least
([all(〈Pe

0 ,Pe
1 〉) \ rej(〈Pe

0 ,Pe
1 〉, J)] ∪ def(〈Pe

0 ,Pe
1 〉, J)

)
with all literals treated as atoms. If we now consider the DLP consisting of the three programs, 〈P0, P1, P2〉, the interpreta-
tion J = { q, r,¬s, t } is its only dynamic stable model. The sets of rejected rules and defaults are rej(〈Pe

0 , Pe
1 , Pe

2 〉, J) =
{ s.,∼¬s., u ←∼r. }, def(〈Pe

0 , Pe
1 , Pe

2 〉, J) = ∼{ p, u,¬p,¬q,¬r,¬t,¬u }, and J∗ = { q, r,¬s, t } ∪ ∼{ p, s, u, ¬p, ¬q, ¬r,
¬t, ¬u }. Then, we can confirm that

J∗ = least
([all(〈Pe

0 ,Pe
1 ,Pe

2 〉) \ rej(〈Pe
0 ,Pe

1 ,Pe
2 〉, J)] ∪ def(〈Pe

0 ,Pe
1 ,Pe

2 〉, J)
)

again, with all literals treated as atoms.

3. Dynamic MKNF knowledge bases with static rules

Now that all necessary technical background has been covered, we are ready to start addressing the problem of updat-
ing hybrid knowledge bases. We adopt MKNF knowledge bases (cf. Section 2.4) as the foundation for representing hybrid
knowledge and, as with the rule update semantics, our general goal is to assign dynamic MKNF models to sequences of MKNF
knowledge bases where each component represents an update of the preceding ones.13

We thus introduce the following concept:

Definition 19 (Dynamic MKNF knowledge base). A finite sequence of MKNF knowledge bases is called a dynamic MKNF knowl-
edge base (or DMKB for short).

In this section we address a restricted version of this general problem by constraining ourselves to updates of the
ontology component of MKNF knowledge bases while the rule component remains static. In other words, we assume that
rules in a hybrid knowledge base remain static or change infrequently so they can be kept up to date by manual editing.
Though this restricts the applicability of the resulting update semantics, it still encompasses many practical applications
of hybrid knowledge bases, particularly those where the ontology contains highly dynamic information and rules represent
default preferences or behaviour that can be overridden by ontology updates when necessary. Even under this assumption,
knowledge bases allow for reasoning with assumptions and for exceptions to be naturally expressed, yet still support a
seamless two-way interaction between the ontology and rules.

From a more technical viewpoint, the proposed hybrid update semantics is obtained by generalising an immediate con-
sequence operator that characterises MKNF models of MKNF knowledge bases. This operator is augmented with a first-order
update operator that deals with ontology updates and is then used to define dynamic MKNF models of DMKBs with static
rules. The semantics is thus parameterised by a first-order update operator; we particularly consider Winslett’s operator
as one way to instantiate the semantics and show how it can handle updates of the hybrid knowledge base presented in
Example 1.

As discussed in Section 2.1, we assume a language L, and, without loss of generality, restrict our attention to SNA
interpretations over L (Definition 3). In addition, two important assumptions are made for the development of this section.

• As in most existing work on rule updates, we assume that all MKNF rules are ground: in our case, this is done with
respect to C, the set of constants in L, as discussed in Section 2.4.

• We consider rules without default negation in their heads: as shown in Proposition 15, this restriction does not remove
any expressivity. However, we do allow rules to contain generalised atoms as introduced in Section 2.4.

In the remainder of this section, we start by defining the consequence operator for characterising MKNF models of
MKNF knowledge bases (Section 3.1), then proceed by imbuing it with the ability to perform ontology updates and using it
to define an update semantics for DMKBs with static rules (Section 3.2), for those update operators that satisfy the update
postulate (FO8.2). Finally, we establish the basic formal properties of this hybrid update semantics (Section 3.3). The relevant
proofs can be found in Appendix B.14

13 Dealing with sequences of MKNF knowledge bases instead of just updating an MKNF knowledge base by another MKNF knowledge base, while relying
on a binary update operator which works on pairs, allows us to abstract away from representation difficulties that already arise when updating DLs and
LPs alone. In order to work with pairs and still be able to allow for more than one update, the result of the update operation must be representable in a
way that is acceptable to the operator. While this is the case for some (though not most) DL operators, it is not the case for most LP update operators. In
fact, when it comes to LP update operators, the result of updating a logic program by another logic program is not, in general, a logic program of the same
class, written with the same alphabet. Indeed, it is known to be theoretically impossible to have the result of such an update be one logic program of the
same class, while still obeying some very basic properties of updates [65,89].
14 Preliminary versions of this work have been published in [83,84]. In contrast to those papers, the semantics presented here is not limited to using

Winslett’s operator for performing ontology updates – any member of a large class of first-order update operators can be used for this purpose.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 47
3.1. A static consequence operator and its fixed points

To define our consequence operator and its fixed points, we first consider MKNF knowledge bases with positive programs,
and then extend our approach to programs with default negation.

3.1.1. Positive programs
The consequence operator for MKNF knowledge bases is an extension to the usual two-valued immediate consequence

operator from Logic Programming (cf. e.g., [74]): given a positive MKNF program (i.e., Section 2.4), the operator returns the
heads of all MKNF rules whose bodies are satisfied by the argument interpretation. This idea can be generalised to deal
with positive MKNF knowledge bases (i.e., MKNF knowledge bases whose underlying programs are positive) by conjoining the
heads of rules whose bodies are satisfied together with the translation of the ontology, and returning the set of models of
the resulting first-order theory. Formally:

Definition 20 (Consequence operators). Let K= (O, P) be a positive MKNF knowledge base. The immediate consequence oper-
ators TP and TK are defined for all M ∈M as follows15:

TP (M)= { Hπ | π ∈ P ∧M |= κ(Bπ) } ,

TK(M)= �TP (M)∪ κ(O)� .

An analogous consequence operator on sets of modal atoms was independently presented in [77]. Note also that there
are important differences between the consequence operator of Definition 20 and the usual consequence operator in Logic
Programming. As the set of K-atoms inferred from a positive MKNF knowledge base is anti-monotonic with respect to
elements of M, the TP operator, which maps an MKNF interpretation M to the K atoms that can be inferred under
the MKNF semantics, will be anti-monotonic. The TK operator on the other hand, maps an MKNF interpretation M to
the greatest MKNF interpretation that satisfies TP (M) ∪ κ(O) and so is monotonic. Implicit in the use of TK , is the
representation from Definition 9 of an MKNF interpretations as a set of first-order interpretations M ⊆ IL such that for
an MKNF sentence φ, M |= φ iff (I, M, M) |= φ for all I ∈ M .16 With this in mind, we view the set M of all MKNF
interpretations (including the empty set) as a complete lattice under set inclusion with the greatest element IL .

Proposition 21 (Monotonicity of TK). Let K be a positive MKNF knowledge base. Then TK is a monotonic function on the complete
lattice (M, ⊆).

Proof. See Appendix B, page 72. �
In order to make use of TK , we construct its greatest fixed point on the lattice of MKNF interpretations, and show in

Propositions 23 and 26 that any MKNF model corresponds to this greatest fixed point. Note that construction of a greatest
fixed point is adopted for notational ease, since larger MKNF interpretations reflect less knowledge (via the K operator) than
MKNF interpretations.17 The following example illustrates how TK is iterated, starting from the greatest element IL , until
a fixed point is reached which coincides with the MKNF model of the MKNF knowledge base.

Example 22 (Iterating the consequence operators). Consider the MKNF knowledge base K= (O, P) where18

O : p ∨¬q P : q← r.

q← s.

r.

Starting from the interpretation M0 = IL , we will iterate the operator TK until we reach a fixed point. Since M0 does not
satisfy the body of the first two rules in P but trivially satisfies the body of the last one, it follows that TP (M0) = { r }
and the first application of TK can determined as follows:

TK(M0)= �TP (M0)∪O� = �{ r, p ∨¬q }� =M1 .

We can now see that M1 satisfies the bodies of the first and third rule, yielding TP (M1) = { q, r } and thus

TK(M1)= �TP (M1)∪O� = �{ q, r, p ∨¬q }� = �{ p,q, r }� =M2 .

15 Recall from Definition 9 that M denotes the set of all MKNF interpretations including the empty set.
16 The justification for the use of such representations is presented in Appendix B, Lemma 106.
17 Of course, for computational purposes, least fixed points are used to compute actual MKNF models [59,77].
18 To make this demonstration simpler, we assume that the ontology O is a set of propositional formulas and κ(O) =O.

48 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
The interpretation M2 is a fixed point of TK because it satisfies the bodies of the same rules as M1, so further applications
of TK have no effect on it. Moreover, M2 is also the unique MKNF model of K.

Since TK is monotonic (Proposition 21), by the Knaster–Tarski theorem, TK has the greatest fixed point. This can be
either the empty set, in which case K has no MKNF model, or it coincides with the unique MKNF model of K. In other
words, TK offers a constructive characterisation of the semantics of positive MKNF knowledge bases.

Proposition 23 (MKNF model of a positive MKNF knowledge base). Let K be a positive MKNF knowledge base. An MKNF interpretation
is an MKNF model of K if and only if it is the greatest fixed point of TK.

Proof. See Appendix B, page 73. �
3.1.2. Programs with default negation

To add support for default negation in bodies of MKNF rules, we use essentially the same strategy as the one used for
defining stable models [42]. Given an MKNF knowledge base K, we first eliminate default negation by forming the reduct
of K w.r.t. a candidate model M. This reduct consists of the original ontology and positive parts of rules whose negative
bodies are satisfied in M.

Definition 24 (Reduct of an MKNF knowledge base). Let K= (O, P) be an MKNF knowledge base and M an MKNF interpre-

tation. The reduct of K w.r.t. M is the MKNF knowledge base KM = (
O,PM)

where

PM = {
Hπ ← B+π . | π ∈ P ∧M |= κ

(∼B−π
) }

.

The following example shows that using the reduct we can determine the semantics of an MKNF knowledge base K: an
interpretation M is an MKNF model of K if and only if M is the MKNF model of the positive MKNF knowledge base KM .

Example 25 (Determining MKNF models using the reduct). Let K′ = (O, P ′) be an MKNF knowledge base where O = { p ∨¬q }
is as in Example 22 and

P ′ : q← r.

q← s.

r ←∼s.

s←∼r.

The reduct of K′ w.r.t. M2 = �{ p, q, r }� is (K′)M2 =K= (O, P) where P is as in Example 22. This is because M2 does
not satisfy the negative body ∼r of the last rule in P ′ , so the rule is discarded, while it satisfies the negative body ∼s of the
third rule, so the rule turns into the fact (r.) in the reduct. We have already shown that M2 is the MKNF model of K. It is
also one of the two MKNF models of K′ . The other MKNF model, M′

2 = �{ p, q, s }�, can be obtained in a similar manner,
by first forming the reduct of K′ w.r.t. M′

2 and then verifying that M′
2 is the MKNF model of the reduct.

As the following proposition shows, this relationship holds in general.

Proposition 26 (MKNF model of an MKNF knowledge base). Let K be an MKNF knowledge base. An MKNF interpretation M is an
MKNF model of K if and only if it is the MKNF model of KM.

Proof. See Appendix B, page 74. �
3.2. Updating consequence operator

We have seen in the previous section that MKNF models of an MKNF knowledge base K can be characterised in terms
of reducts and the consequence operator TK , similar to stable models of a logic program. In order to deal with updates
to the ontology part of the knowledge base, we can modify the consequence operator so that the ontology gets updated
accordingly whenever the operator is applied. At the same time, we constrain ourselves to dealing with are DMKBs that
have static rules, as defined here:

Definition 27 (DMKB with static rules). We say that a DMKB 〈(Oi, Pi)〉i<n has static rules if Pi = ∅ for all i such that 0 < i < n.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 49
3.2.1. Updating positive DMKBs with static rules
As a first step, assume that we are given a DMKB with static rules K and also that K is positive, i.e. all component MKNF

knowledge bases of K are positive. Furthermore, suppose that we want to use the first-order update operator � to perform
ontology updates. We can use � within the consequence operator to reflect the updates in K as follows:

Definition 28 (Updating consequence operator). Let � be a first-order update operator and K = 〈(Oi, Pi)〉i<n a positive DMKB
with static rules. The updating immediate consequence operator T �K is defined for all M ∈M as follows:

T �K (M)= �(
TP0(M)∪ κ(O0)

) �O1 � · · · �On−1 � .

The following example illustrates the workings of the introduced consequence operator when we adopt Winslett’s oper-
ator to perform ontology updates.

Example 29 (Iterating the updating consequence operator). Consider the DMKB K = 〈K0, K1〉 where K0 = (O0, P0), K1 =
(O1, ∅) and O0, P0 and O1 are as follows:

O0 : p ∨¬q P0 : q ← r. O1 : ¬r ∧¬s

q ← s.

r.

s.

Clearly, K has static rules. We can thus iteratively apply the updating consequence operator (parameterised by the Winslett
update operator of Section 2.5), T �W

K , starting from the MKNF interpretation M0 = IL , until we reach a fixed point. After
the first application we obtain the following:

T �W
K (M0)= �(

TP0(M0)∪O0
) �W O1 �

= �{ r, s, p ∨¬q } �W { ¬r,¬s }�
= �{ p ∨¬q,¬r,¬s }� =M1 .

Furthermore, T �W
K (M1) =M1 because M1 triggers only the facts (r.) and (s.) in P0, just as M0 did. It is not difficult to

verify that M1 is the greatest fixed point of T �W
K and following the analogy with the static case, we can declare M1 to

be the dynamic MKNF model of K . Note that M1 does not satisfy the two facts in P0 since they were overridden by the
updating ontology.

If we can show that T �K is monotonic, then it is guaranteed to have the greatest fixed point which we can use to assign
a semantics to any positive DMKB with static rules. As it turns out, T �K is monotonic if � satisfies the principle (FO8.2).

Proposition 30 (Monotonicity of T �K). Let � be a first-order update operator and K a positive DMKB with static rules. If � satisfies
(FO8.2), then T �K is a monotonic function on the complete lattice (M, ⊆).

Proof. See Appendix B, page 74. �
So assuming that � satisfies (FO8.2), we can declare the greatest fixed point of T �K as the semantics of K . The following

definition establishes the notion of a �-dynamic MKNF model.

Definition 31 (Semantics for positive DMKBs with static rules). Let � be a first-order update operator that satisfies (FO8.2) and
K a positive DMKB with static rules. An MKNF interpretation M is a �-dynamic MKNF model of K if it is the greatest fixed
point of T �K .

Note that every positive DMKB with static rules has at most one �-dynamic MKNF model. It may have no such model
when the greatest fixed point of T �K is the empty set because the empty set is not an MKNF interpretation.

3.2.2. Updating non-positive DMKBs with static rules
Default negation can now be treated the same way as in the static case. We first establish the notion of a reduct of a

DMKB in the expected way.

Definition 32 (Reduct of a DMKB). Let K = 〈Ki〉i<n be a DMKB with static rules and M an MKNF interpretation. The reduct
of K w.r.t. M is the DMKB KM = 〈

KM〉
.
i i<n

50 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
In the following example we illustrate how the reduct can be used to determine the semantics of a DMKB with static
rules.

Example 33 (Assigning dynamic MKNF models using the reduct). Take the DMKB K ′ = 〈K′0, K1〉 where K′0 = (O, P ′). O and P ′
are as in Example 25, namely O = { p ∨¬q } and P ′ consists of the clauses { q ← r, q ← s, r ←∼s, s ←∼r }. K1 is as in
Example 29, i.e., K1 = (O1, ∅), where O1 = { ¬r ∧¬s }.

Consider the MKNF interpretation M1 = �{ p ∨ ¬q, ¬r, ¬s }�. The reduct of K ′ w.r.t. M1 is (K ′)M1 = K where K is
the positive DMKB from Example 29: { q ← r, q ← s, r, s }. This is because M1 satisfies both ∼r and ∼s, so both rules with
negative bodies from P ′ become facts in the reduct. Since M1 is also the �W-dynamic MKNF model of K , we declare it to
be the �W-dynamic MKNF model of K ′ .

Furthermore, note that M1 is the only MKNF interpretation satisfying this condition. While the initial MKNF knowledge
base K′ had two MKNF models, after the update it only has one because the generating cycle in P ′ was overridden by
information in K1.

Now we can define the dynamic MKNF models of an arbitrary DMKB with static rules K as those MKNF interpretations
M that are MKNF models of the reduct KM .

Definition 34 (Semantics for DMKBs with static rules). Let � be a first-order update operator that satisfies (FO8.2) and K a
DMKB with static rules. An MKNF interpretation M is a �-dynamic MKNF model of K if it is a �-dynamic MKNF model
of KM .

Finally, we define a consequence relation by considering the credulous consequences of �-dynamic MKNF models.

Definition 35 (Consequence relation). Let � be a first-order update operator that satisfies (FO8.2), K a DMKB with static rules
and T an MKNF theory. We say that K �-MKNF entails T , denoted by K |=�MKNF T , if M |= T for some �-dynamic MKNF
model M of K .

Credulous and other types of logical consequence can be obtained analogously.
Let us now demonstrate the defined update semantics on a simple example in which we use Winslett’s first-order

operator �W for performing ontology updates:

Example 36 (Updating the electronic marketplace knowledge base). Consider again the simple hybrid knowledge base about an
electronic marketplace presented in Example 1, formalised as the MKNF knowledge base K0 = (T , P) where

T : Seller� User

ProspectiveSeller≡¬Seller � ∃RecommendedBy.Seller

P : ¬User(x)←∼User(x).

PaysServiceFee(x)← Seller(x),∼Student(x).

Throughout this example, we will be keeping the terminological assertions in the TBox T static by reasserting them in each
update. We also assume that the constant symbol john is part of the language.

Initially, all we can conclude from the DMKB K 0 = 〈K0〉 is that john does not belong to the concept User because of the
first rule in P , and, consequently, he cannot belong to the concept Seller because of the first axiom in T . Formally:

K 0 |=�W
MKNF { ¬User(john),¬Seller(john) } .

Now consider an update by the ABox A1 = { ∃RecommendedBy.Seller(john) }, expressing that a new recommendation
for john has been made by some member of the concept Seller. In order to perform this update, we form the DMKB
K 1 = 〈K0, K1〉 where K1 = (A1 ∪ T , ∅). We conclude the following:

K 1 |=�W
MKNF { ¬User(john),¬Seller(john),

∃RecommendedBy.Seller(john),ProspectiveSeller(john) } .

In other words, we can now additionally conclude that the assertion in A1 is true and, due to the second axiom in T , john
is now a ProspectiveSeller.

Based on this information, john is offered, and agrees, to become a Seller at the marketplace. This update is formalised
as the ABox A2 = { Seller(john) }, resulting in the DMKB K 2 = 〈K0, K1, K2〉 where K2 = (A2 ∪ T , ∅), which allows us to

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 51
conclude the following:

K 2 |=�W
MKNF { User(john),Seller(john),

∃RecommendedBy.Seller(john),PaysServiceFee(john) } .

Note in particular that john is now both a Seller and a User, due to the first axiom in T , and that he is no longer a
ProspectiveSeller because of its definition in T and because he became a Seller.

Subsequently, john makes an inquiry to not be charged the service fee until his business becomes more established, and
his request is approved. This update is represented as the ABox A3 = { ¬PaysServiceFee(john) }, resulting in the DMKB
K 3 = 〈K0, K1, K2, K3〉 where K3 = (A3 ∪ T , ∅) and leading to the following consequences:

K 3 |=�W
MKNF { User(john),Seller(john),

∃RecommendedBy.Seller(john),¬PaysServiceFee(john) } .

Note in particular that though the body of the second rule in P is satisfied, its head is automatically overridden by the
ontology update.

Furthermore, it is later discovered that john is under eighteen years old, which is against the rules of the mar-
ketplace. His user account becomes disabled and any recommendations deleted, as expressed by the ABox A4 =
{ ¬User(john), ¬∃RecommendedBy.	(john) }. The consequences of the DMKB K 4 = 〈K0, K1, K2, K3, K4〉, where K4 =
(A4 ∪ T , ∅), are then as follows:

K 4 |=�W
MKNF { ¬User(john),¬Seller(john),

¬∃RecommendedBy.	(john),¬PaysServiceFee(john) } .

3.3. Properties and relations

In the following we look more closely at the formal properties of the introduced update framework for DMKBs with
static rules. Throughout this section we assume that � is some first-order update operator that satisfies (FO8.2).

First we establish that our update semantics is faithful to the main ingredients it is based upon: the semantics of MKNF
knowledge bases and the first-order update operator �. The former property can be formulated as follows:

Theorem 37 (Faithfulness w.r.t. MKNF knowledge bases). Let K= (O, P) be an MKNF knowledge base. An MKNF interpretation M is
an MKNF model of K if and only if M is a �-dynamic MKNF model of 〈K〉.

Proof. See Appendix B, page 74. �
Note that a consequence of this result and of Proposition 15 (Section 2.4) is that the introduced update semantics is also

faithful w.r.t. the ontology semantics and the stable model semantics.
Turning to the relation with the first-order update operator �, we show that if the initial program is empty, then the

assigned dynamic MKNF model coincides with the semantics of updating the initial ontology with all subsequent ones in
the DMKB. Formally:

Theorem 38 (Faithfulness w.r.t. first-order update operator). Let K = 〈(Oi, ∅)〉i<n be a DMKB. An MKNF interpretation M is a
�-dynamic MKNF model of K if and only if M = ��〈Oi〉i<n �.

Proof. See Appendix B, page 75. �
Now we consider other important properties that are typically expected of an update semantics. The first one, known

as the principle of primacy of new information [24], guarantees that every dynamic MKNF model satisfies the most recent
update. This can also be seen as a counterpart of the belief update postulate (FO1) and in order for the property to hold,
the first-order update operator must satisfy (FO1).

Theorem 39 (Primacy of new information). Suppose that � satisfies (FO1) and let K = 〈Ki〉i<n be a DMKB with static rules such that
n > 0. If M is a �-dynamic MKNF model of K , then M |= κ(Kn−1).

Proof. See Appendix B, page 75. �
The second property, inherited from the first-order update operator, states that updates by tautological ontologies do not

influence the resulting models. This can be seen as a counterpart of the postulate (FO2.) and is satisfied if the first-order
update operator satisfies (FO2.) and (FO4). Note that this desirable property is notoriously problematic when rule updates
are considered, as witnessed by the many rule update semantics that violate it [6,30,31,37,65,66,80,97].

52 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Theorem 40 (Immunity to tautological updates). Suppose that � satisfies (FO2.) and (FO4) and let K = 〈(Oi, Pi)〉i<n be a DMKB
with static rules such that O j ≡ ∅ for some j with 0 < j < n and

K ′ = 〈(Oi,Pi)〉i<n∧i �= j .

Then K and K ′ have the same �-dynamic MKNF models.

Proof. See Appendix B, page 75. �
The final property guarantees that our update semantics does not depend on the syntax of ontologies, only on their

semantics. It essentially shows that substituting an ontology for an equivalent one at any point in the DMKB does not affect
the resulting dynamic MKNF models. This property can be seen as a counterpart of postulate (FO4.2) and partially also
postulate (FO4.1). It holds if the first-order update operator satisfies (FO4).

Theorem 41 (Syntax independence). Suppose that � satisfies (FO4). Let K = 〈(Oi, Pi)〉i<n and K ′ = 〈(O′
i, P ′i)〉i<n be DMKBs with

static rules such that P0 =P ′0 and Oi ≡O′
i for all i < n. Then K and K ′ have the same �-dynamic MKNF models.

Proof. See Appendix B, page 75. �
Note that a similar property does not hold for the initial program P0. For example, programs such as

P : p.

q.
and

Q : p ← q.

q.

have the same stable models and are even strongly equivalent [72], but an update by O = { ¬q } produces different results
for P and Q, respectively. More formally, 〈(∅, P), (O, ∅)〉 has a �W-dynamic MKNF model M such that M |= p while
〈(∅, Q), (O, ∅)〉 has a �W-dynamic MKNF model M′ such that M′ �|= p. We believe that this is in accord with intuitions
regarding the two initial programs. It may be the case that for stronger notions of program equivalence that are better
suited for updates, such as update equivalence proposed in [65], this property is satisfied.

For similar reasons, it is not possible to prove properties that correspond to other belief update postulates. Consider for
instance postulate (FO2). The first issue is that by relying on the defined consequence relation, we can only approximate its
formulation as follows:

If (O,P) |=MKNF O′, then 〈(O,P), (O′,∅)〉 |=�MKNF (O,P).

In other words, instead of equivalence on the right-hand side of the postulate, we only have entailment. But even this
weaker principle is not satisfied. As a counterexample, consider the program

P : p ←∼q. r ← p. s← p.

q←∼p. r ← q,∼r. ¬s← q.

and the ontology O′ = { r, s }. Though it is true that (∅, P) |=MKNF O′ because (∅, P) has a single MKNF model that entails
both r and s, it is not true that 〈(∅, P), (O′, ∅)〉 |=�W

MKNF (∅, P) because 〈(∅, P), (O′, ∅)〉 has two �W-dynamic MKNF models,
one of which entails both q and s, so it does not satisfy the last rule in P .

In fact, this behaviour is inherited from stable models which do not satisfy the very similar property of cumulativity
[34,75]. Hence it is likely that (FO2) is not going to be satisfied by any hybrid update semantics that is faithful to the stable
model semantics.

A similar analysis can also be done for (FO3) if we identify “consistency” with existence of a (�-dynamic) MKNF model.
Thus the corresponding property would read as follows:

If both (O,P) and (O′,∅) have an MKNF model,

then 〈(O,P), (O′,∅)〉 has a � -dynamic MKNF model.

It is not difficult to show that this property is not satisfied – as a counterexample, consider the program P = { p ← q, ∼p. }
and ontology O′ = { q }. Though both (∅, P) and (O′, ∅) have MKNF models, the DMKB 〈(∅, P), (O′, ∅)〉 does not have a
�W-dynamic MKNF model.19

19 Whereas the absence of a �W-dynamic MKNF model may appear unexpected, it reflects the way logic programming rules are handled when subject
to updates, namely the requirement that a concrete cause for rejection exists (other than simply the fact that the update results in an inconsistency). As
a concrete example, suppose a logic program encodes the well-known n-queen problem, and the ontology – subject to updates – encodes the queens that
are already placed on the chessboard. Models will correspond to possible solutions to the n-queen problem given the already placed queens. To enforce
this, the program would have a rule, acting as an integrity constraint, guaranteeing that no two queens can be placed in the same column. This rule would
have a form similar to that used in the counter example i.e. p ← q, ∼p., where q encodes the fact that two queens are placed in the same column. If we
update the ontology to add two queens to the same column, making q true in the ontology, the expected result is that we obtain no �W-dynamic MKNF
models, encoding the fact that there is no solution with the queens in the update.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 53
The cases of most other belief update postulates are even more involved because they require notions such as disjunction
of two MKNF knowledge bases and it is not clear how these can be defined appropriately.

4. Splitting properties

In this section we prepare the formal groundwork for introducing a hybrid update semantics to complement the seman-
tics defined in Section 3 – instead of requiring that the rule part of a hybrid knowledge base remain static, it makes both
ontology and rule updates possible at the cost of placing certain constraints on the interaction between the ontology and
rules. These constraints are inspired by the ideas behind splitting theorems for Logic Programs as formulated in [71] on
which we focus our attention here. Splitting properties have also been studied for various generalizations of stable models,
and form the basis for several approaches to defining modules of logic programs under the stable model semantics [12,54].

First we formulate the splitting properties in an abstract manner, so they can be easily instantiated for any seman-
tic framework (Section 4.1). Then we show that prominent static hybrid semantics as well as ontology and rule update
semantics satisfy these properties (Section 4.2).

4.1. Abstract splitting properties

Splitting properties were first studied by [71] in the context of Logic Programs, generalising the notion of program
stratification. Roughly speaking, the idea is to define a condition under which the stable models of a program P can be
completely determined from the stable models of its subprograms. For instance, this is certainly true if the subprograms
are constructed over mutually disjoint sets of objective literals – indeed, in this case every stable model of P is a union of
stable models of its subprograms. The same holds vice versa if we check for consistency, i.e. every consistent union of stable
models of the subprograms is a stable model of P .

The splitting properties of [71] take this idea further by allowing subprograms to share literals in a constrained, cascading
manner. Assume that we aim for a split into two subprograms, one of them can “feed” information into the second one. The
subprograms are then called the bottom and top of P and the condition imposed on them is that literals shared between
them must not occur in heads of rules in the top. This essentially ensures that rules in the top cannot influence inferences
made in the bottom. It follows that each stable model of P is a union of a stable model X of the bottom and of a stable
model Y of the top in which all shared atoms have been pre-interpreted under X . The converse holds as well if consistency
of X ∪ Y is ensured. As a matter of fact, the same relationship holds if we split P into an arbitrary sequence of layers where
each layer is allowed to “feed” information into the following ones.

Our aim in this section is to prepare the formal groundwork for defining an update semantics for DMKBs that consist of
one or more ontology and rule layers that may feed information into subsequent layers. Updates of each layer, depending
on whether it is an ontology or a rule layer, are handled by a first-order update operator or by a rule update semantics,
respectively. The resulting models are then collected and an overall dynamic MKNF model is assembled. These ideas are
materialised in Section 5 where we also show that if both the first-order update operator and rule update semantics have
the Abstract Splitting Properties and satisfy two basic properties of updates, then regardless of which splitting of the DMKB
we pick, we arrive at the same set of dynamic MKNF models.

Since we rely so heavily on splitting properties, we first give their generic formulation that can be instantiated for
different formalisms – not just normal logic programs under the stable model semantics [71], but also default logic, as was
done in [92], and MKNF knowledge bases, first-order update operators, rule update and hybrid update semantics, as we do
in Section 4.2. Some of the abstractions we use for this purpose, such as those for logical formalisms and semantics, are
inspired by similar abstractions in [17].

We consider logical formalisms and their semantics from an abstract perspective, as established by the following defini-
tion:

Definition 42 (Logical formalism and semantics). A logical formalism is a pair (T, S) where T denotes a set of syntactically
correct theories and S a set of semantic structures to be assigned to such theories. A semantics S for (T, S) is given by a
partial function �·�S : T→ 2S that assigns sets of acceptable belief states from S to theories from T.

For the rest of this section we assume that the logical formalism (T, S) is fixed but the semantics S is not. We also
assume that there exists a binary operation � such that for all semantic structures X , Y ∈ S, X �Y denotes a structure that
combines information from X and Y . Note that if X is inconsistent with Y , then X �Y need not belong to S. For example,
if S is the set of LP interpretations, then I � J = I ∪ J and if I ∪ J contains a pair of complementary literals, then it is itself
not an LP interpretation. We also assume that � has a neutral element 0 ∈ S, i.e. X � 0 = 0 �X =X for all X ∈ S, and that �∅�S = { 0 }. In the case of LP interpretations this neutral element is ∅.

The splitting problem for (T, S) is specified by

• defining the splitting sets for every theory T ∈ T and
• defining, for every T ∈ T, for every splitting set U for T , and for every X ∈ S: the theories bU (T), tU (T) and eU (T , X).

54 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Intuitively, a splitting set U for a theory T is a set of syntactic building blocks, such as literals or predicate symbols, such
that T can be split in two parts: a part that defines the semantics of elements of U and only of U , and a part that defines
the semantics of the remaining elements based on the semantics of elements from U . The former is called the bottom of T
relative to U and denoted by bU (T). The latter is the top of T relative to U and is denoted by tU (T). The set eU (T , X) is the
reduct of T relative to U and is obtained from the top tU (T) by pre-interpreting elements of U in X . The following example
illustrates these notions:

Example 43 (Splitting set, bottom, top and reduct of logic programs). For logic programs under the stable model semantics, T is
the set of all logic programs, S is the set of all LP interpretations and every splitting set is some set of objective literals [71].
Consider the program

P : p.

q← p,∼r.

One splitting set for this program is U = { p } because P can be split in two sets, bU (P) = { p. } and tU (P) = { q ← p, ∼r. },
such that bU (P) only contains literals from U and tU (P) does not contain literals from U in heads of rules.

Furthermore, the reduct eU (P, J) depends on the LP interpretation J . If J |= p, then eU (P, J) = { q ←∼r. } while if
J �|= p, then eU (P, J) = ∅. In other words, eU (P, J) consists of rules from tU (P) with all literals from U pre-interpreted
in J .

In the next subsection we formally define splitting sets, bottoms and reducts for various formalisms, such as MKNF
knowledge bases, finite sequences of ontologies, DLPs and DMKBs. Nevertheless, the specifics of these definitions are not
required to define what it means for a semantics S to satisfy the Abstract Splitting Set Property. Assuming that the notions of
splitting set, bottom, top and reduct are known for the logical formalism (T, S), we can define a solution w.r.t. a splitting set
as follows:

Definition 44 (Solution w.r.t. a splitting set). Let S be a semantics for (T, S) and U a splitting set for a theory T ∈ T. An
S-solution to T w.r.t. U is a pair of semantic structures (X , Y) such that X ∈ �bU (T)�S and Y ∈ �eU (T , X)�S and X �Y ∈ S.

The Abstract Splitting Set Property requires that the models assigned to a theory T correspond one to one with the
solutions to T w.r.t. some splitting set. Formally:

Definition 45 (Abstract splitting set property). We say that a semantics S for (T, S) satisfies the Abstract Splitting Set Property if
for all theories T ∈ T for which �T �S is defined and every splitting set U for T ,

�T �S = { X �Y | (X ,Y) is an S-solution to T w.r.t. U } .

If, instead of a single splitting set, we consider a sequence of such sets, we can divide a theory into a sequence of
layers and formulate a generalised version of the Abstract Splitting Set Property. This part of the theory relies on transfinite
sequences of sets, so we first introduce the following basic concepts:

Definition 46 (Sequence). A (transfinite) sequence is a family whose index set is an initial segment of ordinals, { α | α < μ }.
The ordinal μ is the length of the sequence. A sequence of sets 〈Uα〉α<μ is monotone if Uβ ⊆ Uα whenever β ≤ α, and
continuous if, for each limit ordinal α < μ, Uα =⋃

β<α Uβ . A sequence 〈Ui〉i<n is finite if n < ω.

Assuming that all splitting sets are subsets of some fixed set U, we define a splitting sequence as follows:

Definition 47 (Splitting sequence). A splitting sequence for a theory T ∈ T is a monotone, continuous sequence 〈Uα〉α<μ of
splitting sets for T such that

⋃
α<μ Uα =U.

The definition of splitting sequences allows transfinite sequences in order to allow generalizations to programs with, e.g.,
infinite stable models [14] as shown below. As we will see, the definition of update operators for MKNF knowledge bases
will not require such transfinite sequences.

Example 48. The following program illustrates the use of transfinite splitting sequences. Note that this program admits a
splitting sequence in which Uα contains exists_ill_defined_number only for a transfinite value of α.

exists_ill_defined_number ← is_number(X),even(X),odd(X). is_number(0).

is_number(s(X)) ← is_number(X). even(0).

even(s(s(X))) ← even(X). odd(s(0)).

odd(X) ← ∼even(X).

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 55
In order to define a solution w.r.t. a splitting sequence, we need to collect models of layers of T induced by the splitting
sequence. The first layer of T is the part of T that only describes elements from U0. Formally, this is exactly bU0 (T), so we
obtain X0 as one of its models. Proceeding inductively, for every sequence ordinal α + 1 < μ, the corresponding layer of T
is the part of T that describes elements from Uα+1, with elements from Uα pre-interpreted in models of previous layers.
Given our notation, and assuming (given its continuity) that the binary operator � can be generalised to arbitrary subsets
of S, Xα+1 is chosen as one of the models of eUα (bUα+1 (T),

⊎
β≤α Xβ). Limit ordinals form a marginal case – since the

splitting sequence is continuous, the set Uα \⋃
β<α Uβ is empty for every limit ordinal α, hence the corresponding layer of

T is empty as well and, consequently, Xα = 0. These observations lead to the following definition:

Definition 49 (Solution w.r.t. a splitting sequence). Let S be a semantics for (T, S) and U = 〈Uα〉α<μ a splitting sequence for a
theory T ∈ T. An S-solution to T w.r.t. U is a sequence of semantic structures 〈Xα〉α<μ such that

1. X0 ∈ �bU0 (T)�S .
2. For any sequence ordinal α such that α + 1 < μ,

Xα+1 ∈
�

eUα

(
bUα+1(T),

⊎
β≤α Xβ

)�
S

.

3. For any limit ordinal α < μ, Xα = 0.
4.

⊎
α<μXα ∈ S.

The Abstract Splitting Sequence Property is now a straightforward adaptation of the Abstract Splitting Set Property.

Definition 50 (Abstract splitting sequence property). We say that a semantics S for (T, S) satisfies the Abstract Splitting Sequence
Property if for all theories T ∈ T for which �T �S is defined and every splitting sequence U = 〈Uα〉α<μ for T ,

�T �S =
{ ⊎

α<μ Xα

∣∣ 〈Xα〉α<μ is an S-solution to T w.r.t. U
}

.

4.2. Semantics with splitting properties

Now we take a look at instantiations of splitting properties for the cases of MKNF knowledge bases, ontology updates and
rule updates. Unlike in [71], we consider sets of predicate symbols instead of sets of ground literals as our splitting sets. By
doing this, the set of ground literals with the same predicate symbol is considered either completely included in a splitting
set or completely excluded from it. While this makes our approach less general than if we considered each ground literal
individually, it considerably simplifies the splitting of ontologies, which usually contain axioms with an implicit universal
quantifier.

4.2.1. Splitting properties for MKNF knowledge bases
We instantiate the Abstract Splitting Properties for MKNF knowledge bases as follows:

• The set of theories T is the set of all MKNF knowledge bases over a language L.
• The set of semantic structures S is the set of all MKNF interpretations.
• � is the set intersection ∩ with the neutral element 0 = IL .
• The semantic function �·�S returns all MKNF models of the argument MKNF knowledge base.

In this section, we restrict SNA interpretations (Definition 3) to those that interpret ≈ as the identity relation. A splitting
set for an MKNF knowledge base is defined analogously to a splitting set for a logic program, with the additional constraint
that each ontology axiom must either use only predicate symbols from the splitting set, or only predicate symbols outside
the splitting set.

In the following, given any MKNF formula, MKNF theory, ontology axiom, ontology, (generalised) literal, (MKNF) rule,
(MKNF) program or MKNF knowledge base �, we denote by pr(�) the set of predicate symbols occurring in �.

Definition 51 (Splitting set for an ontology, program and MKNF knowledge base). Let K = (O, P) be an MKNF knowledge base
and U ⊆ P a set of predicate symbols. We say that U is a

• splitting set for O if for every axiom φ ∈O, if pr(φ) ∩ U �= ∅, then pr(φ) ⊆ U ;
• splitting set for P if for every rule π ∈P , if pr(Hπ) ∩ U �= ∅, then pr(π) ⊆ U ;
• splitting set for K if it is a splitting set for both O and P .

The bottom of an MKNF knowledge base relative to a splitting set U contains ontology axioms and rules formed using
only predicate symbols from U . The top, on the other hand, contains the remaining ontology axioms and rules. Formally:

56 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Definition 52 (Bottom and top of an ontology, program and MKNF knowledge base). Let K= (O, P) be an MKNF knowledge base
and U ⊆ P a set of predicate symbols. We define the bottom of O and P relative to U as

bU (O)= { φ ∈O | pr(φ)⊆ U } and bU (P)= { π ∈ P | pr(π)⊆ U } .

The bottom of K relative to U is bU (K) = (bU (O), bU (P)).
The top of O, P and K is defined as tU (O) =O \ bU (O), tU (P) =P \ bU (P) and tU (K) = (tU (O), tU (P)), respectively.

Next, we need to define the reduct that makes it possible to use an MKNF model X of the bottom of K = (O, P) to
simplify the top of K. The top of the ontology tU (O) cannot be reduced in this manner because it only contains predicate
symbols that do not belong to U . In case of the top of the program tU (P), we can discard rules that contain a body literal L
with pr(L) ⊆ U that is not satisfied in X , and eliminate the remaining literals L with pr(L) ⊆ U . This is formally captured as
follows:

Definition 53 (Reduct of a program and MKNF knowledge base). Let K = (O, P) be an MKNF knowledge base, U ⊆ P a set of
predicate symbols and X ∈M. We define the reduct of P relative to U and X as

eU (P,X)= {
Hπ ←{ L ∈ Bπ | pr(L)⊆ P \ U } . | π ∈ tU (P)∧X |= κ(

{
L′ ∈ Bπ | pr(L′)⊆ U

}
)
}

The reduct of K relative to U and X is eU (K, X) = (tU (O), eU (P, X)).

The definitions of splitting properties now follow from the generic ones defined in Section 4.1. As the following theorem
shows, the semantics of MKNF knowledge bases satisfies both splitting properties:

Theorem 54 (Splitting theorem for MKNF knowledge bases). The semantics of MKNF knowledge bases satisfies the Abstract Splitting
Set Property and the Abstract Splitting Sequence Property.

Proof. See Appendix C, page 84. �
An MKNF knowledge base can be split in a number of different ways. For example, ∅ and P are splitting sets for

any MKNF knowledge base and sequences such as 〈P〉, 〈∅, P〉 are splitting sequences for any MKNF knowledge base. The
following example shows a more elaborate splitting sequence for the Cargo Imports knowledge base from Example 2.

Example 55 (Splitting the cargo imports knowledge base). Consider the MKNF knowledge base K= (O, P) presented in Fig. 1.
One of the non-trivial splitting sequences for K is U = 〈U0, U1, U2, U3〉, where

U0 = { Commodity/1,EdibleVegetable/1,Tomato/1,CherryTomato/1,

GrapeTomato/1,HTSCode/2,HTSChapter/2,HTSHeading/2,Bulk/1,

Prepackaged/1,TariffCharge/2,ShpmtCommod/2,ShpmtImporter/2,

ShpmtDeclHTSCode/2,ShpmtProducer/2,ShpmtCountry/2 } ,

U1 = U0 ∪ { AdmissibleImporter/1,SuspectedBadGuy/1,ApprovedImporterOf/2 } ,

U2 = U1 ∪ { RegisteredProducer/2,EUCountry/1,EURegisteredProducer/1,

CommodCountry/2,ExpeditableImporter/2,LowRiskEUCommodity/1 } ,

U3 = U2 ∪ { CompliantShpmt/1,Random/1,RandomInspection/1,PartialInspection/1,

FullInspection/1 } .

This splitting sequence divides K into the four layers shown in Fig. 2. The first layer contains all ontological knowledge re-
garding commodity types as well as information about shipments. The second layer contains rules for classifying importers
using both internal records and information from the first layer. The third layer contains axioms with geographic classifica-
tion, information about registered producers and, based on information about commodities and importers from the first two
layers, it defines low risk commodities coming from the European Union. The final layer contains rules for deciding which
shipments should be inspected based on information from previous layers.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 57
* * * bU0 (K) * * *

Commodity≡ (∃HTSCode.) EdibleVegetable≡ (∃HTSChapter.{ ‘07’ })
CherryTomato≡ (∃HTSCode.{ ‘07020020’ }) Tomato≡ (∃HTSHeading.{ ‘0702’ })
GrapeTomato≡ (∃HTSCode.{ ‘07020010’ }) Tomato� EdibleVegetable
CherryTomato� Tomato GrapeTomato� Tomato
CherryTomato � Bulk≡ (∃TariffCharge.{ $0 }) CherryTomato �GrapeTomato�⊥
GrapeTomato � Bulk≡ (∃TariffCharge.{ $40 }) Bulk � Prepackaged�⊥
CherryTomato � Prepackaged≡ (∃TariffCharge.{ $50 })
GrapeTomato � Prepackaged≡ (∃TariffCharge.{ $100 })

ShpmtCommod(s1, c1) ShpmtDeclHTSCode(s1, ‘07020020’)
ShpmtImporter(s1, i1) CherryTomato(c1) Bulk(c1)

ShpmtCommod(s2, c2) ShpmtDeclHTSCode(s2, ‘07020020’)
ShpmtImporter(s2, i2) CherryTomato(c2) Prepackaged(c2)

ShpmtCountry(s2,portugal)
ShpmtCommod(s3, c3) ShpmtDeclHTSCode(s3, ‘07020010’)
ShpmtImporter(s3, i3) GrapeTomato(c3) Bulk(c3)

ShpmtCountry(s3,portugal) ShpmtProducer(s3,p1)

* * * tU0 (bU1 (K)) * * *

AdmissibleImporter(x)←∼SuspectedBadGuy(x). SuspectedBadGuy(i1).
ApprovedImporterOf(i2,x)← EdibleVegetable(x).
ApprovedImporterOf(i3,x)← GrapeTomato(x).

* * * tU1 (bU2 (K)) * * *

EURegisteredProducer≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity≡ (∃ExpeditableImporter.) � (∃CommodCountry.EUCountry)
CommodCountry(x,y)← ShpmtCommod(z,x),ShpmtCountry(z,y).
ExpeditableImporter(x,y)← ShpmtCommod(z,x),ShpmtImporter(z,y),

AdmissibleImporter(y),ApprovedImporterOf(y,x).

RegisteredProducer(p1,portugal) EUCountry(portugal)
RegisteredProducer(p2, slovakia) EUCountry(slovakia)

* * * tU2 (bU3 (K)) * * *

CompliantShpmt(x)← ShpmtCommod(x,y),HTSCode(y, z),ShpmtDeclHTSCode(x, z).
RandomInspection(x)← ShpmtCommod(x,y),Random(y).
PartialInspection(x)← RandomInspection(x).
PartialInspection(x)← ShpmtCommod(x,y),∼LowRiskEUCommodity(y).
FullInspection(x)←∼CompliantShpmt(x).
FullInspection(x)← ShpmtCommod(x,y),Tomato(y),ShpmtCountry(x, slovakia).

Fig. 2. Splitting Sequence Layers of the MKNF knowledge base for Cargo Imports.

4.2.2. Ontology updates
As shown, MKNF Knowledge Bases have the splitting properties: in this section we show that in the case of an ontology

Winslett’s update operator also has the Abstract Splitting Properties. Instantiation of the generic splitting properties for a
given first-order update operator � is done as follows:

• The set of theories T contains finite sequences of first-order theories.
• The set of semantic structures S = 2IL contains all sets of first-order interpretations.
• As before with MKNF knowledge bases, � is the set intersection ∩ with the neutral element 0 = IL .
• The semantic function �·�S is defined by �T �S =

{ �� T � }
.

The splitting set, top, bottom and reduct of a first-order theory are defined analogously to the same notions for ontologies
defined in the previous section. These are then naturally generalised to deal with sequences of first-order theories. For
instance, the bottom of a sequence of first-order theories is the sequence of bottoms of theories in the sequences.

Definition 56 (Splitting set, bottom, top and reduct for first-order theories). Let T be a first-order theory, T = 〈Ti〉i<n a finite
sequence of first-order theories and U ⊆ P a set of predicate symbols. We say that U is a

58 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
• splitting set for T if for every formula φ ∈ T , if pr(φ) ∩ U �= ∅, then pr(φ) ⊆ U ;
• splitting set for T if for every i < n, U is a splitting set for Ti .

The bottom and top of T relative to U are the theories

bU (T)= { φ ∈ T | pr(φ)⊆ U } and tU (T)= T \ bU (T) .

The bottom and top of T relative to U are the sequences of theories

bU (T)= 〈bU (Ti)〉i<n and tU (T)= 〈tU (Ti)〉i<n .

Given some X ∈M, the reduct of T relative to U and X is eU (T , X) = tU (T) and the reduct of T relative to U and X is
eU (T , X) = tU (T).

Now that these definitions are established, we can directly use the Abstract Splitting Properties from Section 4.1. Further-
more, since every sequence of first-order theories has a single set of models, the resulting properties are simpler than their
general form (which allows a set of sets of models). Particularly, given a sequence of first-order theories T and a splitting
set U for T , the Abstract Splitting Set Property requires that

�� T � = ��bU (T)� ∩ �� tU (T)� .

Similarly, given a splitting sequence U = 〈Uα〉α<μ for T , the Abstract Splitting Sequence Property requires that

�� T � = ��bU0(T)� ∩ ⋂
α+1<μ

�� tUα (bUα+1(T))� .

If we pick Winslett’s first-order operator as �, then both of these properties are satisfied.

Theorem 57 (Splitting theorem for Winslett’s first-order update operator). The semantics for sequences of first-order theories induced
by Winslett’s first-order operator �W satisfies the Abstract Splitting Set Property and Abstract Splitting Sequence Property.

Proof. See Appendix C, page 87. �
4.2.3. Rule updates

To complete the discussion of splitting properties we turn to the special case of updating program rules and show that
the RD semantics (Section 2.6) observes the splitting properties. Given a rule update semantics S, the splitting properties
for DLPs can be derived from the generic ones as follows:

• The set of theories T contains all DLPs.
• The set of semantic structures S coincides with the set of all LP interpretations.
• The operator � is the set union ∪ and its neutral element is 0 = ∅.
• The semantic function �·�S is as defined by the rule update semantics S, i.e. it returns the set of S-models (i.e., stable

models) of the argument DLP.

Since rule update semantics work with LP interpretations instead of MKNF interpretations, we define the program reduct
w.r.t. an LP interpretation as the program reduct w.r.t. the corresponding MKNF interpretation. Note that despite the different
definition, the resulting concept is in line with the same notion in [71].

Definition 58 (Reduct of a program w.r.t. a splitting set). Let P be a program, U ⊆ P a set of predicate symbols, J an LP
interpretation and M the MKNF interpretation corresponding to J . We define the reduct of P w.r.t. U and J as eU (P, J) =
eU (P, M).

The splitting set, bottom, top and reduct of a DLP are now straightforward adaptations of the same notions for single
programs.

Definition 59 (Splitting set, bottom, top and reduct for a DLP). Let P = 〈Pi〉i<n be a DLP and U a set of predicate symbols. We
say that U is a splitting set for P if for all i < n, U is a splitting set for Pi .

The bottom and top of P relative to U are defined as bU (P) = 〈bU (Pi)〉i<n and tU (P) = 〈tU (Pi)〉i<n , respectively. Given an
LP interpretation J , the reduct of P relative to U and J is defined as eU (P , J) = 〈eU (Pi, J)〉i<n .

Given these definitions, the splitting properties for a rule update semantics S are directly derived from the Abstract Split-
ting Properties of Section 4.1. Intuitively, given a DLP P and a splitting set U , the splitting set property requires that every
J ∈ � P �S be the union of some J ′ ∈ �bU (P)�S and some J ′′ = �eU (P , J ′)�S . The splitting sequence property generalises

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 59
the same requirement to splitting sequences. The RD-semantics for rule updates (Section 2.6), as well as many other rule
update semantics that generalise the stable model semantics, e.g. [6,37,66,78], naturally satisfy both splitting properties:

Theorem 60 (Splitting theorem for rule updates). The RD-semantics for rule updates satisfies the Abstract Splitting Set Property and
the Abstract Splitting Sequence Property.

Proof (sketch). See Appendix C, page 87. �
5. Layered dynamic MKNF knowledge bases

We are now ready to utilise the Abstract Splitting Properties as a foundation for a hybrid update semantics. More
particularly, our semantics modularly combines a given first-order update operator � together with a given rule update
semantics S and uses them to update DMKBs consisting of one or more ontology and rule layers, each feeding information
into subsequent layers. Updates of each layer, depending on whether it is an ontology or a rule layer, are handled by �
and S, respectively, and the resulting models are then used to assemble an overall dynamic MKNF model.

In the rest of this section we implicitly work under the following assumptions.

• As in Section 3, we assume that all MKNF rules are ground: in our case, with respect to C, the set of constants in L.
• Unlike Section 3, we now allow rules with default negation in their heads. However, we do not allow rules to con-

tain generalised atoms, as, to our knowledge, rules with generalised atoms are not yet supported by any rule update
semantics.

• As in Section 4.2, we restrict SNA interpretations (Definition 3) to those that interpret ≈ as the identity relation.

With these assumptions in mind, we first define the concepts underlying splitting properties to identify a class of layered
DMKBs to which we assign an update semantics (Section 5.1). Nevertheless, this generic semantics depends on a particular
splitting sequence and in order for it to be splitting-independent, three properties of � and S need to be assumed: the
Abstract Splitting Sequence Property and two basic properties of update operations. After defining them formally, we prove
splitting-independence of the hybrid update semantics (Section 5.2). Then we turn to its other formal properties and il-
lustrate how it can be applied to the scenario described in Example 2 (Section 5.3). The relevant proofs can be found in
Appendix D.20

5.1. Splitting-based updates of MKNF knowledge bases

In the following we identify a class of DMKBs for which splitting enables us to perform updates by using a given
first-order update operator together with a given rule update semantics.

Throughout the remainder of this section we assume that some first-order update operator � and some rule update
semantics S are given and fixed.

We start by defining a basic DMKB which can be handled by � or S alone. More specifically, we allow a basic DMKB to
contain

a) arbitrary ontological axioms but no rules except for positive facts (i.e. rules with an empty body and a single objective
literal in the head), or

b) arbitrary rules but no ontological axioms whatsoever.

Formally:

Definition 61 (Basic DMKB). We say that a hybrid knowledge base K = (O, P) is ontology-based if P is a consistent set of
positive facts; rule-based if O is empty; basic if it is either ontology- or rule-based.

A DMKB K = 〈Ki〉i<n is ontology-based if for all i < n, Ki is ontology-based; rule-based if for all i < n, Ki is rule-based;
basic if it is either ontology- or rule-based.

Ontology-based DMKBs can be handled by the first-order update operator � while rule-based DMKBs can be updated
using the rule update semantics S. This can be formalised as follows:

Definition 62 (Update semantics for basic DMKBs). Let K = 〈(Oi, Pi)〉i<n be a basic DMKB. An MKNF interpretation M is a
(�, S)-dynamic MKNF model of K if either

a) K is ontology-based and M = ��〈κ(Oi) ∪ { l | (l.) ∈Pi }〉i<n �, or
b) K is rule-based and M corresponds to some J ∈ �〈Pi〉i<n �S .

20 A preliminary version of this work has been published in [91]. The present contribution is more general since it allows for various combinations of
first-order and rule update semantics, not just for one fixed pair as in [91].

60 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
By allowing programs in an ontology-based DMKB to contain positive facts, we pave the way towards extending the
class of basic DMKBs to a much larger class for which we define an update semantics through splitting. The central idea is
that if a DMKB K can be split into multiple layers, each of which consists of a basic DMKB, then the above defined update
semantics for basic DMKBs can be used to assign a semantics to K . We thus define the splitting set, bottom, top and reduct
for DMKBs as follows:

Definition 63 (Splitting set, bottom, top and reduct for a DMKB). Let K = 〈Ki〉i<n be a DMKB and U a set of predicate symbols.
We say that U is a splitting set for K if for all i < n, U is a splitting set for Ki .

The bottom and top of K relative to U are defined as bU (K) = 〈bU (Ki)〉i<n and tU (K) = 〈tU (Ki)〉i<n , respectively.
Given some X ∈M, the reduct of K relative to U and X is defined as eU (K , X) = 〈eU (Ki, X)〉i<n .

With these definitions in place, we can instantiate the generic definitions from Section 4.1 and obtain the definition
of a splitting sequence as well as of a solution w.r.t. a splitting set and splitting sequence. But we still need to make
sure that after splitting, the obtained DMKBs are basic. In case of a single splitting set U this amounts to requiring that the
bottom layer bU (K) be a basic DMKB and the reduct eU (K , X) also be a basic DMKB. Similarly, for a splitting sequence U =
〈Uα〉α<μ we need to make sure that bU0 (K) is a basic DMKB and for every ordinal α such that α+1 < μ, eUα (bUα+1 (K), X)

is a basic DMKB. The following definition establishes the notion of a layering splitting sequence by requiring exactly these
conditions given an arbitrary choice of X .

Definition 64 (Layering splitting sequence). Let K be a DMKB and U = 〈Uα〉α<μ a splitting sequence for K . We say that U is
a layering splitting sequence for K if bU0 (K) is a basic DMKB and for any ordinal α such that α + 1 < μ and every X ∈M,
eUα (bUα+1 (K), X) is also a basic DMKB. We say that K is layered if some layering splitting sequence for K exists.

The definition of a solution to a DMKB K w.r.t. a layering splitting sequence is an instantiation of the abstract definition
in Section 4.1. However, for the sake of completeness, the definition of a (�, S)-dynamic MKNF model of K w.r.t. a layering
splitting sequence is provided in Appendix D, Definition 143.

5.2. Independence of splitting sequence

The (�, S)-dynamic MKNF models defined above depend on a particular splitting sequence and there is no guarantee
that under a different splitting, the same models will be obtained. In the following we introduce conditions under which
these models are splitting-independent. In particular, we need to assume the following properties of � and S:

1. Splitting properties: Both � and S must satisfy the splitting properties. If this were not the case, then solutions might
depend on a splitting sequence even for basic DMKBs.

2. Language conservation: Both � and S must conserve the language, i.e. the models of syntactically independent knowledge
base sequences must be independent. If this were not the case, then � and S might interfere with one another
when used to update syntactically unrelated layers of the DMKB. This property is formalised below.

3. Fact update: Finally, since DMKBs consisting of a sequence of consistent sets of facts are classified by Definition 61 as
both ontology- and rule-based, their semantics is given both by � and by S. This ambivalence is unavoidable if
we want to allow both an ontology and a rule layer to contain only facts, or simply to be empty. Nevertheless, if
the semantics assigned to such sequences of fact bases by � differs from that assigned by S, the resulting hybrid
update semantics cannot generalise either � or S. In order to avoid such anomalies, we assume that both � and S
respect fact update, as defined below.

Both language conservation and fact update are basic properties of update operations. For a rule update semantics S
they can be formulated straightforwardly as follows:

Definition 65 (Language conservation and fact update for rule updates). Let S be a rule update semantics. We say that S

• conserves the language if for all sets of predicate symbols A, every DLP P = 〈Pi〉i<n and every S-model J of P , if
pr(Pi) ⊆ A for all i < n, then pr(J) ⊆ A;

• respects fact update if for every finite sequence of consistent sets of facts P = 〈Pi〉i<n , the unique S-model of P is the
LP interpretation{

l ∈ LitsG

∣∣ ∃ j < n : (l.) ∈ P j ∧ (∀i : j < i < n=⇒
{

l.,∼l.
}
∩Pi = ∅)

}
.21

21 Recall from Section 2.2 that LitsG is the set of ground objective literals formed over L; l is the complement of the objective literal l, and ∼l is its
default negation.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 61
Intuitively, language conservation for rule updates requires that all atoms true in an S-stable model of a DLP P must
appear in at least one of its rules, which is a necessary condition for the atom to be properly justified. On the other hand,
fact update enforces a principle of inertia that forms the basis for belief update operators such as Winslett’s. Both of these
properties are satisfied by a wide range of rule update semantics, including the RD-semantics.

Theorem 66 (Language conservation and fact update for RD-semantics). The RD-semantics for rule updates conserves the language
and respects fact update.

Proof (sketch). See Appendix D, page 89. �
The formalisation of language conservation for first-order updates relies on the notion of interpretation restriction and

the related concept of saturated set of interpretations. Intuitively, given a set of predicate symbols A, a set of interpretations
M ∈M is saturated relative to A if it only contains knowledge about predicate symbols from A.

Definition 67 (Interpretation restriction and saturated interpretation). Let A be a set of predicate symbols, I ∈ IL and M ∈M.
The restriction of I to A is an interpretation I [A] such that for every ground atom p,

I [A] |= p if and only if pr(p)⊆ A ∧ I |= p .

The restriction of M to A is defined as M[A] = {
I [A] | I ∈M

}
.

Furthermore, we say that M is saturated relative to A if for every interpretation I ∈ IL ,

I [A] ∈M[A] implies I ∈M .

Example 68. Suppose a language L contains only the predicate symbols p/0, q/0, and r/0. Let A = { p/0, q/0 } and let
M = { { p, q }, { p, q, r } }. Then M[A] = { { p, q } } and it is not difficult to verify that M is saturated relative to A. However,
M is not saturated with respect to B = { p/0 }. Since M[B] = { { p } }, we see that even though I = I [B] = { p } ∈M[B], it
is not the case that I ∈M.

To formally illustrate this concept, we show that the set of models of a first-order theory T is saturated relative to the
set of predicate symbols that are relevant to T .

Proposition 69. Let A be a set of predicate symbols and T a first-order theory such that pr(T) ⊆ A. Then �T � is saturated relative
to A.

Proof. See Appendix D, page 89. �
In other words, the set of models of a single first-order theory conserves its language. Language conservation for an

update operator � extends the same property to sequences of first-order theories. Also, for first-order theories, fact update
is formulated in essentially the same way as for rule updates.

Definition 70 (Language conservation and fact update for ontology updates). Let � be a first-order update operator. We say
that �

• conserves the language if for all sets of predicate symbols A and every sequence of first-order theories T = 〈Ti〉i<n such
that for all i < n, pr(Ti) ⊆ A, �� T � is saturated relative to A;

• respects fact update if for every finite sequence of consistent sets of ground objective literals T = 〈Ti〉i<n ,

�� T � = {
I ∈ IL

∣∣ I |=
{

l ∈ LitsG

∣∣ ∃ j < n : l ∈ T j ∧ (∀i : j < i < n=⇒ l /∈ Ti)
} }

.

Since Winslett’s operator treats all predicate symbols in a uniform manner, it naturally satisfies both these properties.

Theorem 71 (Language conservation and fact update for Winslett’s operator). Winslett’s first-order update operator �W conserves the
language and respects fact update.

Proof. See Appendix D, page 90. �
The previous results show that if we consider Winslett’s operator for performing ontology updates and the RD-semantics

for performing rule updates, then they satisfy the splitting properties (cf. Theorems 57 and 60), conserve the language and
respect fact update. Furthermore, these three basic assumptions about the first-order update operator � and rule update

62 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
semantics S are sufficient to guarantee that (�, S)-dynamic MKNF models are independent of the choice of the layering
splitting sequence.

Proposition 72 (Independence of splitting sequence). Let U , V be layering splitting sequences for a DMKB K . If both � and S have the
splitting sequence property, conserve the language and respect fact update, then M is a (�, S)-dynamic MKNF model of K w.r.t. U if
and only if M is a (�, S)-dynamic MKNF model of K w.r.t. V .

Proof. See Appendix D, page 93. �
We can now safely introduce the dynamic MKNF model of a layered DMKB, independent of a particular layering splitting

sequence:

Definition 73 (Update semantics for layered DMKBs). Suppose that both � and S have the splitting sequence property, conserve
the language and respect fact update; and let K be a layered DMKB. An MKNF interpretation M is a (�, S)-dynamic MKNF
model of K if M is a (�, S)-dynamic MKNF model of K w.r.t. some layering splitting sequence.

Note that since 〈P〉 (i.e., the sequence containing the single element, P) is a layering splitting sequence for any basic
DMKB, it follows from Proposition 72 that the above definition is compatible with the previously defined semantics for basic
DMKBs (cf. Definition 62).

Finally, we define a consequence relation by considering the credulous consequence of (�, S)-dynamic MKNF models.

Definition 74 (Consequence relation). Suppose that both � and S have the splitting sequence property, conserve the language
and respect fact update, let K be a layered DMKB and T an MKNF theory. We say that K (�, S)-MKNF entails T , denoted
by K |=�,SMKNF T , if M |= T for some (�, S)-dynamic MKNF model M of K .

5.3. Properties and use

The purpose of this subsection is twofold. First, we establish other formal properties of the hybrid update semantics that
has just been defined, showing that it is faithful to the (static) semantics of MKNF knowledge bases as well as the first-order
update operator and rule update semantics it is based upon. We also prove that it respects one of the most widely accepted
principles underlying update semantics in general, the principle of primacy of new information, and is fully in line with the
hybrid update semantics defined in Section 3.

Our second goal is to illustrate its usefulness by considering updates of the MKNF knowledge base about Cargo Imports
presented in Example 2.

We assume throughout this section that both the first-order update operator � and the rule update semantics S have
the splitting sequence property, conserve the language and respect fact update.

5.3.1. Fidelity of the hybrid update semantics
First we define two basic properties of a rule update semantics that we need to assume in some of the theoretical

results. The first property requires faithfulness of a rule update semantics to stable models while the second is concerned
with respect for primacy of new information. Both properties are satisfied by most existing rule update semantics, including
[6,7,13,31,37,65,66,78,80,98].

Definition 75 (Faithfulness to stable models and primacy of new information). Let S be a rule update semantics. We say that S

• is faithful to the stable model semantics if for every program P , an LP interpretation J is an S-model of the DLP 〈P〉 if
and only if J is a stable model of P ;

• respects primacy of new information if for every DLP P = 〈Pi〉i<n such that n > 0 and every S-model J of P it holds that
J |=Pn−1.

Our first formal result about the hybrid update semantics shows that it is faithful to the semantics of MKNF knowledge
bases. For this to work, we need to assume that the rule update semantics is faithful to the stable model semantics.

Theorem 76 (Faithfulness w.r.t. MKNF knowledge bases). Suppose that S is faithful to the stable model semantics and let 〈K〉 be a
layered DMKB. An MKNF interpretation M is an MKNF model of K if and only if M is a (�, S)-dynamic MKNF model of 〈K〉.

Proof. See Appendix D, page 96. �
An immediate consequence of this result and of the basic properties of MKNF knowledge bases (Proposition 15) is that

the defined update semantics is also faithful w.r.t. ontologies and stable models. Furthermore, the semantics is faithful to
the first-order update operator � and the rule update semantics S that it is based on.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 63
Theorem 77 (Faithfulness w.r.t. first-order update operator). Let K = 〈(Oi, ∅)〉i<n be a DMKB. An MKNF interpretation M is a
(�, S)-dynamic MKNF model of K if and only if M = ��〈Oi〉i<n �.

Proof. See Appendix D, page 96. �
Theorem 78 (Faithfulness w.r.t. rule update semantics). Let K = 〈(∅, Pi)〉i<n be a DMKB. If J is an S-model of 〈Pi〉i<n, then the MKNF
interpretation corresponding to J is a (�, S)-dynamic MKNF model of K . If M is a (�, S)-dynamic MKNF model of K , then the LP
interpretation corresponding to M is an S-model of 〈Pi〉i<n.

Proof. See Appendix D, page 96. �
As with the update semantics in Section 3, assuming that � satisfies (FO1) and S respects primacy of new information,

the resulting hybrid semantics also respects it.

Theorem 79 (Primacy of new information). Suppose that � satisfies (FO1) and S respects primacy of new information and let K =
〈Ki〉i<n be a layered DMKB such that n > 0. If M is a (�, S)-dynamic MKNF model of K , then M |= κ(Kn−1).

Proof. See Appendix D, page 96. �
Finally, the update semantics is compatible with the semantics from Section 3 – both of them provide the same results

when applied to layered DMKBs with static rules, i.e. to the class of DMKBs that they can both handle.

Theorem 80 (Compatibility with update semantics from Section 3). Suppose that � satisfies (FO2.) and (FO8.2) and that S is faithful
to the stable model semantics. Let K be a layered DMKB with static rules. An MKNF interpretation M is a �-dynamic MKNF model of
K if and only if M is a (�, S)-dynamic MKNF model of K .

Proof. See Appendix D, page 101. �
5.3.2. An extended example

Finally, the following example illustrates how the semantics can be used in the Cargo Imports domain to incorporate
new, conflicting information into an MKNF knowledge base.

Example 81 (Updating the cargo imports knowledge base). The MKNF knowledge base K in Fig. 1 has a single MKNF model M.
Due to the splitting theorem for MKNF knowledge bases (cf. Theorem 54), M coincides with X0 ∩X1 ∩X2 ∩X3 where Xi
is the MKNF model of the i-th layer of K, as presented in Fig. 2. We shortly summarise what is entailed by each of these
MKNF models.

The first layer of K, bU0 (K), contains a number of ABox assertions about shipments s1 , s2 , s3 which differ in the kind
of tomatoes or in their packaging. All of these assertions are entailed by X0 and, besides that, using the TBox assertions
we can derive that the cargo within each shipment (c1 , c2 and c3 , respectively) belongs to the concept Tomato as well as
EdibleVegetable, and that each cargo is assigned a different tariff charge:

X0 |= { CherryTomato(c1), Tomato(c1), EdibleVegetable(c1), TariffCharge(c1,$0),

CherryTomato(c2), Tomato(c2), EdibleVegetable(c2), TariffCharge(c2,$50),

GrapeTomato(c3), Tomato(c3), EdibleVegetable(c3), TariffCharge(c3,$40) } .

Using this information, the rules in the second layer of K, tU0 (bU1 (K)), derive information about admissible and ap-
proved importers, namely:

X1 |= { SuspectedBadGuy(i1), ApprovedImporterOf(i2, c1),

AdmissibleImporter(i2), ApprovedImporterOf(i2, c2),

AdmissibleImporter(i3), ApprovedImporterOf(i2, c3),

ApprovedImporterOf(i3, c3) } .

Turning to the third layer, the rules and TBox axioms of tU1(bU2 (K)), entail some simple geographic information along
with the following:

X2 |= { ExpeditableImporter(c2, i2), LowRiskEUCommodity(c2),

ExpeditableImporter(c3, i3), LowRiskEUCommodity(c3),

EURegisteredProducer(p) } .
1

64 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
* * * bU0 (K′) * * *

Commodity≡ (∃HTSCode.) EdibleVegetable≡ (∃HTSChapter.{ ‘07’ })
CherryTomato≡ (∃HTSCode.{ ‘07020020’ }) Tomato≡ (∃HTSHeading.{ ‘0702’ })
GrapeTomato≡ (∃HTSCode.{ ‘07020010’ }) Tomato� EdibleVegetable
CherryTomato� Tomato GrapeTomato� Tomato
CherryTomato � Bulk≡ (∃TariffCharge.{ $0 }) CherryTomato �GrapeTomato�⊥
GrapeTomato � Bulk≡ (∃TariffCharge.{ $40 }) Bulk � Prepackaged�⊥
CherryTomato � Prepackaged≡ (∃TariffCharge.{ $50 })
GrapeTomato � Prepackaged≡ (∃TariffCharge.{ $100 })

GrapeTomato(c1)

* * * tU0 (bU1 (K′)) * * *

∼ApprovedImporterOf(i2,x)← Tomato(x).

* * * tU1 (bU2 (K′)) * * *

EURegisteredProducer≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity≡ (∃ExpeditableImporter.) � (∃CommodCountry.EUCountry)

¬LowRiskEUCommodity(c3)

* * * tU2 (bU3 (K′)) * * *

∼PartialInspection(x)← ShpmtProducer(x,y),EURegisteredProducer(y).

Fig. 3. Layers of the update to the MKNF knowledge base for Cargo Imports.

The HTS codes of commodities inside all three shipments match the declared HTS codes, so all shipments are compliant
according to the rules in the last layer, tU2 (bU3 (K)). Besides, there is no expeditable importer for c1 , so it is not considered
a low risk commodity and the rules in the last layer imply that a partial inspection of s1 will take place:

X3 |= { CompliantShipment(s1), CompliantShipment(s2),

CompliantShipment(s3), PartialInspection(s1) } .

Now we consider an update caused by several independent events in order to illustrate different aspects of the hy-
brid update semantics. We assume to be using Winslett’s first-order operator �W to deal with ontology updates and the
RD-semantics to deal with rule updates.

Suppose that during the partial inspection of s1 , grape tomatoes are found instead of cherry tomatoes. Second, we
suppose that i2 is no longer an approved importer for any kind of tomatoes due to a history of mis-filing. Third, due to a
rat infestation on the boat with shipment s3 , c3 is no longer considered a low risk commodity. Finally, because of workload
constraints, partial inspections for shipments with commodities from a producer registered in a country of the European
Union will be waived. These events lead to the following update K′ = (O′, P ′) where O′ contains the assertions

GrapeTomato(c1) ,

¬LowRiskEUCommodity(c3)

as well as all TBox axioms from O, in order to keep them static; and P ′ contains the following rules22:

∼ApprovedImporterOf(i2,x)← Tomato(x).

∼PartialInspection(x)← ShpmtProducer(x,y),EURegisteredProducer(y).

Note that the splitting sequence U defined in Example 55 is a layering splitting sequence for the DMKB K = 〈K, K′〉. The
four layers of K and K′ , listed in Figs. 2 and 3, respectively, are used to form the corresponding layers of K . The first
layer, bU0 (K) = 〈bU0 (K), bU0 (K′)〉, still contains only ontology axioms and so is ontology-based. The second and fourth
layers, tU0 (bU1 (K)) = 〈tU0 (bU1 (K)), tU0(bU1 (K′))〉 and tU2 (bU3 (K)) = 〈tU2 (bU3 (K)), tU2(bU3 (K′))〉, contain only rules and so
are rule-based. Finally, the third layer, tU1 (bU2 (K)) = 〈tU1 (bU2 (K)), tU1(bU2 (K′))〉, contains a mixture of rules and ontology

22 We assume that all rule variables are grounded prior to applying our theory.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 65
axioms but all the rules have positive heads and predicate symbols of all body literals belong to U1, so the reduct of the
third layer will necessarily be ontology-based. This implies that K is a layered DMKB.

In order to arrive at a (�W, RD)-dynamic MKNF model of K with respect to U , a (�W, RD)-dynamic MKNF model of each
layer is determined separately and models of previous layers serve to “feed” information into the current layer.

In our case, we first find the model X ′
0 of bU0 (K). Due to the TBox axioms, the cargo c1 is no longer classified as cherry

tomatoes, and its HTS code as well as the tariff charge change. Note that the conflict between old and new knowledge is
properly resolved by Winslett’s operator:

X ′
0 |= { ¬CherryTomato(c1), GrapeTomato(c1),

¬HTSCode(c1, ‘07020020’), HTSCode(c1, ‘07020010’),

¬TariffCharge(c1,$0), TariffCharge(c1,$40) } .

Subsequently, the RD-semantics is used to find the model X ′
1 of the reduct of the second layer w.r.t. X ′

0, i.e.
eU0(bU1 (K), X ′

0). This results in i2 no longer being an approved importer for any of the cargo in the knowledge base.
As before, the conflict that arose is resolved by the RD-semantics:

X ′
1 |= { ∼ApprovedImporterOf(i2, c1), ∼ApprovedImporterOf(i2, c2),

∼ApprovedImporterOf(i2, c3) } .

Given X ′
0 and X ′

1, we form the reduct of the third layer: eU1(bU2 (K), X ′
0 ∩ X ′

1). It follows that i2 is no longer an ex-
peditable importer of c2 and, as a consequence, c2 is no longer considered a low risk commodity. Furthermore, due to the
explicit update, c3 is also no longer filed as a low risk commodity. The conflicting situation is again resolved by Winslett’s
operator and results in the (�W, RD)-dynamic MKNF model X ′

2 such that:

X ′
2 |= { ∼ExpeditableImporter(c2, i2), ∼LowRiskEUCommodity(c2),

¬LowRiskEUCommodity(c3), EURegisteredProducer(p1) } .

Finally, due to all the changes in the three previous layers, the rules in the reduct of the fourth layer, eU2 (bU3 (K), X ′
0 ∩

X ′
1 ∩X ′

2), imply that shipment s1 is no longer compliant and, as a consequence, should be fully inspected. Also, shipment s2

needs to be partially expected because c2 is now not a low risk commodity. Furthermore, even though c3 is also not a low
risk commodity, it is not going to be partially inspected because of the rule update in the fourth layer according to which
the inspection of s3 must be waived because s3 comes from an EU registered producer. The resulting model X ′

3 of the last
layer is determined by the RD-semantics:

X ′
3 |= { ∼CompliantShpmt(s1), FullInspection(s1),

PartialInspection(s2), ∼PartialInspection(s3), } .

Note that the sequence of MKNF interpretations 〈X ′
0, X ′

1, X ′
2, X ′

3〉 is a solution to K w.r.t. the splitting sequence U and
the unique (�W, RD)-dynamic MKNF model assigned to K is the MKNF interpretation M′ =X ′

0 ∩X ′
1 ∩X ′

2 ∩X ′
3.

6. Complexity of update query answering

The preceding sections have presented two complementary approaches to updating MKNF knowledge bases: DMKBs with
static rules in Section 3, and layered DMKBs in Section 5. In this section, after informally reviewing previous results on the
complexity of entailment from MKNF knowledge bases, we present a basic complexity result for each approach. We assume
the basic terminology of computational complexity as can be found in e.g., [79]. As notation, if �1 and �2 are complexity
classes, then ��2

1 denotes the class of problems that can be solved by a Turing machine that is complete for class �1 which
makes use of an oracle that is complete for problems in class �2.

6.1. Complexity of entailment from MKNF knowledge bases

The original paper on MKNF knowledge bases, [77] presented a variety of complexity results concerning entailment by a
MKNF knowledge base K= (O, P). More specifically, they considered the problem of determining whether K |= K A, where
A is a ground generalised atom in an atom base associated with K, and given that the underlying description logic of O
is DL.

The first measure of complexity considered, termed combined complexity, is based on the size of (non-ground) K plus
the size of A. Since no assumptions are made about P – which may be non-ground – when DL is of low complexity, the
cost of combined complexity is dominated by the cost of grounding P which is exponential in the size of P . Even for more
expressive cases of DL such as SHOIN or SROIQ which underlay specifications of OWL, the complexity of entailment
may be increased due to the generality of MKNF knowledge bases together with the weakness of assumptions made by
combined complexity.

66 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
A second measure is data complexity, which makes stronger assumptions, including various boundedness conditions
about size of A, P and O, and the size of rules in P , and that the Abox of O consists only of atomic formulas. Under such
conditions, the data complexity of entailment for many description logics is either in Ptime or is co-NP complete. When such
description logics are used in an MKNF knowledge base K the complexity of entailment is co-NP complete, or �P

2 complete,
respectively. In the case of stratified programs, which have a single stable model, the complexity is Ptime-complete or is
�P

2 -complete respectively.23

6.2. Complexity of entailment from dynamic MKNF knowledge bases

Since entailment by MKNF knowledge bases is not decidable in general, both the results mentioned above and those
presented below apply only to admissible MKNF knowledge bases, a class that we now define. As discussed informally in
Section 2.4, two conditions suffice for entailment by a (finite) MKNF knowledge base K = (O, P) to be decidable. First,
the description logic over which O is formulated must be decidable; and second, P must be DL-safe, which ensures that
ground(P) is finite. In [77], these conditions are stated formally by the definition of an admissible MKNF knowledge base.
Here, we extend this definition to ground DMKBs (sequences of ground MKNF knowledge bases, Definition 19):

Definition 82 (Admissibility). Let DL be a description logic, B a generalised atom base expressible in DL, and H ⊆ B.
DL, B, and H are admissible if, for each O ∈DL, each finite set S ⊆H of ground generalised atoms, each finite set N of
assertions of the form a �≈ b, and each generalised atom ξ ∈ B, checking whether O ∪ S ∪ N |= κ(ξ) is decidable.

Let DL, B and H be admissible. A program P over B is admissible if it is ground and finite and each rule in P contains
a generalised literal over H in its head. A DLP P = 〈Pi〉i<n is admissible if each Pi is admissible. An MKNF knowledge
base K = (O, P) over DL and B is admissible if it is ground, DL-safe and finite, and P is admissible. A DMKB 〈Ki〉i<n , is
admissible if each Ki is admissible.24

In the remainder of this section, we assume that all ontologies and programs are over an admissible description logic
DL and generalised atom base B.

Next, we define the problem of query answering for updates to the ontology. The complexity of these problems will
serve as parameters to the complexity of updating MKNF knowledge bases.

Definition 83 (Query answering for ontology updates). Let � be a first-order update operator and let � be a complexity class.
We say that query answering for � belongs to � if for every sequence of ontologies 〈Oi〉i<n and every finite set of ground
generalised literals S , � contains the problem of deciding whether

�O0 �O1 � · · · �On−1 � |= κ(S) .

6.2.1. DMKBs with static rules
The problem of answering queries to DMKBs with static rules is expressed as follows.

Definition 84 (Hybrid query answering for updates of DMKBs with static rules). Let � be a first-order update operator that
satisfies (FO8.2) and � a complexity class. We say that hybrid query answering for � belongs to � if for every admissible
DMKB with static rules K and every finite set of ground generalised literals S , � contains the problem of deciding whether
K |=�MKNF κ(S).

The following theorem shows that query answering to a DMKB with static rules is a function of the complexity of query
answering for the ontology update operator that was used. Specifically, the theorem provides an upper bound, determined
by guessing a model J for the ground static rules, then determining whether J corresponds to a model of the DMKB.

Theorem 85. Let � be a first-order update operator that satisfies (FO8.2) and � a complexity class. If query answering for � belongs
to �, then hybrid query answering for � belongs to NP� .

Proof (sketch). See Appendix B, page 76. �
6.2.2. Layered DMKBs

Before addressing the problem of answering queries to layered DMKBs, we state the problem of query answering for rule
updates. Similarly as in Sections 4 and 5, throughout this subsection we assume that the generalised atom base B consists
of objective literals only.

23 These complexity results apply to the case where no rule in P contains a disjunction in its head, a restriction we have assumed throughout this paper.
24 The definition of admissibility in [77] was not restricted to ground MKNF knowledge bases.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 67
Definition 86 (Query answering for rule updates). Let S be a rule update semantics and � a complexity class. We say that
query answering for S belongs to � if for every admissible DLP P = 〈Pi〉i<n , and every finite set of ground literals S , � contains
the problem of deciding whether for some J ∈ � P �S , J |= S .

The problem of answering queries to layered DMKBs is then expressed as follows.

Definition 87 (Hybrid query answering for updates of layered DMKBs). Let � be a first update operator and S a rule update
semantics such that both � and S have the splitting sequence property, conserve the language and respect fact update.
Given a complexity class �, we say that hybrid query answering for � and S belongs to � if for every admissible layered
DMKB K and every finite set of ground literals S , � contains the problem of deciding whether K |=�,SMKNF κ(S).

In a manner similar to Theorem 85, the following theorem shows that query answering to a layered DMKB is a function
of the complexity of query answering for the update operators that were used. Specifically, the theorem provides an upper
bound, determined by guessing sub-models of each layer in the splitting sequence of the DMKB, then determining whether
these sub-models together correspond to a model of the DMKB.

Theorem 88. Let � be a first update operator and S a rule update semantics such that both � and S have the splitting sequence
property, conserve the language and respect fact update. If query answering for � belongs to �1 and query answering for S belongs
to �2 , then hybrid query answering for � and S belongs to NP�1∪�2 .

Proof (sketch). See Appendix D, page 101. �
Theorems 85 and 88, while abstract, provide upper bounds on computing entailment for admissible DMKBs. Exploring

more precise results based on specific ontology and rule update operators, is an avenue for future work.

7. Discussion

In this paper we have taken important first steps towards solving the problem of updates to MKNF knowledge bases,
a mature framework for tightly integrated hybrid knowledge representing and reasoning.

We have defined two complementary update semantics. The first semantics (Section 3) applies to DMKBs with static
rules, and uses a first-order update operator � to perform ontology updates. This semantics encompasses applications of
hybrid knowledge bases in which the ontology contains highly dynamic information while rules represent defaults, prefer-
ences or behaviour that does not undergo changes and that can be overridden by ontology updates when necessary. The
second semantics applies to layered DMKBs (Section 5), and modularly combines a first-order update operator � with a
rule update semantics S. We demonstrated the use of this semantics in a realistic scenario involving cargo imports. The
approach is capable of performing non-trivial updates, automatically resolving conflicts in the expected manner, and propa-
gating new information across the knowledge base. To define the semantics of layered DMKBs we also introduced Abstract
Splitting Properties (Section 4), which reformulate the notion of splitting so that it can be parameterised by different logical
formalisms; the Abstract Splitting Properties form the basis of the hybrid update semantics defined in Section 5.

The two hybrid update semantics are complementary in the sense that each can handle inputs that the other one cannot.
Moreover, they are fully compatible with one another, meaning that they assign the same semantics to inputs accepted by
both (cf. Theorem 80). By combining them one thus obtains an integrated hybrid update semantics that can safely handle
inputs treated by either of the two semantics.

We also examined the basic theoretical properties of both hybrid update semantics. We showed that they are faithful to
� and S: i.e., the hybrid semantics preserves the behaviour of the underlying update semantics when the hybrid knowledge
base contains only ontology axioms or only rules. Similarly, both of the introduced semantics are faithful to the static
semantics of MKNF knowledge bases, so that when no updates are performed, the assigned models are simply MKNF
models of the initial MKNF knowledge base. Furthermore, they respect the principle of primacy of new information. Finally,
in Section 6 we have presented basic complexity results on each update semantics.

In defining each semantics, we have made as few assumptions as possible about the properties that guarantee the
correctness of our definitions. With respect to update operators, we abstract away from particular instantiations of � and
S and allow for any approach to ontology and rule updates – be it an existing one or one that is yet to be discovered –
as long as it satisfies the given assumptions. As an example the assumptions of language conservation and fact update are
both needed in Section 5 to guarantee that the layered update semantics is independent of the choice of a splitting; both
are basic properties of classical and of rule updates. We have formally shown that they are satisfied for Winslett’s update
operator and the RD-semantics for rule updates. Similarly it can be shown that they hold for other approaches to classical
updates, such as Hegner’s semantics [47], Forbus’ operator [39], Winslett’s standard semantics and its syntax-independent
version [50,96], or the modified Winslett’s operator [35], as well as by other rule update semantics, such as those introduced
in [6,20,30,31,37,66,80,97]. Beyond the assumptions about update operators, few assumptions have been made about the
knowledge base, K, that is to be updated. K may have an ontology constructed from any formalism that is translatable into

68 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
first-order logic. This includes not only most description logics, but other formalisms such as guarded first-order logics [9].
Of course, update operators for such fragments of first-order logic may not yet have been formulated, but the results in this
paper indicate the sufficient conditions if they are to be extended to update MKNF knowledge bases.

The practical usefulness of the introduced semantics is underlined by the fact that the full expressivity of MKNF knowl-
edge bases does not seem to be necessary in a number of practical use cases. In particular, the separation of a hybrid
knowledge base into distinct ontology and rule layers, as required by the layered update semantics of Section 5, seems to
be a natural way of controlling how the different types of knowledge interact, and is in the spirit of recent work on modules
for logic programs [12,54].

7.1. Related work

Updates of description logics Recent research has explored various issues pertaining to updating ontologies that are based on
description logics. One such issue may be termed the recovery problem: given an update operator �, and ontologies O1, O2
both in a specific DL D, can O1 �O2 be expressed in D? Unfortunately, [10] showed that when D is at least as expressive
as ALCQI and � is �W , querying O1 �W O2 is undecidable (and consequently cannot be expressed in ALCQI).

Because of this result, one branch of work has focused on the restriction of updates to information in ABoxes. For
DLs that are at least as expressive as ALC , ABox updates may be restricted to those that only allow for updates with
assertions about concept names (i.e., assertions about classes to which given individuals belong) [15,36,73]. In these cases,
the update semantics used coincides with Winslett’s first-order operator �W , and several DLs have been identified in which
expressibility of the updated ABox is guaranteed. In some of these DLs, the updated ABox may be exponential in size
of the original ABox as well as of the update, while in others it may be exponential (only) in the size of the update.
An alternate line of work addresses updates of less expressive DLs, such as the DL-Lite [27–29]. Unlike ABox updates for
expressive DLs, these update operators ensure that ABox updates do not affect the TBox, treating the TBox the same way
that integrity constraints were handled in early belief update semantics [56]. This line of work also provides polynomial
algorithms for computing the updated ABoxes or their approximations, depending on which flavour of DL-Lite is considered.
On the positive side, this means that the operator �W ensures that the TBox is invariant under updates; on the negative
side, such an approach may suffer from the same issues that arise when augmenting belief update semantics with integrity
constraints [48,49,68].

The ontology update operators just discussed may be termed syntax-independent (or model-based), i.e. they satisfy the
postulate (B4). However, just as rule update operators are not syntax-independent, ontology update operators may be
formula-based (cf. [96]). For formula-based operators, no semantic issues must be addressed when lifting operators based on
propositional logic to first-order logic or ontologies, and expressibility is not an issue. Accordingly, [21] argued that syntax-
independent operators provide inappropriate results when applied to TBoxes and introduced a formula-based operator for
TBox updates in DL-Lite. Similarly, [67] have used a formula-based operator to tackle ABox updates to DL-Lite.

Updates of logic programs When updates started to be investigated in the context of Logic Programming, it was only natural
to adapt belief update principles and operators to this purpose [4,76]. However, such approaches proved insufficiently ex-
pressive, principally because the model-based approach fails to capture the essential relationships between literals encoded
in rules [66], and the formula-based approach is too crude as it does not allow rules to be reactivated when reasons for their
suppression disappear [97]. Although state-of-the-art approaches to rule updates are guided by the same basic intuitions
and aspirations as belief updates, they build upon fundamentally different principles and methods.

Many of them are based on the causal rejection principle [5–7,37,66,78]. Alternative approaches to rule updates employ
syntactic transformations and other methods, such as abduction [80], prioritisation and preferences [31,97], or dependencies
on default assumptions [63,82].

Despite the variety of techniques used in these approaches, certain properties are common to all of them, and seem to
be taken as fundamental. First, the stable models assigned to a program after one or more updates are always supported: for
each true atom p there exists a rule in either the original program or its updates that has p in the head and whose body
is satisfied. Second, all mentioned rule update semantics coincide when it comes to updating sets of facts by newer facts.
Additionally, they need to refer to the syntactic structure of a logic program: the individual rules and, in most cases, also
the literals in their heads and bodies. This is what makes their full reconciliation with ontology updates so difficult since
ontology axioms simply have no heads and bodies.

Despite this impedance mismatch, some are still looking for a unifying framework that could embrace both belief and
rule updates. For such a framework, finding an appropriate notion of equivalence is key. In [32,33], AGM based revision
was reformulated in the context of Logic Programming in a manner analogous to belief revision in classical propositional
logic, and specific revision operators for logic programs were investigated. Central to this novel approach are SE models [93]
which provide a monotonic semantic characterisation of logic programs that is strictly more expressive than the answer-set
semantics. Furthermore, two programs have the same set of SE models if and only if they are strongly equivalent [72],
which means that programs P, Q with the same set of SE models can be modularly replaced by each other with respect to
the answer-set semantics, because strong equivalence guarantees that P ∪R has the same answer sets as Q ∪R for any
program R.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 69
In [85,90], a similar path was followed for KM based updates. However, despite the promise that the additional expres-
siveness of SE models could bring, [85,90] also show that strong equivalence is not a suitable basis for syntax-independent
rule update operators because such operators cannot respect both support and fact update. This can be demonstrated on
programs P = { p., q. } and Q = { p., q ← p. } which are strongly equivalent. Due to syntax independence, an update as-
serting that p is now false ought to lead in both cases to the same stable models. Due to fact update, such an update on P
should naturally lead to a stable model where q is true. But in case of Q such a stable model would be unsupported. Such
examples led to the study of stronger notions of program equivalence in [86,87], and the proposal to view a logic program
as the set of sets of models of its rules in order to acknowledge rules as the atomic pieces of knowledge and, at the same time,
abstract away from unimportant differences between their syntactic forms, focusing on their semantic content.

Within this view of logic programs, updates can be seen to resemble formula-based ontology update operators. In [88]
the authors define an abstract framework – dubbed exception driven updates – which is capable of capturing both logic
program updates, namely the operator in [66], along with several update operators used for ontology updates, such as the
model-based Winslett’s operator, or the formula-based WIDTIO and Bold operators [21,29,67,73]. This view is closely related
to base revision operators [40,46], and provides a promising avenue to further investigate updates of hybrid knowledge bases.

Formalisms for representing hybrid knowledge Multi-context systems [17] provide an alternate formalism for representing
hybrid knowledge in which each context represents a logic together with a set of beliefs, and where the contexts are
integrated through so-called bridge rules. Multi-context systems are more abstract than MKNF knowledge bases overall and
so are more general; however, the relationship of the two formalisms has recently been clarified [60]. From the perspective
of the work described in this paper, there is an interesting relationship between the defined class of layered DMKBs and
multi-context systems. Each layer of a DMKB w.r.t. a particular layering splitting sequence can be viewed as a context
that includes its own bridge rules. At the same time, the constraints we impose guarantee that each such context either
contains only rules, so the context logic can be the stable models semantics, or it contains only DL axioms so that first-order
logic can be used as its underlying logic. Though different splitting sequences induce different multi-context systems, their
overall semantics remains the same (cf. Proposition 72). Based on this close relationship, a further study of the update
frameworks presented here and the update semantics of managed multi-context systems [18], and more recently of reactive
multi-context systems [16,19], and evolving multi-context systems [45] may bring about interesting new insights. Similarly,
the relationship remains to be explored with [94], which studies how the first-order belief update postulates (Section 2.5)
can be extended to multi-context systems and applied to update operators. Furthermore, the development of similar update
semantics under other existing frameworks for hybrid knowledge bases [25,26,38,52,62,64] constitutes another topic of
future investigation.

7.2. Future work and extensions

The results of this paper lay the groundwork for practical experimentation. In this context, two implementations exist
that support MKNF knowledge bases with stratified programs: [44] which supports ALCQ, and the NoHR plug-in for the
Protégé ontology editor which supports EL [53] and DL-Lite [23]. These implementations may serve as starting points
to explore the practical behaviour of hybrid updates based on the combination of specific update operators such as those
mentioned in Section 7.1, and used in practice to deal with the dynamic aspects of applications which require the expressive
power of hybrid knowledge bases, such as normative systems [1,2].

The hybrid update semantics presented in this paper can be further generalised by lifting the various constraints under
which they are developed. In case of the semantics for DMKBs with static rules it would be interesting to consider adding
support for disjunctive rules and for updates of the rule component, even if only to a limited extent. As for the update
semantics for layered DMKBs, one issue to study is type of splitting that it is based on. The main limitation is that the
current definition splits on predicate symbols, while in some cases it would be desirable to allow for a more fine-grained
splitting, on the level of ground, and possibly generalised, atoms. More broadly, other change operations, such as forgetting,
erasure, revision and contraction, also need to be studied and related to updates in the context of hybrid knowledge bases,
just as the relationship between dealing with inconsistencies in hybrid knowledge bases through updates and following a
paraconsistency approach [55].

Acknowledgements

The authors were partially supported by project ERRO (PTDC/EIA-CCO/121823/2010) and by strategic project NOVA LINCS
(PEst/UID/CEC/04516/2013), both funded by Fundação para a Ciência e a Tecnologia.

Appendix A. Proofs: background

In this appendix we introduce a number of formal concepts relating to MKNF knowledge bases and their semantics.
These are useful throughout the proofs of propositions and theorems from Sections 3, 4 and 5, presented later in Appendix B,
Appendix C and Appendix D, respectively. We also formulate some of the basic properties of these new concepts. For brevity,
we leave the proofs of these properties to the reader.

70 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
A.1. Properties of first-order and subjective theories

Observation 89 (Satisfaction of first-order sentences in MKNF structures). Let φ be a first-order sentence, M, N MKNF interpretations
such that M ⊆N and S a set of MKNF interpretations. The following holds:

N |= Kφ implies M |= Kφ ;
∀M′ ∈ S :M′ |= Kφ implies

(⋃
S

)
|= Kφ .

Definition 90 (Subjective MKNF formula and theory, subjective entailment). An MKNF formula φ is subjective if all first-order
atoms in φ occur within the scope of a modal operator. An MKNF theory is subjective if all its members are subjective.
Furthermore, for any subjective MKNF sentence φ, subjective MKNF theory T and M, N ∈M we write

(M,N) |= φ if and only if ∃I ∈ IL : (I,M,N) |= φ ,

(M,N) |= T if and only if ∃I ∈ IL : (I,M,N) |= T .

Observation 91 (Properties of subjective entailment). Let φ , φ1, φ2 be subjective MKNF sentences, T a set of subjective MKNF sen-
tences, π a ground MKNF rule, I ∈ IL and M, N ∈M. Then the following holds:

(1)

(M,N) |= φ if and only if (I,M,N) |= φ ;
(M,N) |= T if and only if (I,M,N) |= T ;

(2) If M �= ∅, then

(M,M) |= φ if and only if M |= φ ;
(M,M) |= T if and only if M |= T ;

(3)

(M,N) |= ¬φ if and only if (M,N) �|= φ ;
(M,N) |= φ1 ∧ φ2 if and only if (M,N) |= φ1 and (M,N) |= φ2 ;
(M,N) |= φ1 ⊃ φ2 if and only if (M,N) |= φ1 implies (M,N) |= φ2 ;

(4) Suppose that M �= ∅ and N �= ∅. Then:

M |= κ(π) if and only if M |= κ(Bπ) implies M |= κ(Hπ) ;
Also, if Hπ is a generalised atom, then

(M,N) |= κ(π) iff M |= κ(B+π) and N |= κ(∼B−π) implies M |= κ(Hπ) ;
Also, if Hπ is a generalised default literal, then

(M,N) |= κ(π) iff M |= κ(B+π) and N |= κ(∼B−π) implies N |= κ(Hπ) ;
(5) For any MKNF knowledge base K, an MKNF interpretation M is an MKNF model of K if and only if M |= κ(K) and for all

M′ �M, (M′, M) �|= κ(K).

A.2. Restricted MKNF interpretations

Here we formulate the essential properties of interpretation restrictions, defined in Definition 67 on page 61.

Definition 92 (Interpretation coincidence). Let A be a set of predicate symbols. For any I, J ∈ IL we say that I coincides with
J on A if I [A] = J [A]. Similarly, for any M, N ∈M, M coincides with N on A if M[A] =N [A].

Observation 93. Let A be a set of predicate symbols, M, M′, N , N ′ ∈M and T an MKNF theory such that A ⊇ pr(T). The following
holds:

(1) If M ⊆N and M[A] �N [A] , then M �N .

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 71
(2) If and M coincides with N on A, then

M |= T if and only if N |= T .

(3) If T is subjective, M coincides with M′ on A and N coincides with N ′ on A, then

(M,N) |= T if and only if (M′,N ′) |= T .

A.3. Saturated MKNF interpretations

Here we formulate the essential properties of saturated MKNF interpretations, defined in Definition 67 on page 61.
The following concept and its properties, strongly related to saturated interpretations, will be essential for proving our

results in Section 5.

Definition 94. Let A be a set of predicate symbols and M ∈M. We introduce the following notation:

σ(M, A)=
{

I ∈ IL
∣∣ I [A] ∈M[A]

}

Also, other properties of saturated MKNF interpretations play an important role.

Observation 95. Let A, B be sets of predicate symbols and M, N ∈M. Then the following holds:

(1) If M is saturated relative to A, then

M�N if and only if M⊆N and M[A] �N [A] .

(2) If T is an MKNF theory such that A ⊇ pr(T), and M is an MKNF model of T , then M is saturated relative to A.
(3) The following conditions are equivalent:

1. N = σ(M, A).
2. N coincides with M on A and is saturated relative to A.
3. N is the greatest among all N ′ ∈M coinciding with M on A.
Furthermore, if N satisfies one of the conditions above, then M ⊆N .

(4)

σ(σ (M, A), B)= σ(M, A ∩ B) .

(5) If A ⊆ B, then

σ(M, B)[A] =M[A] .

(6) If A ⊆ B and M is saturated relative to A, then it is also saturated relative to B.
(7) If A, B are disjoint, then

σ(M, A)[B] = I
[B]
L .

Note particularly that Observation 95(1) is a strengthened version of Observation 93(1), with the implication replaced by
an equivalence, that holds only for saturated MKNF interpretations.

A.4. Semi-saturated MKNF interpretations

Another important class of MKNF interpretations for which a slightly modified version of Observation 93(1) holds are
semi-saturated interpretations. After defining them formally, we list some of their most essential properties.

Definition 96 (Semi-saturated MKNF interpretation). Let A be a set of predicate symbols and M ∈M. We say that M is
semi-saturated relative to A if for every interpretation I ∈ IL ,

I [A] ∈M[A] ∧ I [P\A] ∈M[P\A] implies I ∈M .

Observation 97. Let A be a set of predicate symbols and M, N ∈M. Then the following holds:

(1) If M is semi-saturated relative to A, then

M�N if and only if M⊆N and either M[A] �N [A] or M[P\A] �N [P\A] .

72 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
(2) There exists the greatest M0 ∈M that coincides with M on A and with N on P \ A. Furthermore, M0 is semi-saturated relative
to A and M ∩N ⊆M0 .
Also, if M is saturated relative to A and N relative to P \ A, then M0 =M ∩N .
Finally, if M �= ∅ and N �= ∅, then M0 �= ∅.

A.5. Sequence-saturated MKNF interpretations

The properties satisfied by semi-saturated interpretations can be naturally extended to sequences of mutually disjoint
sets of predicate symbols. This serves as a means to prove the splitting sequence theorems in Section 4.2.

Definition 98 (Saturation sequence, difference sequence). A saturation sequence is a sequence 〈Aα〉α<μ of pairwise disjoint sets
of predicate symbols such that

⋃
α<μ Aα = P.

Definition 99 (Sequence-saturated MKNF interpretation). Let A = 〈Aα〉α<μ be a saturation sequence and M ∈M. We say that
M is sequence-saturated relative to A if for every interpretation I ∈ IL ,

∀α < μ : I [Aα] ∈M[Aα] implies I ∈M .

Observation 100. Let A = 〈Aα〉α<μ be a saturation sequence and M ∈M. Then the following holds:

(1) These conditions are equivalent:
1. M is sequence-saturated relative to A.
2. M =⋂

α<μ σ (M, Aα).
3. M =⋂

α<μMα and for any α < μ, Mα is saturated relative to Aα .
(2) Let 〈Mα〉α<μ be a sequence of members of M such that for all α < μ, Mα is saturated relative to Aα , and M =⋂

α<μ Mα .
Then:
(i) M = ∅ if and only if for some α < μ, Mα = ∅.

(ii) If M �= ∅, then for all α < μ, Mα = σ(M, Aα).

Appendix B. Proofs: dynamic MKNF knowledge bases with static rules

In the following we present proofs of results from Section 3, implicitly working under the same assumptions as those
imposed in that section. That is, we assume that all MKNF rules are ground and do not allow for rules with default negation
in their heads. In the proofs we also implicitly use many of the results presented in Appendix A.

B.1. Static consequence operator

B.1.1. Static consequence operator for positive MKNF programs
Lemma 101 (Monotonicity of TP). Let P be a positive MKNF program and M, N ∈M. If M ⊆N , then TP (M) ⊇ TP (N).

Proof. Suppose that the generalised atom ξ belongs to TP (N). Then there is a rule π ∈ P such that N |= κ(Bπ) and
Hπ = ξ . It follows from Observation 89 that M |= κ(Bπ) and, thus, ξ ∈ TP (M). �
Proposition 21 (Monotonicity of TK). Let K be a positive MKNF knowledge base. Then TK is a monotonic function on the complete
lattice (M, ⊆).

Proof. Let K= (O, P) and take some M, N ∈M such that M ⊆N . Our goal is to show that TK(M) ⊆ TK(N).
It follows from Lemma 101 that TP (M) ⊇ TP (N) and, consequently,

TK(M)= �TP (M)∪ κ(O)� ⊆ �TP (N)∪ κ(O)� = TK(N) . �
Definition 102. We say that an MKNF interpretation M is an S5 model of an MKNF theory T if M |= T . Similarly, M is an
S5 model of an MKNF knowledge base K if it is an S5 model of κ(K).25

Lemma 103. If M is an S5 model of a first-order theory T , then M ⊆ �T �.

25 Such models are so named because an S5 model M for a closed formula φ is obtained by interpreting φ as a first-order model formula in the modal
logic S5 where not is taken to be a shortcut for ¬ K [77].

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 73
Proof. If M is an S5 model of T , then M |= T and it follows that M only contains first-order models of T . Thus, by the
definition of �.�, M is a subset of �T �. �
Lemma 104. For any first-order theory T , either T has no S5 model, or �T � is the greatest S5 model of T .

Proof. Consider two cases:

• a) If �T � is empty, then it follows from Lemma 103 that T has no S5 model (every S5 model must be an MKNF
interpretation, thus non-empty).

• b) if �T � is not empty, then from Lemma 103 and from �T � |= T we immediately conclude that �T � is the greatest
S5 model of T . �

Lemma 105. Let K be a positive MKNF knowledge base. An MKNF interpretation M is an S5 model of K if and only if M ⊆ TK(M).

Proof. First suppose that M is an S5 model of K = (O, P). Then clearly M |= κ(O) and for every rule π ∈ P such that
M |= κ(Bπ) it holds that M |= Hπ . In other words, M is an S5 model of TP (M) ∪ κ(O). By Lemma 104, TK(M) =�TP (M)) ∪ κ(O)� is its greatest S5 model. It follows that M ⊆ TK(M).

On the other hand, if M ⊆ TK(M), then M |= TP (M) ∪ κ(O). It follows that M |= K κ(φ) for every φ ∈ O and
whenever M |= κ(Bπ), it holds that M |= κ(Hπ). Consequently, M is an S5 model of K. �
Lemma 106. Every positive MKNF knowledge base either has no S5 model, or it has a unique MKNF model which coincides with its
greatest S5 model.

Proof. Suppose that the MKNF knowledge base K = (O, P) has some S5 model and let M be the union of all S5 models
of K. First we show that M is an S5 model of K, i.e. it is the greatest S5 model of K.

Take some MKNF sentence φ from κ(K). If φ = K κ(φ) for some φ ∈ O, then since κ(φ) is a first-order sentence, it
follows from Observation 89 that M |= K κ(φ).

The other possibility is that φ is a sentence of the form κ(Bπ) ⊃ κ(Hπ) for some π ∈ P (cf. Definition 12). Suppose
that M |= κ(Bπ). As π is positive, it follows from Observation 89 that N |= κ(Bπ) for every S5 model N of K and, thus,
N |= κ(Hπ). Hence, by Observation 89, M |= κ(Hπ).

It remains to show that M is the unique MKNF model of K. Since κ(K) is subjective not-free, it follows by the def-
initions of MKNF satisfaction and of an MKNF model (Definitions 8 and 9) that the MKNF models of K are exactly its
subset-maximal S5 models. Since M is the greatest S5 model of M, it follows that it is also its unique MKNF model. �
Proposition 23 (MKNF model of a positive MKNF knowledge base). Let K be a positive MKNF knowledge base. An MKNF interpretation
is an MKNF model of K if and only if it is the greatest fixed point of TK.

Proof. Let S = { M |M ⊆ TK(M) } and M∗ =⋃
S . It follows that for every M ∈ S , M ⊆M∗ and, by Proposition 21,

we obtain that M ⊆ TK(M) ⊆ TK(M∗). Hence,

M∗ =
⋃

M∈S
M⊆ TK(M∗)

and we conclude that M∗ belongs to S . Then it follows by the monotonicity of TK that TK(M∗) belongs to S and thus
TK(M∗) ⊆M∗ . Consequently, M∗ is a fixed point of TK . Furthermore, every fixed point of TK belongs to S , so M∗ is its
greatest fixed point.

Now it suffices to observe that, by Lemma 105, S consists of all S5 models of K and the empty set. If M∗ = ∅, then K
has no S5 model, and thus no MKNF model. On the other hand, if M∗ �= ∅, then M∗ is the greatest S5 model of K and, by
Lemma 106, it coincides with the unique MKNF model of K. �
B.1.2. Static consequence operator for MKNF programs with default negation
Lemma 107. Let K be an MKNF knowledge base. An MKNF interpretation M is an S5 model of K if and only if M is an S5 model
of KM .

Proof. Suppose that M is an S5 model of K. Obviously, M |= K κ(φ) for every φ ∈ O. Take some π ′ = (Hπ ← B+π .)

from PM for some π ∈ P with M |= κ(∼B−π). Then κ(KM) contains the sentence κ(π ′) of the form κ(B+π) ⊃ κ(Hπ).
If M |= κ(B+π), then it follows that M |= κ(Bπ) and since M |= κ(π), it follows that M |= κ(Hπ). Therefore, M |= κ(π ′).

For the converse implication, assume that M is an S5 model of KM . Obviously, M |= K κ(φ) for every φ ∈ O, so
consider some rule π ∈ P . If M |= κ(Bπ), then PM contains the rule π ′ = (Hπ ← B+π .) and since M |= κ(π ′), it follows
that M |= κ(Hπ). Hence, M |= κ(π). �

74 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Proposition 26 (MKNF model of an MKNF knowledge base). Let K be an MKNF knowledge base. An MKNF interpretation M is an
MKNF model of K if and only if it is the MKNF model of KM.

Proof. Suppose that M is an MKNF model of K. Then it is also an S5 model of K, so it follows that it is an S5 model of
KM from Lemma 107.

Since M is an S5 model of KM , it must hold that M is a subset of the greatest S5 model M′ of KM . We show by
contradiction that M =M′ , i.e. M is the MKNF model of KM (cf. Lemma 106).

Assume that M � M′ . Since M is an MKNF model of K, there must be some sentence φ ∈ κ(K) such that
(M′, M) �|= φ. But M′ |= K κ(ψ) for every ψ ∈ O, so φ must be of the form κ(Bπ) ⊃ κ(Hπ) for some rule π ∈ P and
the following must hold:

(M′,M) |= κ(∼B−π)∧ (M′,M) |= κ(B+π)∧ (M′,M) �|= κ(Hπ)

which is equivalent to

M |= κ(∼B−π)∧M′ |= κ(B+π)∧M′ �|= κ(Hπ) .

However, this is in conflict with M′ being an S5 model of KM since the sentence

κ(B+π)⊃ κ(Hπ)

belongs to κ(KM).
For the converse implication, assume that M is the MKNF model of KM . Then it follows from Lemma 107 that M is

an S5 model of K.
Take some M′ �M. Since M is the greatest S5 model of KM , there is some rule π ′ = (Hπ ← B+π .) ∈ PM such that

M′ �|= κ(π ′), i.e.

M |= κ(∼B−π)∧M′ |= κ(B+π)∧M′ �|= Hπ .

This is equivalent to

(M′,M) |= κ(∼B−π)∧ (M′,M) |= κ(B+π)∧ (M′,M) �|= κ(Hπ)

which in turn is equivalent to (M′, M) �|= κ(π). This proves that M is indeed an MKNF model of K. �
B.2. Updating consequence operator

Proposition 30 (Monotonicity of T �K). Let � be a first-order update operator and K a positive DMKB with static rules. If � satisfies
(FO8.2), then T �K is a monotonic function on the complete lattice (M, ⊆).

Proof. Let K = 〈(Oi, Pi)〉i<n and take some M, N ∈M such that M ⊆N . Our goal is to show that T �K (M) ⊆ T �K (N).
By Lemma 101 we conclude that TP0 (M) ⊇ TP0 (N).
Consequently,

TP0(M)∪ κ(O0) |= TP0(N)∪ κ(O0) .

By repeatedly using (FO8.2) for all Oi with 0 < i < n we obtain that
((

TP0(M)∪ κ(O0)
) �O1 � · · · �On−1

) |= ((
TP0(N)∪ κ(O0)

) �O1 � · · · �On−1
)

.

Consequently, T �K (M) ⊆ T �K (N). �
B.3. Properties and relations

Theorem 37 (Faithfulness w.r.t. MKNF knowledge bases). Let K= (O, P) be an MKNF knowledge base. An MKNF interpretation M is
an MKNF model of K if and only if M is a �-dynamic MKNF model of 〈K〉.

Proof. This follows from Propositions 23 and 26, and the fact that for every first-order theory T , �〈T 〉 = T , so the static
consequence operator TK coincides with the updating consequence operator T �〈K〉 . �
Theorem 38 (Faithfulness w.r.t. first-order update operator). Let K = 〈(Oi, ∅)〉i<n be a DMKB. An MKNF interpretation M is a
�-dynamic MKNF model of K if and only if M = ��〈Oi〉i<n �.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 75
Proof. Since the K contains no rules, KM = K for any M ∈M. Furthermore,

T �K (M)= ��〈Oi〉i<n � .

It follows that the only fixed point of T �K is the set of models ��〈Oi〉i<n �. �
Theorem 39 (Primacy of new information). Suppose that � satisfies (FO1) and let K = 〈Ki〉i<n be a DMKB with static rules such that
n > 0. If M is a �-dynamic MKNF model of K , then M |= κ(Kn−1).

Proof. Suppose that M is a �-dynamic MKNF model of K . Then M is a fixed point of the operator T �
KM , i.e.

M= T �
KM(M)=

�(
TPM

0
(M)∪ κ(O0)

)
�O1 � · · · �On−1

�
.

Let

T =
(

TPM
0

(M)∪ κ(O0)
)
�O1 � · · · �On−2 .

It follows that

M= �T �On−1 �
and by (FO1) we can conclude that M |= κ(On−1). Consequently, M |= κ(Kn−1). �
Theorem 40 (Immunity to tautological updates). Suppose that � satisfies (FO2.) and (FO4) and let K = 〈(Oi, Pi)〉i<n be a DMKB
with static rules such that O j ≡ ∅ for some j with 0 < j < n and

K ′ = 〈(Oi,Pi)〉i<n∧i �= j .

Then K and K ′ have the same �-dynamic MKNF models.

Proof. Let M be an MKNF interpretation and N ∈M. We will prove that T �
KM (N) = T �

(K ′)M (N), which implies that the
�-dynamic MKNF models of K and K ′ coincide. Put

T =
(

TPM
0

(N)∪ κ(O0)
)
�O1 � . . . �O j−1 .

It follows that

T �
KM(N)= �T �O j � · · · �On−1 � and T �

(K ′)M(N)= �T �O j+1 � · · · �On−1 � .

Let T ′ = T �O j . By (FO4) and (FO2.) we obtain that T ′ ≡ T and by repeated application of (FO4) we conclude that

T ′ �O j+1 � · · · �On−1 ≡ T �O j+1 · · · �On−1 .

Consequently, T �
KM (N) = T �

(K ′)M (N). �
Theorem 41 (Syntax independence). Suppose that � satisfies (FO4). Let K = 〈(Oi, Pi)〉i<n and K ′ = 〈(O′

i, P ′i)〉i<n be DMKBs with
static rules such that P0 =P ′0 and Oi ≡O′

i for all i < n. Then K and K ′ have the same �-dynamic MKNF models.

Proof. Let M be an MKNF interpretation and N ∈M. We will prove that T �
KM (N) = T �

(K ′)M (N), which implies that the
�-dynamic MKNF models of K and K ′ coincide. Observe that

T �
KM(N)= �(

TP0(N)∪ κ(O0)
) �O1 � · · · �On−1 � ,

T �
(K ′)M(N)= �(

TP0(N)∪ κ(O′0)
) �O′1 � · · · �O′n−1 � .

It follows from O0 ≡O′
0 that

TP0(N)∪ κ(O0)≡ TP0(N)∪ κ(O′0)

and by applying (FO4) we obtain that(
TP0(N)∪ κ(O0)

) �O1 � · · · �On−1 ≡
(
TP0(N)∪ κ(O′0)

) �O′1 · · · �O′n−1 .

Consequently, T �
KM (N) = T �

(K ′)M (N). �

76 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
B.4. Complexity of updating DMKBs with static rules

The proof of Theorem 85 requires a counterpart of the updating consequence operator of Definition 28 that, for a DMKB
K and a set of head atoms in the static rules of K , produces a new set of entailed head atoms as follows.

Definition 108. Let � be a first-order update operator and K = 〈(Oi, Pi)〉i<n a positive DMKB with static rules. Also, let HA′
be the set of all (generalised) head atoms in the rules of Pi . T-syn�K is defined for all M ∈M and HA	 ⊆ HA′ as follows:

�
T-syn

K
(M)= {

Hπ

∣∣ π ∈ P ∧ �(κ(HA)∪ κ(O0)) �O1 � · · · �On−1 � |= κ(Bπ)
}

.

Theorem 85. Let � be a first-order update operator that satisfies (FO8.2) and � a complexity class. If query answering for � belongs
to �, then hybrid query answering for � belongs to NP� .

Proof (sketch). Take a DMKB with static rules K = 〈(O0, P), (O1, ∅), . . . , (On−1, ∅)〉 and a finite set of ground literals S . We
need to prove that the problem of deciding whether

K |=�MKNF κ(S)

belongs in NP� . In other words, we need to decide whether for some �-dynamic MKNF model M of K , M |= κ(S).
Let HA′ be the (finite) set of generalised atoms that appear in heads of P . We guess HA	 ⊆ H A′ , then check that

M= �(κ(HA)∪O0) �O1 � · · · �On−1 �
is an MKNF model of K . In other words, we guess the set HA	 of generalised atoms in the heads of rules in P that are
true in M.

The rest can be verified in deterministic polynomial time using our � oracle as follows. First, we form the program
reduct PM by using the oracle to see which default body literals are entailed by M and which ones are not. Then, we
check that HA	 is the least fixed point of T-syn�K ,HA	 . Since K is finite and ground, HA′ is also finite and ground and is
part of the input string of the decision problem. Accordingly, obtaining the fixed point can be achieved by using the oracle
polynomially many times. Finally, we check that M |= κ(φ) by one additional call to the oracle. �
Appendix C. Proofs: semantics with splitting properties

C.1. MKNF knowledge bases

Remark 109. Note that whenever U is a splitting set for an MKNF knowledge base K= (O, P), the following holds:

pr(bU (O))⊆ U , pr(bU (P))⊆ U , pr(bU (K))⊆ U , pr(tU (O))⊆ P \ U .

Also note that the heads of rules in tU (P) contain only predicate symbols from P \ U while their bodies may also contain
predicate symbols from U . However, for any X ∈M, the reducts eU (P, X) and eU (K, X) contain only predicate symbols
from P \ U :

pr(eU (P,X))⊆ P \ U , pr(eU (K,X))⊆ P \ U .

These basic observations will be used in the following proofs without further notice or reference.

C.1.1. Splitting set theorem
Definition 110 (Generalised splitting set reduct). Let K = (O, P) be an MKNF knowledge base, U ⊆ P a set of predicate
symbols and X , X ′ ∈M. We define the reduct of P relative to U and (X ′, X) as

eU (P, (X ′,X))= {
Hπ ←{ L ∈ Bπ | pr(L)⊆ P \ U } . | π ∈ tU (P)∧ (X ′,X) |= κ({ L ∈ Bπ | pr(L)⊆ U })}

.

The reduct of K relative to U and (X ′, X) is eU (K, (X ′, X)) = (tU (O), eU (P, (X ′, X))).

Lemma 111. Let U be a splitting set for an MKNF knowledge base K and D, D′ , E , E ′ , F , F ′ , G , G′ ∈M be such that the following
conditions are satisfied:

1. E [U] =D[U] and E ′[U] =D′[U];
2. F [P\U] =D[P\U] and F ′[P\U] =D′[P\U];
3. G[U] =D[U] and G′[U] =D′[U] .

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 77
Then,

(D′,D) |= κ(K) implies (E ′,E) |= κ(bU (K))∧ (F ′,F) |= κ(eU (K, (G′,G))) .

Proof. Suppose that (D′, D) |= κ(K) and let K = (O, P). Since bU (O) ⊆O, it follows that for every φ ∈ bU (O), (D′, D) |=
K κ(φ). Also, every rule π ∈ bU (P) belongs to P and we can conclude that (D′, D) |= κ(π). Consequently, (D′, D) |=
κ(bU (K)) and from Observation 93(3) we obtain (E ′, E) |= κ(bU (K)).

It remains to show that (F ′, F) |= κ(eU (K, (G′, G))). We know that eU (K, (G′, G)) = (tU (O), eU (P, (G′, G))). Since
tU (O) ⊆ O, it follows that for every φ ∈ tU (O), (D′, D) |= K κ(φ) and we can use Observation 93(3) to conclude that
(F ′, F) |= K κ(tU (φ)).

Take some rule σ ∈ eU (P, (G′, G)). By Observation 91(3), in order to prove that (F ′, F) |= κ(σ), we can instead show
that (F ′, F) |= κ(Hσ) given the assumption that (F ′, F) |= κ(Bσ). This assumption together with Observation 93(3) implies
that (D′, D) |= κ(Bσ) and, by the definition of eU (K, (G′, G)), there must be some rule π ∈ P such that Hπ = Hσ and
(G′, G) |= κ(Bπ \Bσ). From the last property and Observation 93(3) we obtain (D′, D) |= κ(Bπ \Bσ). Thus, (D′, D) |= κ(Bπ)

and since (D′, D) |= κ(K) and κ(K) contains κ(π), we conclude that (D′, D) |= κ(Hπ). Consequently, since Hπ = Hσ , by
Observation 93(3) we obtain (F ′, F) |= κ(Hσ) and so (F ′, F) |= κ(σ). The choice of σ was arbitrary, so we have proven
that (F ′, F) |= κ(eU (P, (G′, G))). �
Lemma 112. Let U be a splitting set for an MKNF knowledge base K and D, D′ , E , E ′ , F , F ′ , G , G′ ∈M be such that the following
conditions are satisfied:

1. E [U] =D[U] and E ′[U] =D′[U];
2. F [P\U] =D[P\U] and F ′[P\U] =D′[P\U];
3. G[U] =D[U] and G′[U] =D′[U] .

Then,

(E ′,E) |= κ(bU (K))∧ (F ′,F) |= κ(eU (K, (G′,G))) implies (D′,D) |= κ(K) .

Proof. Take some φ ∈ κ(K) and let K = (O, P). If φ = K κ(ψ) for some ψ ∈ O, then using Observation 93(3) we can
conclude that from O = bU (O) ∪ tU (O) and our assumptions it follows that (D′, D) |= K κ(φ).

Now suppose that φ = κ(π) for some π ∈P . If π ∈ bU (P), then it follows that (E ′, E) |= κ(π) and by Observation 93(3)
we conclude that (D′, D) |= κ(π). If π ∈ tU (P), then assuming that (D′, D) |= κ(Bπ) we need to prove that (D′, D) |=
κ(Hπ). It follows by Observation 93(3) that

(G′,G) |= κ({ L ∈ Bπ | pr(L)⊆ U })
Consequently, eU (P, (G′, G)) contains a rule σ such that Hσ = Hπ and

Bσ = { L ∈ Bπ | pr(L)⊆ P \ U } .

Thus, by Observation 93(3), (F ′, F) |= κ(Bσ) and from (F ′, F) |= eU (K, (G′, G)) it follows that (F ′, F) |= κ(Hσ). By an-
other application of Observation 93(3) we obtain that (D′, D) |= κ(Hσ) and since Hσ = Hπ , it follows that (D′, D) |= κ(π).
Consequently, (D′, D) |= κ(K). �
Proposition 113. Let U be a splitting set for an MKNF knowledge base K and D, D′ , E , E ′ , F , F ′ , G , G′ ∈M be such that the following
conditions are satisfied:

1. E [U] =D[U] and E ′[U] =D′[U];
2. F [P\U] =D[P\U] and F ′[P\U] =D′[P\U];
3. G[U] =D[U] and G′[U] =D′[U] .

Then,

(D′,D) |= κ(K) if and only if (E ′,E) |= κ(bU (K))∧ (F ′,F) |= κ(eU (K, (G′,G))) .

Proof. Follows by Lemmas 111 and 112. �
Corollary 114. Let U be a splitting set for an MKNF knowledge base K and M, X be MKNF interpretations such that X [U] =M[U] .
Then,

M |= κ(K) if and only if M |= κ(bU (K))∧M |= κ(eU (K,X)) .

78 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Proof. Proposition 113 for D =D′ = E = E ′ =F =F ′ =M and G = G′ =X implies that

(M,M) |= κ(K) if and only if (M,M) |= κ(bU (K))∧ (M,M) |= κ(eU (K, (X ,X))) .

The claim now follows from Observation 91(2). �
Corollary 115. Let U be a splitting set for an MKNF knowledge base K and M, X , Y be MKNF interpretations such that X [U] =M[U]

and Y [P\U] =M[P\U] . Then,

M |= κ(K) if and only if X |= κ(bU (K))∧Y |= κ(eU (K,X)) .

Proof. Proposition 113 for D =D′ =M, E = E ′ =X , F =F ′ = Y and G = G′ =X implies that

(M,M) |= κ(K) if and only if (X ,X) |= κ(bU (K))∧ (Y,Y) |= κ(eU (K, (X ,X))) .

The claim now follows from Observation 91(2). �
Corollary 116. Let U be a splitting set for an MKNF knowledge base K and M, M′ , X , X ′ be MKNF interpretations such that
M |= κ(K), M′[P\U] =M[P\U] , X [U] =M[U] and X ′[U] =M′[U] . Then,

(M′,M) �|= κ(K) implies (X ′,X) �|= κ(bU (K)) .

Proof. Proposition 113 for D =M, D′ =M′ , E =X , E ′ =X ′ , F =F ′ =M, G = G′ =X implies that

(M′,M) �|= κ(K) if and only if (X ′,X) �|= κ(bU (K))∨ (M,M) �|= κ(eU (K, (X ,X))) .

Furthermore, from Corollary 114 we know that M |= κ(eU (K, X)) is satisfied because M |= κ(K). Hence, by Observa-
tion 91(2) the second disjunct on the right hand side of the above equivalence can be safely omitted and we obtain the
claim of this corollary. �
Corollary 117. Let U be a splitting set for an MKNF knowledge base K and M, M′ , X , Y , Y ′ be MKNF interpretations such that
M |= κ(K), M′[U] =X [U] =M[U] , Y [P\U] =M[P\U] and Y ′[P\U] =M′[P\U] . Then,

(M′,M) �|= κ(K) implies (Y ′,Y) �|= κ(eU (K,X)) .

Proof. Proposition 113 for D =M, D′ =M′ , E = E ′ =M, F = Y , F ′ =Y ′ , G = G′ =X implies that

(M′,M) �|= κ(K) if and only if (M,M) �|= κ(bU (K))∨ (Y ′,Y) �|= κ(eU (K, (X ,X))) .

Furthermore, from Corollary 114 we know that M |= κ(bU (K)) is satisfied because M |= κ(K). Hence, by Observation 91(2),
the first disjunct on the right hand side of the above equivalence can be safely omitted and we obtain the claim of this
corollary. �
Corollary 118. Let U be a splitting set for an MKNF knowledge base K and M, M′ , X , X ′ be MKNF interpretations such that
X [U] =M[U] and X ′[U] =M′[U] . Then,

(X ′,X) �|= κ(bU (K)) implies (M′,M) �|= κ(K) .

Proof. Proposition 113 for D =M, D′ =M′ , E =X , E ′ =X ′ , F = G =M, F ′ = G′ =M′ implies that

(M′,M) �|= κ(K) if and only if (X ′,X) �|= κ(bU (K))∨ (M′,M) �|= κ(eU (K, (M′,M))) .

The claim of this corollary follows directly from this equivalence. �
Corollary 119. Let U be a splitting set for an MKNF knowledge base K and M, M′ , X , Y , Y ′ be MKNF interpretations such that
M′[U] =X [U] =M[U] , Y [P\U] =M[P\U] and Y ′[P\U] =M′[P\U] . Then,

(Y ′,Y) �|= κ(eU (K,X)) implies (M′,M) �|= κ(K) .

Proof. Proposition 113 for D =M, D′ =M′ , E = E ′ =M, F = Y , F ′ =Y ′ , G = G′ =X implies that

(M′,M) �|= κ(K) if and only if (M,M) �|= κ(bU (K))∨ (Y ′,Y) �|= κ(eU (K, (X ,X))) .

The claim of this corollary follows from this equivalence by Observation 91(2). �

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 79
Proposition 120. Let U be a splitting set for an MKNF knowledge base K, M an MKNF model of K and X = σ(M, U). Then X is an
MKNF model of bU (K).

Proof. By Observation 95(3) we know that M ⊆ X and that X is saturated relative to U . By Observation 91(5), X is an
MKNF model of bU (K) if and only if X |= κ(bU (K)) and for every X ′ � X it holds that (X ′, X) �|= κ(bU (K)). The former
follows directly from Corollary 115. To verify the latter, pick some X ′ � X . By Observation 97(2) there exists the greatest
MKNF interpretation M′ that coincides with X ′ on U (i.e. M′[U] =X ′[U]) and with M on P \ U (i.e. M′[P\U] =M[P\U])
and which includes X ′ ∩M. Hence,

M⊆X ∩M⊆X ′ ∩M⊆M′ . (C.1)

Furthermore, we know that X is saturated relative to U , so we can use Observation 95(1) to conclude that

M[U] =X [U] �X ′[U] =M′[U]
. (C.2)

Consequently, by (C.1), (C.2) and Observation 93(1), we obtain M �M′ . This, together with the assumption that M is an
MKNF model of K, implies that (M′, M) �|= κ(K). We can now apply Corollary 116 to conclude that (X ′, X) �|= κ(bU (K)),
which is the desired conclusion. �
Proposition 121. Let U be a splitting set for an MKNF knowledge base K, M an MKNF model of K, X = σ(M, U) and Y =
σ(M, P \ U). Then Y is an MKNF model of eU (K, X).

Proof. By Observation 95(3) we know that M ⊆ Y and that Y is saturated relative to P \ U . By Observation 91(5), Y is
an MKNF model of eU (K, X) if and only if Y |= κ(eU (K, X)) and for every Y ′ � Y it holds that (Y ′, Y) �|= κ(eU (K, X)).
The former follows directly from Corollary 115. To verify the latter, pick some Y ′ � Y . By Observation 97(2) there exists the
greatest MKNF interpretation M′ that coincides with M on U (i.e. M′[U] =M[U]) and with Y ′ on P \ U (i.e. M′[P\U] =
Y ′[P\U]) and which includes M ∩Y ′ . Hence,

M⊆M∩Y ⊆M∩Y ′ ⊆M′ . (C.3)

Furthermore, we know that Y is saturated relative to P \ U , so we can use Observation 95(1) to conclude that

M[P\U] = Y [P\U] � Y ′[P\U] =M′[P\U]
. (C.4)

Consequently, by (C.3), (C.4) and Observation 93(1), we obtain M �M′ . This, together with the assumption that M is an
MKNF model of K, implies that (M′, M) �|= κ(K). We can now apply Corollary 117 to conclude that (Y ′, Y) �|= κ(eU (K, X)),
which is the desired conclusion. �
Proposition 122. Let U be a splitting set for an MKNF knowledge base K and (X , Y) a solution to K w.r.t. U . Then X ∩Y is an MKNF
model of K.

Proof. Let K= (O, P) and M =X ∩Y . In order to show that M is an MKNF model of K, we need to prove that M |= κ(K)

and that for every M′ �M it holds that (M′, M) �|= κ(K). We verify the two conditions separately.
We know that X is an MKNF model of bU (K), so, by Observation 95(2), X is saturated relative to U . Similarly, since Y

is an MKNF model of eU (K, X), it must be saturated relative to P \ U . Hence, by Observation 97(2), M is semi-saturated
relative to U , M[U] =X [U] and M[P\U] = Y [P\U].

Since (X , Y) is a solution to K w.r.t. U , X must an MKNF model of bU (K) and Y an MKNF model of eU (K, X). So
X |= κ(bU (K)) and Y |= κ(eU (K, X)). Consequently, by Corollary 115, M |= κ(K).

Now take some MKNF interpretation M′ �M and let X ′ =X ∪M′ and Y ′ = Y ∪M′ . We already inferred that M is
semi-saturated relative to U , which means that by Observation 97(1) one of the following cases must occur:

a) If M′[U] �M[U], then

X ′[U] =X [U] ∪M′[U] =M′[U] �M[U] =X [U] ,

so Observation 93(1) implies that X ′ � X . Hence, since X is an MKNF model of bU (K), we infer that (X ′, X) �|=
κ(bU (K)) and by Corollary 118 we obtain (M′, M) �|= κ(K) as desired.

b) If M′[U] =M[U] and M′[P\U] �M[P\U], then X ′[U] =M′[U] =M[U] and

Y ′[P\U] = Y [P\U] ∪M′[P\U] =M′[P\U] �M[P\U] = Y [P\U] ,

so Observation 93(1) implies that Y ′ � Y . Hence, since Y is an MKNF model of eU (K, X), we infer that (Y ′, Y) �|=
κ(eU (K, X)) and by Corollary 119 we obtain (M′, M) �|= κ(K) as desired. �

80 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Theorem 123 (Splitting set theorem for MKNF knowledge bases). Let U be a splitting set for an MKNF knowledge base K. An MKNF
interpretation M is an MKNF model of K if and only if M =X ∩Y for some solution (X , Y) to K w.r.t. U .

Proof. First suppose that M is an MKNF model of K. By Proposition 120 we obtain that X = σ(M, U) is an MKNF model
of bU (K) and by Proposition 121 that Y = σ(M, P \U) is an MKNF model of eU (K, X). Furthermore, by Observation 95(3),
X [U] =M[U] and X is saturated relative to U , Y [P\U] =M[P\U] and Y is saturated relative to P \ U , and M ⊆X ∩Y . To
prove the converse inclusion, note that the following holds by Observation 97(2):

(X ∩Y)[U] =X [U] =M[U] ,

(X ∩Y)[P\U] = Y [P\U] =M[P\U] .

Suppose that M �X ∩Y . Then, since M is an MKNF model of K, (X ∩Y, M) �|= κ(K) and by Proposition 113 for D =M,
D′ =X ∩Y , E = E ′ =F =F ′ =M, G = G′ =X , we obtain

(M,M) �|= κ(bU (K))∨ (M,M) �|= κ(eU (K, (X ,X))) .

However, Observation 91(2) and Corollary 114 now entail that M �|= κ(K), a conflict with the assumption that M is an
MKNF model of K. Consequently, M =X ∩Y .

The converse implication follows directly from Proposition 122. �
Corollary 124. Let U be a splitting set for an MKNF knowledge base K and M ∈M. If M is an MKNF model of K, then the pair
(σ (M, U), σ(M, P \ U)) is a solution to K w.r.t. U , M = σ(M, U) ∩ σ(M, P \ U) and M is semi-saturated relative to U .

Proof. This is a consequence of the proof of Theorem 123 and of Observation 97(2). �
C.1.2. Splitting sequence theorem
Remark 125. Solutions to an MKNF knowledge base K w.r.t. a splitting sequence (U , P) are the same as the solutions to K
w.r.t. the splitting set U .

Let U = 〈Uα〉α<μ be a splitting sequence for an MKNF knowledge base K, and let 〈Xα〉α<μ be a sequence of MKNF
interpretations. Then,

pr(bU0(K))⊆ U0 ,

pr
(

eUα

(
bUα+1(K),

⋂
β≤α Xβ

))
⊆ Uα+1 \ Uα whenever α + 1 < μ

Furthermore, if X is a solution to K w.r.t. U , then X0 is saturated relative to U0 and for every α such that α + 1 < μ,
Xα+1 is saturated relative to Uα+1 \ Uα . Also note that for any limit ordinal α, Xα = IL , so Xα is saturated relative to any
set of predicate symbols.

The proofs in this section follow the same pattern as those in [92].

Lemma 126. Let 〈Uα〉α<μ be a sequence of sets of predicate symbols and 〈Xα〉α<μ be a sequence of members of M such that for all
α < μ, Xα is saturated relative to Uα . Then

⋂
α<μXα is saturated relative to

⋃
α<μ Uα .

Proof. Let U =⋃
α<μ Uα and X =⋂

α<μXα and suppose that I [U] belongs to X [U]. Then there is some J ∈ X such that
I [U] = J [U]. This means that for every ground atom p with pr(p) ⊆ U ,

I |= p if and only if J |= p .

We need to show that I belongs to X . Take some β < μ and some atom q such that pr(q) ⊆ Uβ . Since Uβ is a subset of U ,
we obtain

I |= q if and only if J |= q .

It follows that I
[
Uβ

]
= J

[
Uβ

]
and since J ∈ X ⊆ Xβ , we conclude that I

[
Uβ

]
∈ X

[
Uβ

]
β . Moreover, Xβ is saturated relative to

Uβ , so I ∈Xβ . Since the choice of β was arbitrary, I belongs to Xβ for all β < μ. Thus, I ∈X as desired. �
Definition 127 (Saturation sequence induced by a splitting sequence). Let U = 〈Uα〉α<μ be a monotone, continuous sequence of
sets of predicate symbols. The saturation sequence induced by U is the sequence A = 〈Aα〉α<μ where

• A0 = U0;
• for any ordinal α such that α + 1 < μ, Aα+1 = Uα+1 \ Uα ;
• for any limit ordinal α, Aα = ∅.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 81
Lemma 128. Let U = 〈Uα〉α<μ be a splitting sequence for an MKNF knowledge base K, A = 〈Aα〉α<μ the saturation sequence induced
by U and X = 〈Xα〉α<μ a sequence of members of M such that Xα is saturated relative to Aα for every α < μ. Then the following
holds for all ordinals α, β such that β < α < μ:

• ⋂
γ≤β Xγ is saturated relative to Uβ ;

• ⋂
β<γ≤α Xγ is saturated relative to Uα \ Uβ ;

• ⋂
α<γ <μXγ is saturated relative to P \ Uα .

Proof. By Lemma 126 we obtain that
⋂

γ≤β Xγ is saturated relative to
⋃
γ≤β

Aγ = A0 ∪
⋃
γ <β

Aγ+1 = U0 ∪
⋃
γ <β

Uγ+1 \ Uγ = Uβ .

The same lemma implies that
⋂

β<γ≤α Xγ must be saturated relative to
⋃

β<γ≤α

Aγ =
⋃

β≤γ <α

Aγ+1 =
⋃

β≤γ <γ+1≤α

Uγ+1 \ Uγ = Uα \ Uβ

and that
⋂

α<γ <μ Xγ must be saturated relative to
⋃

α<γ <μ

Aγ =
⋃

α≤γ <γ+1<μ

Aγ+1 =
⋃

α≤γ <γ+1<μ

Uγ+1 \ Uγ = P \ Uα . �

Lemma 129. Let U = 〈Uα〉α<μ be a splitting sequence for an MKNF knowledge base K, A = 〈Aα〉α<μ the saturation sequence induced
by U , M an MKNF model of K and X = 〈Xα〉α<μ a sequence of MKNF interpretations where Xα = σ(M, Aα) for all α < μ. Then
for every ordinal α < μ it holds that⋂

β≤α

Xβ = σ(M, Uα) .

Proof. We prove by induction on α:

1◦ Suppose that α = 0. We need to show that X0 = σ(M, U0), which follows directly from the definition of X0.
2◦ Take some α such that α + 1 < μ. By the inductive assumption,

⋂
β≤α Xβ = σ(M, Uα). We immediately obtain:

⋂
β≤α+1

Xβ =Xα+1 ∩
⋂
β≤α

Xβ =Xα+1 ∩ σ(M, Uα)

= σ(M, Uα+1 \ Uα)∩ σ(M, Uα) .

It remains to show that σ(M, Uα+1) = σ(M, Uα+1 \ Uα) ∩σ(M, Uα). We know that Uα+1 is a splitting set for K and
that M is an MKNF model of K, so by Corollary 124 it follows that N = σ(M, Uα+1) is an MKNF model of bUα+1 (K).
Furthermore, Uα is a splitting set for bUα+1 (K), so by another application of Corollary 124 we obtain that

σ(M, Uα+1)=N = σ(N , Uα)∩ σ(N ,P \ Uα) . (C.5)

Moreover, Observation 95(4) yields

σ(N , Uα)= σ(σ (M, Uα+1), Uα)= σ(M, Uα+1 ∩ Uα)= σ(M, Uα) (C.6)

and

σ(N ,P \ Uα)= σ(σ (M, Uα+1),P \ Uα)= σ(M, Uα+1 ∩ (P \ Uα))

= σ(M, Uα+1 \ Uα) . (C.7)

The desired conclusion follows from (C.5), (C.6) and (C.7).
3◦ Suppose α < μ is a limit ordinal and for all β < α it holds that

⋂
γ≤β Xγ = σ(M, Uβ). First note that

⋂
β≤α

Xβ =Xα ∩
⋂
β<α

Xβ = IL ∩
⋂
β<α

⋂
γ≤β

Xγ =
⋂
β<α

σ (M, Uβ)

=
⋂
β<α

{
I ∈ IL

∣∣ ∃ J ∈M : J
[
Uβ

]
= I

[
Uβ

] }

=
{

I ∈ IL
∣∣ ∀β < α ∃ J ∈M : J

[
Uβ

]
= I

[
Uβ

] }

82 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
and also that

σ(M, Uα)= σ
(
M,

⋃
β<α Uβ

)
=

{
I ∈ IL

∣∣ ∃ J ∈M : J

[⋃
β<α Uβ

]
= I

[⋃
β<α Uβ

] }
.

From these two identities it can be inferred that σ(M, Uα) is a subset of
⋂

β≤α Xβ . Indeed, if I belongs to σ(M, Uα),

then for some J ∈M we have J

[⋃
β<α Uβ

]
= I

[⋃
β<α Uβ

]
, hence for any β0 < α and any atom p such that pr(p) ⊆ Uβ0 ⊆⋃

β<α Uβ we obtain

J |= p if and only if I |= p ,

which implies that I
[
Uβ0

]
= J

[
Uβ0

]
.

To prove the converse inclusion, let Y =⋂
β≤α Xβ and proceed by contradiction, assuming that σ(M, Uα) � Y . By

Corollary 124 we know that σ(M, Uα) is an MKNF model of bUα (K), so there is some formula φ ∈ bUα (K) such that

(Y,σ (M, Uα)) �|= φ .

Furthermore, since Uα =⋃
β<α Uβ and pr(φ) is a finite set of predicate symbols, there is some β < α such that pr(φ)

is a subset of Uβ . Consequently, by Observation 93(3), we obtain(
Y

[
Uβ

]
,σ (M, Uα)

[
Uβ

])
�|= φ .

Let Y1 =⋂
γ≤β Xγ and Y2 =⋂

β<γ≤α Xγ . By Lemma 128, Y1 is saturated relative to Uβ and Y2 is saturated relative
to Uα \ Uβ and thus by Observation 95(6) also relative to P \ Uβ . Furthermore, Y = Y1 ∩Y2, so, by Observation 97(2),

Y
[
Uβ

]
= Y

[
Uβ

]
1 . Hence,(

Y
[
Uβ

]
1 ,σ (M, Uα)

[
Uβ

])
�|= φ

and the inductive assumption for β yields(
σ(M, Uβ)

[
Uβ

]
,σ (M, Uα)

[
Uβ

])
�|= φ .

Finally, since Uβ is a subset of Uα , Observation 95(5) implies that

σ(M, Uα)
[
Uβ

]
=M

[
Uβ

]
= σ(M, Uβ)

[
Uβ

]
.

Therefore,(
σ(M, Uβ)

[
Uβ

]
,σ (M, Uβ)

[
Uβ

])
�|= φ .

Observation 93(3) now implies that (σ (M, Uβ), σ(M, Uβ)) �|= φ. But at the same time, Uβ is a splitting set for K, so, by
Corollary 124, σ(M, Uβ) is an MKNF model of bUβ (K). Since φ belongs to bUβ (K), we have reached a contradiction. �

Proposition 130. Let U = 〈Uα〉α<μ be a splitting sequence for an MKNF knowledge base K, A = 〈Aα〉α<μ the saturation sequence
induced by U , M an MKNF model of K and X = 〈Xα〉α<μ a sequence of MKNF interpretations where Xα = σ(M, Aα) for all α < μ.
Then X is a solution to K w.r.t. U .

Proof. There are four conditions to verify.
First, X0 must be an MKNF model of bU0 (K). Since U0 is a splitting set for K, Corollary 124 yields that σ(M, U0) is an

MKNF model of bU0 (K). By definition, X0 = σ(M, U0), thus this part of the proof is finished.
Second, for any ordinal α such that α + 1 < μ it must hold that Xα+1 is an MKNF model of

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)
.

By Corollary 124, N = σ(M, Uα+1) is an MKNF model of bUα+1 (K). Furthermore, it can be seen that Uα is a split-
ting set for bUα+1 (K), so by another application of Corollary 124, we obtain that σ(N , P \ Uα) is an MKNF model of
eUα (bUα+1 (K), σ(N , Uα)). Moreover, by Observation 95(4),

σ(N , Uα)= σ(σ (M, Uα+1), Uα)= σ(M, Uα+1 ∩ Uα)= σ(M, Uα)

and also

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 83
σ(N ,P \ Uα)= σ(σ (M, Uα+1),P \ Uα)= σ(M, Uα+1 ∩ (P \ Uα))

= σ(M, Uα+1 \ Uα) .

Lemma 129 implies that σ(M, Uα) = ⋂
β≤α Xβ and since Xα+1 = σ(M, Uα+1 \ Uα), it follows that Xα+1 is an MKNF

model of

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)
.

Third, for every limit ordinal α < μ, Xα = IL holds by definition.
Fourth, we need to verify that

⋂
α<μXα �= ∅. It follows from the definition of X by Observation 95(3) that M is a subset

of Xα for every α < μ. Hence,

∅ �=M⊆
⋂
α<μ

Xα . �

Proposition 131. Let U = 〈Uα〉α<μ be a splitting sequence for an MKNF knowledge base K. If X = 〈Xα〉α<μ is a solution to K
w.r.t. U , then for all α < μ,

⋂
β≤α Xβ is an MKNF model of bUα (K).

Proof. Let Yα =⋂
β≤α Xβ for every α < μ. We proceed by induction on α:

1◦ For α = 0 we need to show that Y0 =X0 is an MKNF model of bU0 (K). This follows directly from the assumptions.
2◦ For α such that α + 1 < μ we need to show that Yα+1 is an MKNF model of bUα+1 (K). By the inductive assumption,

Yα is an MKNF model of bUα (K). Furthermore,

bUα (bUα+1(K))= bUα (K)

and since X is a solution to K w.r.t. U , Xα+1 is an MKNF model of

eUα

(
bUα+1(K),Yα

)
.

Since Uα is a splitting set for K, it is also a splitting set for bUα+1 (K). Consequently, by Theorem 123, Yα∩Xα+1 =Yα+1
is an MKNF model of bUα+1 (K).

3◦ For a limit ordinal α < μ we need to show that Yα is an MKNF model of bUα (K). First we show that Yα |= bUα (K) and
then that for every Y ′ � Yα it holds that (Y ′, Yα) �|= bUα (K).
Take some φ ∈ bUα (K) and suppose that β < α is some ordinal such that pr(φ) ⊆ Uβ . We know that Yβ is an MKNF
model of bUβ (K), so Yβ |= φ. Furthermore, for every γ such that γ < μ, Xγ+1 is an MKNF model of eUγ (bUγ+1 (K), Yγ),
so by Observation 95(2), Xγ+1 is saturated relative to Uγ+1 \ Uγ . Consequently, by Lemma 128, Yβ =⋂

γ≤β Xγ is
saturated relative to Uβ and

⋂
β<γ≤α Xγ is saturated relative to Uα \ Uβ and, by Observation 95(6), it is also saturated

relative to P \ Uβ . Hence, by Observation 97(2), for Yα = Yβ ∩⋂
β<γ≤α Xγ it holds that Y

[
Uβ

]
α = Y

[
Uβ

]
β , and so Yα |= φ

follows from Observation 93(2).
Now suppose that Y ′ � Yα . Then there must be some I ∈ Y ′ \ Yα . Take some β < α such that I /∈ Yβ (there must be
such β , otherwise I ∈ Yα). Let Y ′′ = Y ′ ∪ Yβ . By the inductive assumption, Yβ is an MKNF model of bUβ (K), so there

must be some φ ∈ bUβ (K) such that (Y ′′, Yβ) �|= φ. Furthermore, Y
[
Uβ

]
β =Y

[
Uβ

]
α and

Y ′′
[
Uβ

]
= Y ′

[
Uβ

]
∪Y

[
Uβ

]
β = Y ′

[
Uβ

]
∪Y

[
Uβ

]
α = (Y ′ ∪Yα)

[
Uβ

]
= Y ′

[
Uβ

]
.

Consequently, by Observation 93(3), (Y ′, Yα) �|= φ. �
Lemma 132. Let U = 〈Uα〉α<μ be a splitting sequence for an MKNF knowledge base K and let V = 〈Vα〉α<μ+1 be a sequence of sets
of predicate symbols such that for every α < μ, Vα = Uα and Vμ = P. Then V is a splitting sequence for K.

Moreover, if X = 〈Xα〉α<μ is a solution to K w.r.t. U , then Y = 〈Yα〉α<μ+1 , where for all α < μ, Yα = Xα , and Yμ = IL , is a
solution to K w.r.t. V .

Proof. It is not difficult to verify that V is monotone, continuous, that every Vα is a splitting set for K and that ⋃
α<μ+1 Vα = P.
Now suppose that X is a solution to K w.r.t. U . All the properties of X propagate to Y , so one only needs to check that

μ is handled correctly. In case μ is a limit ordinal, we need to show that Yμ = IL , which holds by definition. On the other
hand, if μ is a non-limit ordinal, then let β be such that β + 1 = μ. From

⋃
α<μ Uα = P it follows that Uβ = P, so we

obtain

eVβ

(
bVμ(K),

⋂
γ≤β Yγ

)
= eP

(
K,

⋂
γ≤β Yγ

)
= ∅ .

Consequently, Yμ = IL is its MKNF model. �

84 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Theorem 133 (Splitting sequence theorem for MKNF knowledge bases). Let U be a splitting sequence for an MKNF knowledge base K.
Then M is an MKNF model of K if and only if M =⋂

α<μXα for some solution 〈Xα〉α<μ to K w.r.t. U .

Proof. Let U = 〈Uα〉α<μ and suppose that A is the saturation sequence induced by U . If M is an MKNF model of K, then
it follows by Proposition 130 that there is a solution X = 〈Xα〉α<μ to K w.r.t. U where Xα = σ(M, Aα) for all α < μ.

Let V = 〈Vα〉α<μ+1 and Y = 〈Yα〉α<μ+1 where Vα = Uα and Yα = Xα for all α < μ, Vμ = P and Yμ = IL . By
Lemma 132, V is a splitting sequence for K and Y is a solution to K w.r.t. V . Thus, by Lemma 129,⋂

α<μ

Xα =
⋂
α<μ

Yα = IL ∩
⋂
α<μ

Yα =
⋂

α<μ+1

Yα = σ(M, Vμ)= σ(M,P)=M .

To prove the converse implication, suppose that X is a solution to K w.r.t. U . Then, by Lemma 132, there is also a
solution Y to K w.r.t. V = 〈Vα〉α<μ+1 such that for all α < μ, Vα = Uα and Vμ = P. Furthermore,⋂

α<μ

Xα =
⋂
α≤μ

Yα

and, by Proposition 131,
⋂

α≤μYα is an MKNF model of bVμ(K) = bP(K) =K. �
Theorem 54 (Splitting theorem for MKNF knowledge bases). The MKNF models semantics for MKNF knowledge bases satisfies the
Abstract Splitting Set Property and the Abstract Splitting Sequence Property.

Proof. Follows from Theorems 123 and 133. �
C.2. Ontology updates

Proposition 134. Let T be a first-order theory, U a splitting sequence for T and A the saturation sequence induced by U . Then,

�T � = ⋂
α<μ

�bAα (T)� .

Proof. Since U is a splitting sequence for T , for every formula φ ∈ T there exists a unique α < μ such that φ belongs to
bAα (T). Hence,

�T � = ⋂
φ∈T

�φ� = ⋂
α<μ

⋂
φ∈bAα (T)

�φ� = ⋂
α<μ

�bAα (T)� . �

Lemma 135. Let M, N ∈M. Then the following holds:

(1) If M ⊆N , then M �W N =M.
(2) If M ⊇N , then M �W N =N .
(3) M �W M =M.
(4) M �W N = ∅ if and only if M = ∅ or N = ∅.

Proof.

(1) For every interpretation I , I <I
W J for every J �= I . Thus, if M ⊆N , for all I ∈M it holds that I �W N = { I }. Therefore,

M �W N =M.
(2) For every interpretation I , I <I

W J for every J �= I . So if M ⊇N , then every interpretation I ∈N ⊆M also belongs to
M �W N . Furthermore, M �W N ⊆N by construction, so we obtain M �W N =N .

(3) Follows from (1).
(4) The direct implication follows by definition of �W . The converse implication follows from (1) and (2). �
Proposition 136. Let T = 〈Ti〉i<n be a sequence of first-order theories with n > 0 and M = ��W T �. Then M |= Tn−1 .

Proof. Follows by induction on n, due to the fact that M �W N ⊆N for any M, N ∈M. �
Proposition 137. Let A = 〈Aα〉α<μ be a saturation sequence, I, J ∈ IL and N ∈M be sequence-saturated relative to A. Then,

J ∈ (I �W N) if and only if ∀α < μ : J [Aα] ∈
(

I [Aα] �W N [Aα]
)

.

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 85
Proof. Suppose that J /∈ (I �W N). If J /∈N , then since N is sequence-saturated relative to A, there is some α < μ such
that J [Aα] /∈N [Aα]. But then J [Aα] /∈ (

I [Aα] �W N [Aα]
)
, so we reached the desired conclusion.

In the principal case we have J ∈N , so there exists some K ∈N such that K <I
W J . This means that for every predicate

symbol P ∈ P,(
P K ÷ P I

)
⊆

(
P J ÷ P I

)
(C.8)

and for some predicate symbol P0 ∈ P,(
P K

0 ÷ P I
0

)
�

(
P J

0 ÷ P I
0

)
. (C.9)

Since A is a saturation sequence, there is a unique ordinal α < μ such that P0 ∈ Aα . It follows from (C.9) that(
P K [Aα]

0 ÷ P I [Aα]

0

)
=

(
P K

0 ÷ P I
0

)
�

(
P J

0 ÷ P I
0

)
=

(
P J [Aα]

0 ÷ P I [Aα]

0

)
.

Furthermore, for any predicate symbol P ∈ Aα it follows from (C.8) that(
P K [Aα] ÷ P I [Aα]

)
=

(
P K ÷ P I

)
⊆

(
P J ÷ P I

)
=

(
P J [Aα] ÷ P I [Aα]

)
.

Finally, for any predicate symbol P that does not belong to Aα ,

P I [Aα] = P J [Aα] = P K [Aα] = ∅ .

Thus, (
P K [Aα] ÷ P I [Aα]

)
= ∅=

(
P J [Aα] ÷ P I [Aα]

)

Therefore, we can conclude that

K [Aα] <I [Aα]

W J [Aα] ,

so J [Aα] /∈ (
I [Aα] �W N [Aα]

)
as desired.

For the converse implication, suppose that for some α < μ, J [Aα] /∈ (
I [Aα] �W N [Aα]

)
. If J [Aα] /∈N [Aα], we immediately

obtain that J /∈N . Consequently, J /∈ (I �W N).
It remains to consider the principal case when J [Aα] ∈N [Aα]. Then there must be some interpretation K ∈N [Aα] such

that K <I [Aα]

W J [Aα]. Thus, for all predicate symbols P ∈ P we know that
(

P K ÷ P I [Aα]
)
⊆

(
P J [Aα] ÷ P I [Aα]

)
. (C.10)

We also know that there is some predicate symbol P0 ∈ P such that(
P K

0 ÷ P I [Aα]

0

)
�

(
P J [Aα]

0 ÷ P I [Aα]

0

)
. (C.11)

Additionally, for every predicate symbol P from P \ Aα it holds that

P I [Aα] = P J [Aα] = P K = ∅ .

Thus, (
P K ÷ P I [Aα]

)
= ∅=

(
P J [Aα] ÷ P I [Aα]

)
.

Consequently, P0 ∈ Aα . Let K ′ be an interpretation such that for every ground atom p,

K ′ |= p if and only if K |= p ∨ J [P\Aα] |= p .

It follows that K ′[Aα] = K ∈ N [Aα] and for every ordinal β < μ such that β �= α, K ′
[

Aβ

]
= J

[
Aβ

]
∈ N

[
Aβ

]
, so since N is

sequence-saturated relative to A , K ′ ∈N . Take some predicate symbol P ∈ P and consider the following two cases:

a) If P ∈ Aα , then from (C.10) we obtain(
P K ′ ÷ P I

)
=

(
P K ÷ P I [Aα]

)
⊆

(
P J [Aα] ÷ P I [Aα]

)
=

(
P J ÷ P I

)
.

86 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
b) If P ∈ P \ Aα , then since K ′[P\Aα] = J [P\Aα],(
P K ′ ÷ P I

)
=

(
P J ÷ P I

)
.

Moreover, from (C.11) we obtain(
P K ′

0 ÷ P I
0

)
=

(
P K

0 ÷ P I [Aα]

0

)
�

(
P J [Aα]

0 ÷ P I [Aα]

0

)
=

(
P J

0 ÷ P I
0

)
.

It follows from the above considerations that K ′ <I
W J . Consequently, J /∈ (I �W N). �

Proposition 138. Let A = 〈Aα〉α<μ be a saturation sequence, J ∈ IL and M, N ∈M be both sequence-saturated relative to A. Then,

J ∈ (M �W N) if and only if ∀α < μ : J [Aα] ∈
(
M[Aα] �W N [Aα]

)
.

Proof. By definition, J ∈ (M �W N) if and only if for some I ∈M, J ∈ (I �W N). By Proposition 137, this holds if and only
if

∀α < μ : J [Aα] ∈
(

I [Aα] �W N [Aα]
)

. (C.12)

At the same time, the right hand side of our equivalence is true if and only if for some sequence of interpretations 〈Iα 〉α<μ

the following holds:

∀α < μ : J [Aα] ∈
(

I [Aα]
α �W N [Aα]

)
. (C.13)

It remains to show that (C.12) is equivalent to (C.13). Indeed, (C.12) implies (C.13) by putting Iα = I for all α < μ. Now
suppose that (C.13) holds and let I be an interpretation such that for every ground atom p,

I |= p if and only if ∃α < μ : I [Aα]
α |= p .

Then it holds for every α < μ that I [Aα] = I [Aα]
α ∈M[Aα]. Since M is sequence-saturated relative to A, this implies that

I ∈M. Moreover, J [Aα] ∈ (
I [Aα] �W N [Aα]

)
. As a consequence, (C.12) is satisfied and our proof is finished. �

Proposition 139. Let A = 〈Aα〉α<μ be a saturation sequence and M, N ∈M be both sequence-saturated relative to A. Then,

J [Aα] ∈
(
M[Aα] �W N [Aα]

)
if and only if J ∈ (σ (M, Aα) �W σ(N , Aα)) .

Proof. First note that if M = ∅ or N = ∅, then the equivalence is trivially satisfied since both (M[Aα] �W N [Aα]) = ∅ and
(σ (M, Aα) �W σ(N , Aα)) = ∅. Thus, we can assume that M and N are MKNF interpretations.

By applying Proposition 138 to σ(M, Aα) and σ(N , Aα) it follows that for every interpretation J ,

J ∈ (σ (M, Aα) �W σ(N , Aα)) if and only if ∀β < μ : J
[

Aβ

]
∈

(
σ(M, Aα)

[
Aβ

]
�W σ(N , Aα)

[
Aβ

])
. (C.14)

By Observation 95(7) we obtain that whenever β �= α, σ(M, Aα)
[

Aβ

]
= I

[
Aβ

]
L and σ(N , Aα)

[
Aβ

]
= I

[
Aβ

]
L , so by Lemma 135(3)

we can conclude that σ(M, Aα)
[

Aβ

]
�W σ(N , Aα)

[
Aβ

]
= I

[
Aβ

]
L . Thus, condition (C.14) gets simplified to

J ∈ (σ (M, Aα) �W σ(N , Aα)) if and only if J [Aα] ∈
(
σ(M, Aα)[Aα] �W σ(N , Aα)[Aα]

)
.

Furthermore, by Observation 95(5), σ(M, Aα)[Aα] =M[Aα] and σ(N , Aα)[Aα] =N [Aα], so

J ∈ (σ (M, Aα) �W σ(N , Aα)) if and only if J [Aα] ∈
(
M[Aα] �W N [Aα]

)
.

This completes our proof. �
Corollary 140. Let A = 〈Aα〉α<μ be a saturation sequence and M, N ∈M be both sequence-saturated relative to A. Then,

M �W N =
⋂
α<μ

σ (M, Aα) �W σ(N , Aα) .

Proof. Follows from Propositions 138 and 139. �

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 87
Lemma 141. Let A be a set of predicate symbols, I, J ∈ IL and N ∈M be saturated relative to A. If J ∈ I �W N , then I coincides with
J on P \ A.

Proof. If J ∈ I �W N , then J ∈N . Let J ′ be an interpretation such that for every ground atom p,

J ′ |= p if and only if J [A] |= p ∨ I [P\A] |= p .

Then J ′[A] = J [A] ∈N , so since N is saturated relative to A, J ′ belongs to N . Furthermore, for any predicate symbol P ∈ A,
P J ′ ÷ P I = P J ÷ P I and for any predicate symbol P ∈ P \ A, P J ′ ÷ P I = ∅ ⊆ P J ÷ P I . If this inclusion was proper for some
predicate symbol P , then we would obtain that J ′ <I

W J holds, contrary to the assumption that J belongs to I �W N . Thus,
for all predicate symbols P ∈ P \ A, P J ÷ P I must be equal to ∅. It follows that J [P\A] = J ′[P\A] = I [P\A], which is the
desired result. �
Proposition 142. Let T = 〈Ti〉i<n be a finite sequence of first-order theories, U a splitting sequence for T and A = 〈Aα〉α<μ the
saturation sequence induced by U . Then,

��W T � = ⋂
α<μ

��W bAα (T)� .

Proof. We prove by induction on n.

1◦ If n = 1, then ��W T � = �T0 � and for every α < μ, ��W bAα (T)� = �bAα (T0)�. The claim thus follows from Proposi-
tion 134.

2◦ We assume that the claim holds for n and prove it for n + 1. Let T ′ = 〈Ti〉i<n+1. By definition of �W we obtain
(�W T ′

)= (�W T) �W Tn and
(�W bAα (T ′)

)= (�W bAα (T)
) �W bAα (Tn) .

Let M = ��W T �, N = �Tn � and for every α < μ, Mα = ��W bAα (T)� and Nα = �bAα (Tn)�. Our goal is to prove that

M �W N =
⋂
α<μ

Mα �W Nα .

We obtain M =⋂
α<μMα and N =⋂

α<μNα by the inductive assumption and by Proposition 134, respectively. Also,
due to Theorem 71 and Proposition 69, both Mα and Nα are saturated relative to Aα .
If M = ∅ or N = ∅, then, by Lemma 135(4), M �W N = ∅ and it follows from Observation 100(2) that for some α < μ,
either Mα = ∅ or Nα = ∅. In either case Mα �W Nα = ∅ and the desired equation is satisfied.
In the principal case, both M �= ∅ and N �= ∅. Thus, we can use Observation 100(2) to conclude that Mα = σ(M, Aα)

and Nα = σ(N , Aα) for all α < μ and, by Observation 100(1), M and N are sequence-saturated relative to A . Further-
more, we can apply Corollary 140 to obtain the desired equation:

M �W N =
⋂
α<μ

σ (M, Aα) �W σ(N , Aα)=
⋂
α<μ

Mα �W Nα . �

Theorem 57 (Splitting theorem for Winslett’s first-order operator). The semantics for sequences of first-order theories induced by
Winslett’s first-order operator �W satisfies the Abstract Splitting Set Property and the Abstract Splitting Sequence Property.

Proof. Let U = 〈Uα〉α<μ be a splitting sequence for a sequence of first-order theories T and A = 〈Aα〉α<μ be the saturation
sequence induced by U . The following holds for any X ∈M and all ordinals α with α + 1 < μ:

bA0(T)= bU0(T) ,

bAα+1(T)= bUα+1\Uα (T)= tUα (bUα+1(T))= eUα (bUα+1(T),X) .

Therefore, the Abstract Splitting Sequence Property follows from Proposition 142. The Abstract Splitting Set Property for a
splitting set U follows from the splitting sequence property applied to the splitting sequence 〈U , P〉. �
C.3. Rule updates

Theorem 60 (Splitting theorem for rule updates). The RD-semantics for rule updates satisfies the Abstract Splitting Set Property and
the Abstract Splitting Sequence Property.

Proof (sketch). Let P be a DLP. We need to prove that J is an RD-model of P if and only if J =⋃
α<μ Jα where for every

α < μ, Jα is an RD-model of Pα and

88 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
• P 0 = bU0 (P).

• For any ordinal α such that α + 1 < μ, Pα+1 = eUα

(
bUα+1 (P),

⋃
β≤α Jβ

)
.

• For any limit ordinal α < μ, Pα = 〈∅〉α<μ .

This essentially follows from the splitting properties of logic programs [71] and from the observation that rules in rej(P , J)
correspond one-to-one with the rules in

⋃
α<μ rej(Pα, Jα). In particular, if we put

Q= [all(P) \ rej(P , J)] and Qα = [all(Pα) \ rej(Pα, Jα)] ,

then it follows that

• Q0 = bU0 (Q).

• For every ordinal α such that α + 1 < μ, Qα+1 = eUα

(
bUα+1 (Q),

⋃
β≤α Jβ

)
.

• For every limit ordinal α, Qα = ∅.

What remains is to additionally handle the set of default assumptions. More particularly, if A = 〈Aα〉α<μ is the satura-
tion sequence induced by U , then the unconstrained set of default assumptions def(Pα, Jα) usually introduces rules with
predicate symbols outside Aα . In order to overcome this problem, for every DLP Q , interpretation K and set of predicate
symbols B we introduce the set

def(Q , K , B)= { ∼l | l ∈ LitsG ∧ pr(l)⊆ B ∧¬(∃π ∈ all(Q) : Hπ = l ∧ K |= Bπ) } .

It is not difficult to se that as long as B ⊇ pr(Q), def(Q , K) can be replaced by def(Q , K , B) in the definition of an
RD-model of Q , if accompanied by a suitable restriction in the definition of K ′ , i.e. K ′ = K ∪ { ∼l | l ∈ LitsG \ K ∧ pr(l) ⊆ B }.
Let

Q′ = [all(P) \ rej(P , J)] ∪ def(P , J ,P) ,

Q′α = [all(Pα) \ rej(Pα, Jα)] ∪ def(Pα, Jα, Aα) .

Similarly as before, it follows that

• Q′
0 = bU0 (Q′).

• For every ordinal α such that α + 1 < μ, Q′
α+1 = eUα

(
bUα+1 (Q′),

⋃
β≤α Jβ

)
.

• For every limit ordinal α, Q′
α = ∅.

Hence, by the results of [71], J ′ = least(Q′) if and only if J ′ =⋃
α<μ J ′α where for every α < μ, J ′α = least(Q′

α). The desired
result thus follows by the definition of RD-models. �
Appendix D. Proofs: layered dynamic MKNF knowledge bases

In the following we present proofs of results from Section 5, implicitly working under the same assumptions as those
imposed in that section. That is, we constrain ourselves to a generalised atom base that consists of objective literals, meaning
that MKNF programs coincide with logic programs, and we assume that every rule is ground. In the proofs we also implicitly
use many of the results presented in Appendix A.

The definition of a solution to a DMKB K w.r.t. a layering splitting sequence is an instantiation of the abstract definition
in Section 4.1. For the sake of completeness, we formulate it here once again, and use solutions to establish the concept of
a (�, S)-dynamic MKNF model of K w.r.t. a layering splitting sequence. We note that the use of limit ordinals is only required to
fit the abstract definition (Definition 49). Note however, that because layerings of DMKBs are based on predicate symbols,
any finite DMKB will have a finite layering splitting sequence.

Definition 143 (Solution to a layered DMKB). Let K = 〈(Oi, Pi)〉i<n be a DMKB and U a layering splitting sequence for K .
A solution to K w.r.t. U is a sequence of MKNF interpretations 〈Xα〉α<μ such that

1. X0 is a (�, S)-dynamic MKNF model of bU0 (K).
2. For any ordinal α such that α + 1 < μ, Xα+1 is a (�, S)-dynamic MKNF model of

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)
.

3. For any limit ordinal α, Xα = IL .
4.

⋂
α<μXα �= ∅.

We say that M is a (�, S)-dynamic MKNF model of K w.r.t. U if M =⋂
α<μXα for some solution 〈Xα〉α<μ to K w.r.t. U .

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 89
D.1. Independence of splitting sequence

Theorem 66 (Language conservation and fact update for rule updates). The RD-semantics for rule updates conserves the language and
respects fact update.

Proof (sketch). Language conservation is an immediate consequence of the definition of the RD-semantics and of basic
properties of the least model of a definite program.

As for fact update, let P = 〈Pi〉i<n be a sequence of consistent sets of facts. When sets of facts are considered, the set of
rejected rules is independent of the model candidate J . Furthermore, the following set of unrejected rules remains:

{
l.

∣∣ ∃ j < n : (l.) ∈ P j ∧ (∀i : j < i < n=⇒ (∼l.) /∈ Pe
i)

}∪{
∼l.

∣∣ ∃ j < n : (∼l.) ∈ Pe
j ∧ (∀i : j < i < n=⇒ (l.) /∈ Pi)

}
(D.1)

Since P j is consistent for all j < n, this set must also be consistent (all inconsistencies across different components of P
have been resolved). Thus, P has the desired RD-model{

l
∣∣ ∃ j < n : (l.) ∈ P j ∧ (∀i : j < i < n=⇒

{
l.,∼l.

}
∩Pi = ∅)

}
. �

Proposition 69. Let A be a set of predicate symbols and T a first-order theory such that pr(T) ⊆ A. Then �T � is saturated relative
to A.

Proof. If �T � = ∅, then this follows from the fact that ∅ is trivially saturated relative to any set of predicate symbols.
Otherwise, �T � is the MKNF model of T and it suffices to use Observation 95(2). �
Definition 144 (Winslett’s operator on models). Let I be an interpretation and M, N ∈M. We define the operator �W as
follows:

I �W N =min
(
N ,≤I

W

)
,

M �W N =
⋃

I∈M
I �W N =

⋃
I∈M

min
(
N ,≤I

W

)
.

Remark 145. Note that the above definition is compatible with the definition of Winslett’s operator �W defined in Sec-
tion 2.5, which operates on first-order theories, in the following sense: for all first-order theories T , U it holds that �T �W U� = �T � �W �U�.

Lemma 146. Let A be a set of predicate symbols and M, N ∈M be both saturated relative to A. Then M �W N is also saturated
relative to A.

Proof. Suppose that J is such that J [A] ∈ (M �W N)[A] but J /∈ (M �W N). Then there exists some interpretation J ′ ∈
(M �W N) such that J ′[A] = J [A]. This also implies that J ′ ∈ N and since N is saturated relative to A, we obtain that
J ∈N . Furthermore, there exists some interpretation I ∈M such that J ′ ∈ (I �W N). Let I ′ be an interpretation such that
for every ground atom p,

I ′ |= p if and only if I [A] |= p ∨ J [P\A] |= p .

Then I ′[A] = I [A] and I ′[P\A] = J [P\A] and since M is saturated relative to A, I ′ ∈M. Since J /∈ (M �W N), there must exist
some interpretation J ′′ ∈N such that J ′′ <I ′

W J . This means that for every predicate symbol P ∈ A,

P J ′′ ÷ P I ′ ⊆ P J ÷ P I ′ (D.2)

and for every predicate symbol P ∈ P \ A,

P J ′′ ÷ P I ′ ⊆ P J ÷ P I ′ = ∅
because I ′ coincides with J on P \ A. Also, for some predicate symbol P0,

P J ′′
0 ÷ P I ′

0 � P J
0 ÷ P I ′

0 .

Since this is impossible if P0 belongs to P \ A, P0 must belong to A. Let J ′′′ be an interpretation such that for every ground
atom p,

90 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
J ′′′ |= p if and only if J ′′[A] |= p ∨ J ′[P\A] |= p .

By (D.2), for predicate symbols P ∈ A it holds that

P J ′′′ ÷ P I = P J ′′ ÷ P I ′ ⊆ P J ÷ P I ′ = P J ′ ÷ P I

and for predicate symbols P ∈ P \ A we obtain

P J ′′′ ÷ P I = P J ′ ÷ P I .

Also, for P0 it holds that P J ′′′
0 ÷ P I

0 = P J ′′
0 ÷ P I ′

0 � P J
0 ÷ P I ′

0 = P J ′
0 ÷ P I

0. As a consequence, J ′′′ <I
W J ′ . Furthermore, since

J ′′′[A] = J ′′[A] ∈N [A], it follows that J ′′′ ∈N , so we arrived at a conflict with the assumption that J ′ ∈ (I �W N). �
Theorem 71 (Language conservation and fact update for ontology updates). Winslett’s first-order update operator �W conserves the
language and respects fact update.

Proof. Language conservation follows by induction on i from Proposition 69 and Lemma 146.
As for fact update, let T = 〈Ti〉i<n be a finite sequence of consistent sets of ground objective literals. We prove by

induction on n:

1◦ If n = 1, then ��W T � = �T0 � = �{ l ∈ LitsG | l ∈ T0 }�, which establishes the claim.
2◦ Let T = 〈Ti〉i<n , M = ��W T � and T ′ = 〈Ti〉i<n+1. It follows that (�W T ′) = (�W T) �W Tn and by the definition of �W ,

M′ = ��W T ′� = ⋃
I∈M

min
(�Tn �,≤I

W

)
. (D.3)

By the inductive assumption for T we obtain that I ∈M if and only if

I |=
{

l ∈ LitsG

∣∣ ∃ j < n : l ∈ T j ∧ (∀i : j < i < n=⇒ l /∈ Ti)
}

. (D.4)

Our goal is to prove that I ′ ∈M′ if and only if

I ′ |=
{

l ∈ LitsG

∣∣ ∃ j < n+ 1 : l ∈ T j ∧ (∀i : j < i < n+ 1=⇒ l /∈ Ti)
}

. (D.5)

Take some I ′ ∈M′ . Then it follows from (D.3) that there is some I ∈M such that I ′ ∈min
(�Tn �,≤I

W

)
. Hence, I ′ |= { l ∈

LitsG | l ∈ Tn } and by the definition of ≤I
W we can conclude that I ′ and I can differ only in the interpretation of ground

atoms p such that either p ∈ Tn or ¬p ∈ Tn . Consequently, since I satisfies (D.4), we conclude that I ′ satisfies (D.5).
For the converse inclusion, suppose that I ′ satisfies (D.5) and let I be an interpretation that satisfies (D.4) and interprets
a minimal set of ground atoms differently from I ′ . By (D.5) we obtain that I ′ |= Tn and I can differ from I ′ only in the
interpretation of ground atoms p such that either p ∈ Tn or ¬p ∈ Tn . Thus, we can conclude that I ′ ∈min

(�Tn �,≤I
W

)
.

Furthermore, since I satisfies (D.4), it follows that I ∈M. This implies that I ′ ∈M′ . �
D.2. Splitting-based updates of MKNF knowledge bases

Proposition 147. Let K be a basic DMKB and U a splitting sequence for K and suppose that both � and S have Abstract Splitting
Sequence Property and respect fact update. Then M is a (�, S)-dynamic MKNF model of K if and only if M =⋂

α<μXα for some
solution 〈Xα〉α<μ to K w.r.t. U .

Proof. Since � and S respect fact update, the case when K is both ontology- and rule-based is treated equivalently by both
semantics. Hence, it suffices to consider the case when K is ontology-based and when it is rule-based separately. The same
argument applies to the layers of K : we do not need to consider cases when, say, K is ontology-based and one of its layers
is rule-based, since then the layer is both ontology- and rule-based and the two update semantics coincide when applied to
that layer.

Thus, if K is ontology-based, then the claim follows directly from the Abstract Splitting Sequence Property of �.
On the other hand, if K = 〈(∅, Pi)〉i<n is rule-based, then by the Abstract Splitting Sequence Property of S it follows that

J is an S-model of P = 〈Pi〉i<n if and only if J =⋃
α<μ Jα for some solution 〈 Jα〉α<μ to P w.r.t. U . Let M be the MKNF

interpretation corresponding to J and for every α < μ, Xα the MKNF interpretation corresponding to Jα . It follows that

M= { I ∈ IL | I |= J } and ∀α < μ :Xα = { I ∈ IL | I |= Jα } .

Consequently,

M= { I ∈ IL | I |= J } =
{

I ∈ IL
∣∣ I |=⋃

α<μ Jα
}
=

⋂
α<μ

{ I ∈ IL | I |= Jα } =
⋂
α<μ

Xα . �

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 91
Proposition 148. Let K = 〈Ki〉i<n be a basic DMKB and A a set of predicate symbols such that for all i < n, pr(Ki) ⊆ A. If both � and
S conserve the language, then every (�, S)-dynamic MKNF model of K is saturated relative to A.

Proof. Let Ki = (Oi, Pi) for all i < n. If M is a (�, S)-dynamic MKNF model of K , then one of the following cases must
apply:

a) K is ontology-based and M = ��〈κ(Oi) ∪ { l | (l.) ∈ Pi }〉i<n �. The claim then follows from the assumption that �
conserves the language.

b) K = 〈(∅, Pi)〉i<n is rule-based and

M= { I ∈ IL | I |= J }
for some S-stable model J of 〈Pi〉i<n . We need to prove that M is saturated relative to A. Take some interpretation I
such that I [A] ∈M[A]. Then there is some I ′ ∈M such that I ′[A] = I [A]. Furthermore, I ′ ∈M implies that I ′ |= J . Since
S conserves the language, we obtain that pr(J) ⊆ A. Consequently, I |= J and, by the definition of M, I ∈M. �

Corollary 149. Let K be a basic DMKB, U a splitting sequence for K and A the saturation sequence induced by U . If both � and S
have the Abstract Splitting Sequence Property, conserve the language and respect fact update, then every (�, S)-dynamic MKNF model
of K is sequence-saturated relative to A.

Proof. Follows by Propositions 147, 148, and Observation 100(1). �
Lemma 150. Let K be a DMKB and U , V some sets of predicate symbols. Then,

bU (bV (K))= bU∩V (K) .

Proof. Let K = 〈(Oi, Pi)〉i<n . We obtain the following:

bU (bV (K))= 〈(bU (bV (Oi)),bU (bV (Pi)))〉i<n

bU∩V (K)= 〈(bU∩V (Oi),bU∩V (Pi))〉i<n

Take some i < n. We need to prove that bU (bV (Oi)) = bU∩V (Oi) and that bU (bV (Pi)) = bU∩V (Pi). By the definition of the
bottom of an ontology,

φ ∈ bU (bV (Oi))⇐⇒ φ ∈ bV (Oi)∧ pr(φ)⊆ U ⇐⇒ φ ∈Oi ∧ pr(φ)⊆ V ∧ pr(φ)⊆ U

⇐⇒ φ ∈Oi ∧ pr(φ)⊆ U ∩ V ⇐⇒ φ ∈ bU∩V (Oi) .

Similarly, by the definition of the bottom of a program,

π ∈ bU (bV (Pi))⇐⇒ π ∈ bV (Pi)∧ pr(π)⊆ U ⇐⇒ π ∈ Pi ∧ pr(π)⊆ V ∧ pr(π)⊆ U

⇐⇒ π ∈ Pi ∧ pr(π)⊆ U ∩ V ⇐⇒ π ∈ bU∩V (Pi) . �
Lemma 151. Let K be a DMKB, X ∈M, U a set of predicate symbols and V a splitting set for K . Then,

eU (bV (K),X)= bV (eU (K ,X)) .

Proof. Let K = 〈(Oi, Pi)i<n〉. We obtain:

eU (bV (K),X)= 〈(tU (bV (Oi)), eU (bV (Pi),X))〉i<n

bV (eU (K ,X))= 〈(bV (tU (Oi)),bV (eU (Pi,X)))〉i<n

Take some i < n. We need to prove that tU (bV (Oi)) = bV (tU (Oi)) and that eU (bV (Pi), X) = bV (eU (Pi, X)). By the definition
of the top and bottom of an ontology,

φ ∈ tU (bV (Oi))⇐⇒ φ ∈ bV (Oi)∧ pr(φ) � U ⇐⇒ φ ∈Oi ∧ pr(φ)⊆ V ∧ pr(φ) � U

⇐⇒ φ ∈ tU (Oi)∧ pr(φ)⊆ V ⇐⇒ φ ∈ bV (tU (Oi)) .

To show that eU (bV (Pi), X) ⊆ bV (eU (Pi, X)) Take some rule σ ∈ eU (bV (Pi), X). It follows that there is some rule π ∈ Pi
such that pr(π) ⊆ V and

Hσ = Hπ , X |= κ({ L ∈ Bπ | pr(L)⊆ U }) ,

Bσ = { L ∈ Bπ | pr(L)⊆ P \ U } , pr(π) � U .

Consequently, σ ∈ eU (Pi, X) and since pr(π) ⊆ V , it follows that σ ∈ bV (eU (Pi, X)).

92 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
To show the converse inclusion, take some rule σ ∈ bV (eU (Pi, X)). Then pr(σ) ⊆ V and there exists some rule π ∈ Pi
such that

Hσ = Hπ , X |= κ({ L ∈ Bπ | pr(L)⊆ U }) ,

Bσ = { L ∈ Bπ | pr(L)⊆ P \ U } , pr(π) � U .

Since pr(Hπ) ⊆ V and V is a splitting set for Pi , it follows that pr(π) ⊆ V . Consequently, π ∈ bV (Pi) and it follows from
the above that σ ∈ eU (bV (Pi), X). �
Lemma 152. Let U , V be sets of predicate symbols and X , Y some MKNF interpretations such that X is saturated relative to U , Y is
saturated relative to V and X coincides with Y on U ∩ V . Then,

(X ∩Y)[U] =X [U] and (X ∩Y)[V] = Y [V] .

Proof. It suffices to prove one of the equations, the other one follows by the symmetry of the claim. Since X ∩ Y ⊆ X , it
immediately follows that (X ∩Y)[U] ⊆X [U]. Take some I ∈X [U]. Since X coincides with Y on U ∩ V , there must be some
J ∈Y [V] such that J [U∩V] = I [U∩V]. Let I ′ be an interpretation such that for every ground atom p,

I ′ |= p if and only if I |= p ∨ J |= p .

It follows that I ′[U] = I and I ′[V] = J . From the assumption that X is saturated relative to U and Y is saturated relative to
V it follows that I ′ ∈X ∩Y . Hence, we can conclude that I ∈ (X ∩Y)[U]. �
Lemma 153. Let U , V be splitting sets for a DMKB K and X , Y some MKNF interpretations such that X is saturated relative to U , Y
is saturated relative to V and X coincides with Y on U ∩ V . Then,

eU (eV (K ,Y),X)= eU∪V (K ,X ∩Y) .

Proof. Let K = 〈(Oi, Pi)〉i<n . We obtain:

eU (eV (K ,Y),X)= 〈(tU (tV (Oi)), eU (eV (Pi,Y),X))〉i<n

eU∪V (K ,X ∩Y)= 〈(tU∪V (Oi), eU∪V (Pi,X ∩Y))〉i<n

Take some i < n. We need to prove that tU (tV (Oi)) = tU∪V (Oi) and eU (eV (Pi, Y), X) = eU∪V (Pi, X ∩Y). Note that when-
ever U is a splitting set for an ontology O, tU (O) = bP\U (O). Consequently, by Lemma 150,

tU (tV (Oi))= bP\U (bP\V (Oi))= b(P\U)∩(P\V)(Oi)= bP\(U∪V)(Oi)= tU∪V (Oi) .

As for the second equation, it holds that σ ∈ eU (eV (Pi, Y), X) if and only if for some rule σ ′ ∈ eV (Pi, Y),

[b]Hσ = Hσ ′ , X |= κ({ L ∈ Bσ ′ | pr(L)⊆ U }) ,

Bσ = { L ∈ Bσ ′ | pr(L)⊆ P \ U } , pr(σ ′) � U .
(D.6)

Furthermore, σ ′ ∈ eV (Pi, Y) if and only if for some rule π ∈Pi ,

[b]Hσ ′ = Hπ , Y |= κ({ L ∈ Bπ | pr(L)⊆ V }) ,

Bσ ′ = { L ∈ Bπ | pr(L)⊆ P \ V } , pr(π) � V .
(D.7)

Since U and V are splitting sets for Pi , they are also splitting sets for eV (Pi, Y) and it follows that pr(σ ′) � U and
pr(π) � V are equivalent to pr(Hσ ′) � U and pr(Hπ) � V , respectively. Also, since pr(Hπ) is a singleton set, together they
are equivalent to pr(Hπ) � U ∪ V .

Moreover, by Lemma 152, X ∩ Y coincides with X on U and with Y on V . These observations imply that (D.6) and
(D.7) are together equivalent to an existence of a rule π ∈Pi such that

Hσ = Hπ , X ∩Y |= κ({ L ∈ Bπ | pr(L)⊆ U ∪ V }),
Bσ = { L ∈ Bπ | pr(L)⊆ P \ (U ∪ V) } , pr(Hπ) � (U ∪ V) .

This is equivalent to σ ∈ eU∪V (Pi, X ∩Y). �
Lemma 154. Let U , V be sets of predicate symbols, X ∈M and K a DMKB such that pr(K) ⊆ V . Then,

eU (K ,X)= eU (K ,σ (X , V))

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 93
Proof. Note that the second argument of eU (K , ·) is used to interpret literals in bodies of rules in K . It follows from
Observation 95(5) that σ(X , V)[V] = X [V]. Furthermore, by the assumption it holds for any set of literals S in a body of a
rule in K that pr(L) ⊆ V . Thus, by Observation 93(2),

X |= κ(S)⇐⇒ σ(X , V) |= κ(S) . �
Lemma 155. Let A be a saturation sequence, M ∈M be sequence-saturated relative to A and U a set of predicate symbols. Then
σ(M, U) is also sequence-saturated relative to A.

Proof. Let A = 〈Aα〉α<μ and suppose that I is an interpretation such that for every α < μ, I [Aα] ∈ σ(M, U)[Aα]. We need
to prove that I ∈ σ(M, U). It follows from the assumptions that for every α < μ there exists some Jα ∈ σ(M, U) such that
I [Aα] = J [Aα]

α and some Kα ∈M such that J [U]
α = K [U]

α . Let K be an interpretation such that for every ground atom p,

K |= p if and only if ∃α < μ : K [Aα]
α |= p .

It follows that for every α < μ, K [Aα] = K [Aα]
α ∈M[Aα], so since M is sequence-saturated relative to U , K ∈M. Further-

more, for every α < μ we obtain that

K [Aα∩U] = K [Aα∩U]
α = J [Aα∩U] = I [Aα∩U] .

Since every predicate symbol from U belongs to Aα for some α < μ, we can conclude that K [U] = I [U]. Consequently,
I ∈ σ(M, U). �
Lemma 156. Let U = 〈Uα〉α<μ be a splitting sequence, A the saturation sequence induced by U and M ∈M be sequence-saturated
relative to A. Then for any ordinal α < μ,

σ
(
M,

⋃
β≤α Aβ

)
= σ(M, Uα)=

⋂
β≤α

σ (M, Aβ) .

Proof. First we show by induction on α that Uα =⋃
β≤α Aβ :

1◦ For α = 0 we obtain U0 = A0 by the definition of A.
2◦ We inductively assume that Uα =⋃

β≤α Aβ . Then,

⋃
β≤α+1

Aβ = Uα ∪ Aα+1 = Uα ∪ (Uα+1 \ Uα)= Uα ∪ Uα+1 = Uα+1 .

3◦ Let α be a limit ordinal. We inductively assume that for all β < α it holds that Uβ =⋃
γ≤β Aγ . Consequently,

⋃
β≤α

Aβ = Aα ∪
⋃
β<α

Aβ = ∅∪
⋃
β<α

⋃
γ≤β

Aγ =
⋃
β<α

Uβ = Uα .

This establishes the first equation.
As for the second equation, if M is empty, then the claim trivially follows. So suppose that there is some J0 ∈M.

If I ∈ σ(M, Uα), then there is some J ∈ M such that J [Uα] = I [Uα]. Hence, for every β ≤ α, J
[

Aβ

]
= I

[
Aβ

]
. Thus,

I ∈ ⋂
β≤α σ (M, Aβ). For the other inclusion, let I ∈ ⋂

β≤α σ (M, Aβ). Then for every ordinal β ≤ α there exists some

interpretation Iβ ∈M such that I
[

Aβ

]
β = I

[
Aβ

]
. Let J be an interpretation such that for every ground atom p,

J |= p if and only if I [Uα] |= p ∨ J [P\Uα]
0 |= p .

Since M is sequence-saturated relative to A , it follows that J ∈M. Furthermore, J [Uα] = I [Uα], so I ∈ σ(M, Uα). �
Proposition 72 (Independence of splitting sequence). Let U , V be layering splitting sequences for a DMKB K . If both � and S have the
Abstract Splitting Sequence Property, conserve the language and respect fact update, then M is a (�, S)-dynamic MKNF model of K
w.r.t. U if and only if M is a (�, S)-dynamic MKNF model of K w.r.t. V .

Proof. Suppose M is a (�, S)-dynamic MKNF model of K w.r.t. U = 〈Uα〉α<μ . Then M = ⋂
α<μXα for some solution

〈Xα〉α<μ to K w.r.t. U . This means that:

• X0 is a (�, S)-dynamic MKNF model of K 0 = bU0 (K).

94 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
• For any ordinal α such that α + 1 < μ, Xα+1 is a (�, S)-dynamic MKNF model of

K α+1 = eUα

(
bUα+1(K),

⋂
γ≤α Xγ

)
.

• For any limit ordinal α < μ, Xα = IL , and thus it is a (�, S)-dynamic MKNF model of K α = 〈∅〉.

Since U is a layering splitting sequence, K α is a basic DMKB for every α < μ. Let A = 〈Aα〉α<μ be the saturation
sequence induced by U . We know that for every α < μ, K α contains only predicate symbols from Aα , so by Propo-
sition 148, Xα is saturated relative to Aα . Thus, by Observation 100(2), Xα = σ(M, Aα). Moreover, by Lemma 156, ⋂

γ≤α Xγ =⋂
γ≤α σ (M, Aγ) = σ(M, Uα), so

K α+1 = eUα

(
bUα+1(K),σ (M, Uα)

)
.

Pick some arbitrary but fixed α < μ and suppose that V = 〈Vβ 〉β<ν . Since V is a splitting sequence for K , it is also
a splitting sequence for K α . Thus, by Proposition 147 we know that Xα =⋂

β<ν Yα,β for some solution 〈Yα,β 〉β<ν to K α

w.r.t. V . Thus,

• Yα,0 is a (�, S)-dynamic MKNF model of K α,0 = bV 0 (K α).
• For any ordinal β such that β + 1 < ν , Yα,β+1 is a (�, S)-dynamic MKNF model of

K α,β+1 = eVβ

(
bVβ+1(K α),

⋂
γ≤β Yα,γ

)
.

• For any limit ordinal β < ν , Yα,β = IL and thus it is a (�, S)-dynamic MKNF model of K α,β = 〈∅〉.

All in all, it follows that for all ordinals α, β such that α < μ and β < ν , Yα,β is a (�, S)-dynamic MKNF model of K α,β , as
it is defined above.

Since K α is a basic DMKB, K α,β must also be a basic DMKB. Let B = 〈Bβ 〉β<ν be the saturation sequence induced by V .
We know that for every β < ν , K α,β contains only predicate symbols from Bβ , so by Proposition 148, Yα,β is saturated
relative to Bβ . Thus, by Observations 100(2) and 95(4),

Yα,β = σ(Xα, Bβ)= σ(σ (M, Aα), Bβ)= σ(M, Aα ∩ Bβ) .

Let the sequence of DMKBs K ′ = 〈K ′β 〉β<ν be defined as follows:

• K ′0 = bV 0 (K).
• For any ordinal β such that β + 1 < ν ,

K ′β+1 = eVβ

(
bVβ+1(K),σ (M, Vβ)

)
.

• For any limit ordinal β < ν , K ′β = 〈∅〉.

In the following we prove that for any ordinal β < ν and any ordinal α such that α + 1 < μ,

K 0,β = bV 0(K ′β) , (D.8)

K α+1,β = eUα

(
bUα+1(K ′β),σ (M, Uα)

)
. (D.9)

This is obviously the case whenever β is a limit ordinal, so in the following we consider the cases when it is a non-limit
one. Suppose first that β = 0. Then we can use Lemma 150 to obtain

K 0,0 = bU0(K 0)= bV 0(bU0(K))= bU0∩V 0(K)= bU0(bV 0(K))= bU0(K ′0)
and for any ordinal α such that α + 1 < μ we can apply Lemmas 150 and 151, achieving the following result:

K α+1,0 = bV 0(K α+1)

= bV 0(eUα (bUα+1(K),σ (M, Uα)))

= eUα (bV 0(bUα+1(K)),σ (M, Uα))

= eUα (bUα+1∩V 0(K),σ (M, Uα))

= eUα (bUα+1(bV 0(K)),σ (M, Uα))

= eUα (bUα+1(K ′0),σ (M, Uα)) .

Now suppose that β is an ordinal such that β + 1 < ν . Using Lemmas 150 and 151 we obtain:

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 95
K 0,β+1 = eVβ (bVβ+1(K 0),σ (M, Vβ))

= eVβ (bVβ+1(bU0(K)),σ (M, Vβ))

= eVβ (bU0∩Vβ+1(K),σ (M, Vβ))

= eVβ (bU0(bVβ+1(K)),σ (M, Vβ))

= bU0(eVβ (bVβ+1(K),σ (M, Vβ)))

= bU0(K ′β+1) .

Finally, for any ordinal α such that α + 1 < μ, Lemmas 150, 151 and 153 imply the following:

K α+1,β+1 = eVβ (bVβ+1(K α+1),σ (M, Vβ))

= eVβ (bVβ+1(eUα (bUα+1(K),σ (M, Uα))),σ (M, Vβ))

= eVβ (eUα (bVβ+1(bUα+1(K)),σ (M, Uα)),σ (M, Vβ))

= eUα∪Vβ (bUα+1∩Vβ+1(K),σ (M, Uα)∩ σ(M, Vβ))

= eUα (eVβ (bUα+1(bVβ+1(K)),σ (M, Vβ)),σ (M, Uα))

= eUα (bUα+1(eVβ (bVβ+1(K),σ (M, Vβ))),σ (M, Uα))

= eUα (bUα+1(K ′β+1),σ (M, Uα)) .

Now since K ′β is saturated relative to Bβ , we can use Lemma 154 to replace σ(M, Uα) in (D.9) by σ(M, Uα ∩ Bβ).
Furthermore, by consecutively using Observation 95(4), Lemmas 155 and 156 and Observation 95(4) again, we can see that

σ(M, Uα ∩ Bβ)= σ(σ (M, Bβ), Uα)=
⋂
γ≤α

σ (σ (M, Bβ), Aγ)

=
⋂
γ≤α

σ (M, Aγ ∩ Bβ)=
⋂
γ≤α

Yγ ,β .

Hence, (D.9) can be rewritten as:

K α+1,β = eUα

(
bUα+1(K ′β),

⋂
γ≤α Yγ ,β

)
.

Consequently, (D.8) and (D.9) together imply that 〈Yα,β 〉α<μ is a solution to K ′
β for all β < ν . Now we can use Proposi-

tion 147 to conclude that⋂
α<μ

Yα,β =
⋂
α<μ

σ (M, Aα ∩ Bβ)=
⋂
α<μ

σ (σ (M, Bβ), Aα)= σ(M, Bβ)

is a (�, S)-dynamic MKNF model of K ′
β . One of the last steps in the proof is to show that M is sequence-saturated relative

to B . We know from Corollary 149 that Xα is sequence-saturated relative to B , so we obtain the following:
⋂
β<ν

σ (M, Bβ)=
⋂
β<ν

⋂
α<μ

σ (σ (M, Bβ), Aα)=
⋂
α<μ

⋂
β<ν

σ (σ (M, Aα), Bβ)

=
⋂
α<μ

⋂
β<ν

σ (Xα, Bβ)=
⋂
α<μ

Xα =M ,

which implies that M is sequence-saturated relative to B . Thus, for any β < ν , Lemma 156 implies that

σ(M, Vβ)=
⋂
γ≤β

σ (M, Bγ) .

To sum up, define the sequence of interpretations Z = 〈Zβ〉β<ν by Zβ = σ(M, Bβ). We know the following:

• Z0 = σ(M, B0) is a (�, S)-dynamic MKNF model of K ′
0 = bV 0 (K).

• For any ordinal β such that β + 1 < ν , Zβ+1 = σ(M, Bβ+1) is a (�, S)-dynamic MKNF model of

K ′β+1 = eVβ

(
bVβ+1(K),

⋂
γ≤β σ (M, Bγ)

)
= eVβ

(
bVβ+1(K),

⋂
γ≤β Zγ

)
.

• For any limit ordinal β < ν , put Zβ = σ(M, Bβ) = σ(M, ∅) = IL .

96 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
Thus, Z is a solution to K w.r.t. V . Moreover, since M is sequence-saturated relative to B , it follows by Observation 100(1)
that

M=
⋂
β<ν

σ (M, Bβ)=
⋂
β<ν

Zβ .

So M is a (�, S)-dynamic MKNF model of K w.r.t. V .
Proof of the converse implication follows by the symmetry of the claim. �

D.3. Properties

Theorem 76 (Faithfulness w.r.t. MKNF knowledge bases). Suppose that S is faithful to the stable model semantics and let 〈K〉 be a
layered DMKB. An MKNF interpretation M is an MKNF model of K if and only if M is a (�, S)-dynamic MKNF model of 〈K〉.

Proof. Follows by Theorem 54 and Proposition 15. �
Theorem 77 (Faithfulness w.r.t. first-order update operator). Let K = 〈(Oi, ∅)〉i<n be a DMKB. An MKNF interpretation M is a
(�, S)-dynamic MKNF model of K if and only if M = ��〈Oi〉i<n �.

Proof. Follows by the fact that K is basic, so U = 〈P〉 is a layering splitting sequence for K . Thus, by Proposition 72, M is
a (�, S)-dynamic MKNF model of K if and only if M = ��〈Oi〉i<n �. �
Theorem 78 (Faithfulness w.r.t. rule update semantics). Let K = 〈(∅, Pi)〉i<n be a DMKB. If J is an S-model of 〈Pi〉i<n, then the MKNF
interpretation corresponding to J is a (�, S)-dynamic MKNF model of K . If M is a (�, S)-dynamic MKNF model of K , then the LP
interpretation corresponding to M is an S-model of 〈Pi〉i<n.

Proof. Follows by the fact that K is basic, so U = 〈P〉 is a layering splitting sequence for K . Thus, by Proposition 72, M is
a (�, S)-dynamic MKNF model of K if and only if M corresponds some S-stable model of 〈Pi〉i<n . �
Theorem 79 (Primacy of new information). Suppose that � satisfies (FO1) and S respects primacy of new information and let K =
〈Ki〉i<n be a layered DMKB such that n > 0. If M is a (�, S)-dynamic MKNF model of K , then M |= κ(Kn−1).

Proof. If M is a (�, S)-dynamic MKNF model of K , then for some layering splitting sequence U = 〈Uα〉α<μ for K , M =⋂
α<μXα for some solution X = 〈Xα〉α<μ to K w.r.t. U . This means that

• X0 is a (�, S)-dynamic MKNF model of bU0 (K).
• For any ordinal α such that α + 1 < μ, Xα+1 is a (�, S)-dynamic MKNF model of

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)
.

• For any limit ordinal α, Xα = IL .

Let A = 〈Aα〉α<μ be the saturation sequence induced by U . It follows from the assumptions that � and S conserve the
language, � satisfies (FO1) and S respects primacy of new information by Proposition 148 that

• X0 is saturated relative to A0 and X0 |= bU0 (Kn−1).
• For any ordinal α such that α + 1 < μ, Xα+1 is saturated relative to Aα+1 and

Xα+1 |= eUα

(
bUα+1(Kn−1),

⋂
β≤α Xβ

)
.

• For any limit ordinal α, Xα = IL is saturated relative to Aα = ∅.

Thus, by Observation 100(1), M is sequence-saturated relative to A, by Observation 100(2), Xα = σ(M, Aα), and by
Lemma 156,

⋂
β≤α Xβ = σ(M, Uα).

Now let φ be some formula from κ(Kn−1). If φ is of the form K ψ where ψ is a first-order formula, then there must exist
a unique ordinal α such that pr(φ) ⊆ Aα . Due to the above considerations we can then conclude that Xα |= φ. Furthermore,

Xα |= φ⇐⇒ σ(M, Aα) |= φ⇐⇒ σ(M, Aα)[Aα] |= φ⇐⇒M[Aα] |= φ⇐⇒M |= φ .

On the other hand, if φ = κ(π) for some rule π , then the there exists a unique non-limit ordinal α such that pr(Hπ) ⊆ Aα .
Suppose that M |= κ(Bπ). If α = 0, then it follows that π ∈ bU0 (Kn−1) and it follows that X0 |= κ(Bπ). Consequently,
X0 |= κ(Hπ) and we can conclude that M |= κ(Hπ). If α = β + 1, then there is a rule σ ∈ eUβ (bUβ+1 (Kn−1),

⋂
γ≤β Xγ) and

Xβ+1 |= κ(Bσ), Consequently, Xβ+1 |= κ(Hσ) and we obtain M |= κ(Hσ). In either case, M |= φ. �

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 97
Definition 157 (Generalised update semantics for basic DMKBs with static rules). Let K = 〈(Oi, Pi)〉i<n be a basic DMKB with
static rules. An MKNF interpretation M is a generalised (�, S)-dynamic MKNF model of K if either

a) K is ontology-based and M = ��〈κ(Oi) ∪ { l | (l.) ∈Pi }〉i<n �, or
b) K is rule-based and M corresponds to some LP interpretation J such that pr(J) ⊆ pr(P0) and J |=P0.

Definition 158 (Generalised solution to a DMKB with static rules). Let K = 〈(Oi, Pi)〉i<n be a DMKB with static rules and U a
layering splitting sequence for K . A generalised solution to K w.r.t. U is a sequence of MKNF interpretations 〈Xα〉α<μ such
that

1. X0 is a generalised (�, S)-dynamic MKNF model of bU0 (K).
2. For any ordinal α such that α + 1 < μ, Xα+1 is a generalised (�, S)-dynamic MKNF model of

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)
.

3. For any limit ordinal α, Xα = IL .
4.

⋂
α<μXα �= ∅.

Remark 159. For the remainder of this section we assume that � has the Abstract Splitting Sequence Property, conserves
the language, respects fact update and satisfies (FO2.) as well as (FO8.2), and S is faithful to the stable model semantics.

Proposition 160. Let K be a positive DMKB with static rules and U a layering splitting sequence for K . If X is a solution to K w.r.t. U ,
then it is a generalised solution to K w.r.t. U .

Proof. This follows from the assumption that S is faithful to the stable model semantics and for every stable model J or a
program P , J |=P . �
Proposition 161. Let K be a positive DMKB with static rules and U = 〈Uα〉α<μ a layering splitting sequence for K . If there is a
generalised solution X = 〈Xα〉α<μ to K w.r.t. U , then there is a solution Y = 〈Yα〉α<μ to K w.r.t. U such that for all α < μ, Xα ⊆ Yα .

Proof. Let Y = 〈Yα〉α<μ be as follows:

• If bU0 (K) is ontology-based, then

Y0 =
�� 〈

κ(bU0(Oi))∪
{

l | (l.) ∈ bU0(Pi)
}〉

i<n

�
.

Otherwise, Y0 corresponds to the least set of objective literals J such that

J |= bU0(P0) .

• For any ordinal α such that α + 1 < μ, if

eUα

(
bUα+1(K),

⋂
β≤α Yβ

)

is ontology-based, then

Yα+1 =
�� 〈

κ(tUα (bUα+1(Oi)))∪
{

l
∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤α Yβ

) }〉
i<n

�
.

Otherwise, Yα+1 corresponds to the least set of objective literals J such that

J |= eUα

(
bUα+1(P0),

⋂
β≤α Yβ

)
.

• For any limit ordinal α, Yα = IL .

We verify by induction on α that Xα ⊆ Yα :

1◦ For α = 0 we consider two cases. If bU0 (K) is ontology-based, then clearly X0 = Y0. If it is rule-based, then X0 corre-
sponds to some LP interpretation J such that J |= bU0 (P0), and Y0 to the least set of literals J ′ such that J ′ |= bU0 (P0).
Clearly, J ⊇ J ′ , so

X0 = { I ∈ IL | I |= J } ⊆ {
I ∈ IL | I |= J ′

}= Y0 .

98 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
2◦ Assuming that the claim holds for all β ≤ α, we prove that Xα+1 ⊆ Yα+1. Let X =⋂
β≤α Xβ and Y =⋂

β≤α Yβ . By the
inductive assumption, X ⊆ Y . Consequently,

eUα (bUα+1(P0),X)⊇ eUα (bUα+1(P0),Y) . (D.10)

If eUα (bUα+1 (K), X) is ontology-based, then eUα (bUα+1 (K), X) and eUα (bUα+1 (K), Y) differ only in the first component.
According to (D.10), the first component of eUα (bUα+1 (K), X) is a superset of the first component of eUα (bUα+1 (K), Y).
Thus, due to (FO8.2), we can conclude that Xα+1 ⊆Yα+1.
If eUα (bUα+1 (K), X) is rule-based, then Xα+1 corresponds to an LP interpretation J such that J |= eUα (bUα+1 (P0), X)

and Yα+1 corresponds to a the minimal set of objective literals J ′ such that J ′ |= eUα (bUα+1 (P0), Y). It then follows
from (D.10) that J |= eUα (bUα+1 (P0), Y), so J ⊇ J ′ and we can conclude that

Xα+1 = { I ∈ IL | I |= J } ⊆ {
I ∈ IL | I |= J ′

}= Yα+1 .

3◦ The case when α is a limit ordinal follows trivially from Xα = Yα = IL .

We have shown that Yα �= ∅ for every α < μ and it follows by the definition of Y and the assumption that S is faithful to
the stable model semantics that Y is a solution to K w.r.t. U . �
Corollary 162. Let K be a positive DMKB with static rules and U = 〈Uα〉α<μ a layering splitting sequence for K . Then either there
is no generalised solution to K w.r.t. U , or there is a unique solution X = 〈Xα〉α<μ to K w.r.t. U and for every generalised solution
Y = 〈Yα〉α<μ to K w.r.t. U , Yα ⊆Xα for every α < μ.

Proof. Follows from Propositions 160 and 161. �
Proposition 163. Let K be a positive DMKB with static rules, U = 〈Uα〉α<μ a layering splitting sequence for K , X = 〈Xα〉α<μ a
generalised solution to K w.r.t. U and M =⋂

α<μXα . Then,

M⊆ T �K (M) .

Proof. Let T = 〈TP0 (M) ∪ κ(O0), κ(O1), . . . , κ(On−1)〉 where

TP0(M)=
⋃
{ Hπ | π ∈ P0 ∧M |= κ(Bπ) } .

By the definition of T �K ,

T �K (M)= �� T � .

Let A = 〈Aα〉α<μ be the saturation sequence induced by U . By the Abstract Splitting Sequence Property of � it follows that

T �K (M)= �� T � = ⋂
α<μ

��bAα (T)� .

Furthermore, it follows from the definition of generalised solution that Xα is saturated relative to Aα , so by Observa-
tion 100(2) and Lemma 156,

Xα = σ(M, Aα) and
⋂
β≤α

Xα = σ(M, Uα) .

We prove that for all α < μ, Xα ⊆ ��bAα (T)�:

1. For α = 0 we obtain U0 = A0. Suppose first that bU0 (K) is ontology-based and X0 = �� T ′� where

T ′ = 〈κ(bU0(Oi))∪ { l | (l.) ∈ bU0(Pi) }〉i<n .

By the assumption that U0 is a splitting set for P0 it follows that bA0 (TP0 (M)) = { l | (l.) ∈ bU0 (P0) } and since Pi = ∅
for all i > 0, this implies that bA0 (T) = T ′ and we can conclude that X0 = ��bA0 (T)�.
On the other hand, if bU0 (K) is rule-based and X0 corresponds to some LP interpretation J such that J |= bU0 (P0),
then by (FO2.),

��bA0(T)� = �� 〈
bU0(TP0(M)),∅, . . . ,∅〉� = �bU0(TP0(M))� .

We need to prove that X0 |= bU0 (TP0 (M)). Take some literal l ∈ bU0 (TP0 (M)). Then there is some rule π ∈ P0 such
that Hπ = l, M |= κ(Bπ) and pr(l) ⊆ U0. Since U0 is a splitting set for P0, pr(Bπ) ⊆ U0. Consequently, X0 = σ(M, U0) |=
κ(Bπ) and we obtain that J |= Bπ . This implies that J |= l and we can conclude that X0 |= l. Thus, X0 |= bU0 (TP (M)).
0

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 99
2. For a non-limit ordinal α + 1 we have Aα+1 = Uα+1 \ Uα . Suppose first that

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)

is ontology-based and Xα+1 = �� T ′� where

T ′ =
〈
κ(tUα (bUα+1(Oi)))∪

{
l
∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤α Xβ

) }〉
i<n

.

First note that since Uα and Uα+1 are splitting sets for Oi , we obtain

tUα (bUα+1(Oi))= bP\Uα (bUα+1(Oi))= b(P\Uα)∩Uα+1(Oi)= bUα+1\Uα (Oi)

= bAα+1(Oi) .

Furthermore, since eUα (bUα+1 (P0),
⋂

β≤α Xβ) contains only facts, every rule π ∈ P0 such that pr(Hπ) ⊆ Uα+1 satisfies
pr(Bπ) ⊆ Uα and due to the fact that

⋂
β≤α Xβ = σ(M, Uα) we can conclude that

bAα+1(TP0(M))=
{

l
∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤α Xβ

) }
.

Since Pi = ∅ for all i > 0, the above considerations imply that bAα+1 (T) = T ′ and we can conclude that Xα+1 =��bAα+1 (T)�.
On the other hand, if

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)

is rule-based and Xα+1 corresponds to some LP interpretation J such that J |= eUα (bUα+1 (P0),
⋂

β≤α Xβ), then by
(FO2.),

��bAα+1(T)� = �� 〈
bAα+1(TP0(M)),∅, . . . ,∅〉� = �bAα+1(TP0(M))� .

We need to prove that Xα+1 |= bAα+1 (TP0 (M)). Take some literal l ∈ bAα+1 (TP0 (M)). Then there is some rule π ∈ P0
such that Hπ = l, M |= κ(Bπ) and pr(l) ⊆ Aα+1. It follows that there is some rule σ ∈ eUα (bUα+1 (P0),

⋂
β≤α Xβ) with

Hσ = l, M |= κ(Bσ) and pr(σ) ⊆ Aα+1. Consequently, Xα+1 = σ(M, Aα+1) |= κ(Bσ) and so J |= Bσ . This implies that
J |= l and we can conclude that Xα+1 |= l. Thus, Xα+1 |= bAα+1 (TP0 (M)).

3. If α is a limit ordinal, then it follows from (FO2.) that

Xα = IL = �∅� = ��〈∅,∅, . . . ,∅〉� = ��b∅(T)� = ��bAα (T)� . �
Proposition 164. Let K be a positive DMKB with static rules, U = 〈Uα〉α<μ a layering splitting sequence for K , A = 〈Aα〉α<μ the sat-
uration sequence induced by U and M an MKNF interpretation. If M = T �K (M), then M =⋂

α<μ σ (M, Aα) and 〈σ(M, Aα)〉α<μ

is a generalised solution to K w.r.t. U .

Proof. Let T = 〈TP0 (M) ∪ κ(O0), κ(O1), . . . , κ(On−1)〉 where

TP0(M)=
⋃
{ Hπ | π ∈ P0 ∧M |= κ(Bπ) } .

By the definition of T �K , T �K (M) = �� T �. By the Abstract Splitting Sequence Property of � it follows that

M= T �K (M)= �� T � = ⋂
α<μ

��bAα (T)� .

Let Xα = σ(M, Aα) for all α < μ. Since � conserves the language, it follows from Observation 100(2) that for all α < μ,

Xα = σ(M, Aα)= ��bAα (T)� .

We need to prove that

1. X0 is a generalised (�, S)-dynamic MKNF model of bU0 (K).
2. For any ordinal α such that α + 1 < μ, Xα+1 is a generalised (�, S)-dynamic MKNF model of

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)
.

3. For any limit ordinal α, Xα = IL .
4.

⋂
α<μXα �= ∅.

100 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
We prove each condition separately:

1. Note first that U0 = A0. If bU0 (K) is ontology-based, then we need to prove that X0 = �� T ′� where

T ′ = 〈κ(bU0(Oi))∪ { l | (l.) ∈ bU0(Pi) }〉i<n .

Since Pi = ∅ for all i > 0, it follows that bU0 (T) = T ′ and thus

X0 = ��bA0(T)� = ��bU0(T)� = �� T ′� .

On the other hand, if bU0 (K) is rule-based, then we have to show that X0 corresponds to some LP interpretation J
such that J |= bU0 (P0). Note that due to (FO2.),

X0 = ��bA0(T)� = ��〈bU0(TP0(M)),∅, . . . ,∅〉� = �bU0(TP0(M))� .

Put J = { l ∈ LitsG | X0 |= l }. It follows that if J |= Bπ for some rule π ∈ bU0 (P0), then X0 |= κ(Bπ) and thus M |=
κ(Bπ). Consequently, Hπ ∈ TP0 (M) and we conclude that X0 |= Hπ , thus also J |= Hπ .

2. For a non-limit ordinal α + 1 we have Aα+1 = Uα+1 \ Uα . Suppose first that

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)

is ontology-based. We have to prove that Xα+1 = �� T ′� where

T ′ =
〈
κ(tUα (bUα+1(Oi)))∪

{
l
∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤α Xβ

) }〉
i<n

.

First note that since Uα and Uα+1 are splitting sets for Oi , we obtain

tUα (bUα+1(Oi))= bP\Uα (bUα+1(Oi))= b(P\Uα)∩Uα+1(Oi)= bUα+1\Uα (Oi)

= bAα+1(Oi) .

Furthermore, since eUα (bUα+1 (P0),
⋂

β≤α Xβ) contains only facts, every rule π ∈ P0 such that pr(Hπ) ⊆ Uα+1 satisfies
pr(Bπ) ⊆ Uα and due to the fact that

⋂
β≤α Xβ = σ(M, Uα) we can conclude that

bAα+1(TP0(M))=
{

l
∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤α Xβ

) }
.

Since Pi = ∅ for all i > 0, the above considerations imply that bAα+1 (T) = T ′ and we can conclude that

Xα+1 = ��bA0(T)� = �� T ′� .

On the other hand, if

eUα

(
bUα+1(K),

⋂
β≤α Xβ

)

is rule-based, we need to prove that Xα+1 corresponds to some LP interpretation J such that J |= eUα (bUα+1 (P0),⋂
β≤α Xβ). Due to (FO2.),

Xα+1 = ��bAα+1(T)� = �� 〈
bAα+1(TP0(M)),∅, . . . ,∅〉� = �bAα+1(TP0(M))� .

Put J = { l ∈ LitsG | Xα+1 |= l }. It follows that if J |= Bπ for some rule π ∈ eUα (bUα+1 (P0),
⋂

β≤α Xβ), then there is a
rule σ ∈ bUα+1 (P0) such that Hπ = Hσ and M |= κ(Bσ). Consequently, Hπ ∈ TP0 (M) and we obtain Xα+1 |= Hπ , thus
also J |= Hπ .

3. Note that if α is a limit ordinal, then Aα = ∅. Since M is an MKNF interpretation, it follows that M �= ∅, and we obtain

Xα = σ(M, Aα)= σ(M,∅)= IL .

4. Since M is an MKNF interpretation, it follows that ∅ �=M =⋂
α<μXα . �

Proposition 165. Let K be a positive layered DMKB with static rules. An MKNF interpretation M is a �-dynamic MKNF model of K if
and only if M is a (�, S)-dynamic MKNF model of K .

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 101
Proof. Suppose that M is the �-dynamic MKNF model of K . Then M is the greatest fixed point of T �K and it follows from
Proposition 164 that 〈σ(M, Aα)〉α<μ is a generalised solution to K w.r.t. some splitting sequence U . Thus, by Corollary 162,
there exists a solution X = 〈Xα〉α<μ to K w.r.t. U such that for all α < μ, σ(M, Aα) ⊆ Xα . Let N =⋂

α<μXα . It holds
that N is the (�, S)-dynamic MKNF model of K and we obtain

M=
⋂
α<μ

σ (M, Aα)⊆
⋂
α<μ

Xα =N .

Also, it follows from Propositions 160 and 163 that

N ⊆ T �K (N)

and since M is the greatest fixed point of T �K , we can conclude that N ⊆M.
Similarly, if N is the (�, S)-dynamic MKNF model of K , then there is a solution X = 〈Xα〉α<μ to K w.r.t. some layering

splitting sequence U = 〈Uα〉α<μ such that

N =
⋂
α<μ

Xα .

By Propositions 160 and 163, N ⊆ T �K (N) and we can conclude that N ⊆M where M is the greatest fixed point of T �K , i.e.
the (�, S)-dynamic MKNF model of K . It follows from Proposition 164 that 〈σ(M, Aα)〉α<μ is a generalised solution to K
w.r.t. U . Thus, by Corollary 162, there exists a solution X = 〈Xα〉α<μ to K w.r.t. U such that for all α < μ, σ(M, Aα) ⊆Xα .
It follows from the uniqueness of a �-dynamic MKNF model that N =⋂

α<μXα and we obtain

M=
⋂
α<μ

σ (M, Aα)⊆
⋂
α<μ

Xα =N . �

Proposition 166. Let K be a layered DMKB with static rules. An MKNF interpretation M is a (�, S)-dynamic MKNF model of K if and
only if M is a (�, S)-dynamic MKNF model of KM .

Proof. Follows from the assumption that S is faithful to the stable model semantics and by the definition of a stable
model. �
Theorem 80 (Compatibility with update semantics from Section 3). Suppose that � satisfies (FO2.) and (FO8.2) and that S is faithful
to the stable model semantics. Let K be a layered DMKB with static rules. An MKNF interpretation M is a �-dynamic MKNF model of
K if and only if M is a (�, S)-dynamic MKNF model of K .

Proof. Follows by the definition of a �-dynamic MKNF model and by Propositions 165 and 166. �
D.4. Complexity of updating layered DMKBs

Theorem 88. Let � be a first update operator and S a rule update semantics such that both � and S have the splitting sequence
property, conserve the language and respect fact update. If query answering for � belongs to �1 and query answering for S belongs
to �2 , then hybrid query answering for � and S belongs to NP�1∪�2 .

Proof (sketch). Take a layered DMKB K . We need to prove that the complexity class NP�1∪�2 contains the problem of
deciding whether for some (�, S)-dynamic MKNF model M, M |= κ(S).

Since K is layered, some layering splitting sequence U = 〈Ui〉i<n for K exists.26 We define the sets of literals Si for all
i < n as follows:

• S0 = ∅,
• for any i ∈N such that i + 1 < n,

Si+1 = { L ∈ Bπ | π ∈ tUi (bUi+1(K))∧ pr(L)⊆ Ui } .

Intuitively, the set Si contains those body literals of rules within the i-th layer of K that are determined by one of the previ-
ous layers. For each i < n, we guess a set of literals S	i ⊆ Si , then we check that the guess determines some (�, S)-dynamic
MKNF model M of K such that M |= κ(S). In other words, we guess which literals from Si are true in such M.

The rest can be verified in deterministic polynomial time using our (�1 ∪ �2) oracle as follows. For each i < n, we
determine the DMKB K i and the set of literals S ′i as follows:

26 Since all components of K are finite, we assume without loss of generality that U is finite.

102 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
• K 0 = bU0 (K) and S ′i = { L ∈ S | pr(L) ⊆ U0 }.
• For any i ∈ N such that i + 1 < n, K i+1 is obtained from tUi (bUi+1 (K)) by replacing each literal from Si by 	 if it

belongs to S	i and by ⊥ otherwise. Furthermore,

S ′i+1 = { L ∈ S | pr(L)⊆ Ui+1 \ Ui } .

Since K i is a basic DMKB, it can be updated using either � of S alone. Thus, using the oracle we can verify that for each
i < n,

K i |= κ(Si ∪ S ′i) .

Together with Definition 73, this leads to the conclusion that for some (�, S)-dynamic MKNF model M of K , M |= κ(S). �
References

[1] M. Alberti, A.S. Gomes, R. Gonçalves, J. Leite, M. Slota, Normative systems represented as hybrid knowledge bases, in: J. Leite, P. Torroni, T. Ågotnes, G.
Boella, L. van der Torre (Eds.), Computational Logic in Multi-Agent Systems – Proceedings of the 12th International Workshop, CLIMA XII, Barcelona,
Spain, July 17–18, 2011, in: Lecture Notes in Computer Science, vol. 6814, Springer, 2011, pp. 330–346.

[2] M. Alberti, M. Knorr, A.S. Gomes, J. Leite, R. Gonçalves, M. Slota, Normative systems require hybrid knowledge bases, in: W. van der Hoek, L. Padgham,
V. Conitzer, M. Winikoff (Eds.), International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, June 4–8, 2012
(3 Volumes), IFAAMAS, 2012, pp. 1425–1426.

[3] C.E. Alchourrón, P. Gärdenfors, D. Makinson, On the logic of theory change: partial meet contraction and revision functions, J. Symb. Log. 50 (2) (1985)
510–530.

[4] J.J. Alferes, L.M. Pereira, Update-programs can update programs, in: J. Dix, L.M. Pereira, T.C. Przymusinski (Eds.), NMELP ’96 Selected Papers from the
Non-monotonic Extensions of Logic Programming, Bad Honnef, Germany, September 5–6, 1996, in: Lecture Notes in Computer Science, vol. 1216,
Springer, ISBN 3-540-62843-6, 1996, pp. 110–131.

[5] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, T.C. Przymusinski, Dynamic logic programming, in: A.G. Cohn, L.K. Schubert, S.C. Shapiro (Eds.),
Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning, KR’98, Trento, Italy, June 2–5, 1998,
Morgan Kaufmann, 1998, pp. 98–111.

[6] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, T.C. Przymusinski, Dynamic updates of non-monotonic knowledge bases, J. Log. Program. 45 (1–3)
(September/October 2000) 43–70.

[7] J.J. Alferes, F. Banti, A. Brogi, J.A. Leite, The refined extension principle for semantics of dynamic logic programming, Stud. Log. 79 (1) (2005) 7–32.
[8] J.J. Alferes, M. Knorr, T. Swift, Query-driven procedures for hybrid MKNF knowledge bases, ACM Trans. Comput. Log. 14 (2) (2013) 16.
[9] H. Andréka, J. van Bentham, I. Némati, Modal languages and bounded fragments of predicate logic, J. Philos. Log. 27 (1998) 217–274.

[10] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: L.P. Kaelbling, A. Saffiotti (Eds.), Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI-05, Edinburgh, Scotland, UK, July 30–August 5, 2005, Professional Book Center, ISBN 0938075934, 2005, pp. 364–369.

[11] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edition, Cambridge University Press, 2007.

[12] J. Babb, J. Lee, Module theorem for the general theory of stable models, Theory Pract. Log. Program. 12 (4–5) (2012) 719–735.
[13] F. Banti, J.J. Alferes, A. Brogi, P. Hitzler, The well supported semantics for multidimensional dynamic logic programs, in: C. Baral, G. Greco, N. Leone, G.

Terracina (Eds.), Proceedings of the 8th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2005, Diamante, Italy,
September 5–8, 2005, in: Lecture Notes in Computer Science, vol. 3662, Springer, ISBN 3-540-28538-5, 2005, pp. 356–368.

[14] P. Bonatti, Reasoning with infinite stable models, Artif. Intell. 156 (2004) 75–111.
[15] Y. Bong, The description logic ABox update problem revisited, Master’s thesis, Dresden University of Technology, Dresden, Germany, February 2007.
[16] G. Brewka, Towards reactive multi-context systems, in: P. Cabalar, T.C. Son (Eds.), Logic Programming and Nonmonotonic Reasoning, 12th International

Conference, LPNMR 2013, in: Lecture Notes in Computer Science, vol. 8148, Springer, 2013, pp. 1–10.
[17] G. Brewka, T. Eiter, Equilibria in heterogeneous nonmonotonic multi-context systems, in: Proceedings of the 22nd AAAI Conference on Artificial Intel-

ligence, Vancouver, British Columbia, Canada, July 22–26, 2007, AAAI Press, ISBN 978-1-57735-323-2, 2007, pp. 385–390.
[18] G. Brewka, T. Eiter, M. Fink, A. Weinzierl, Managed multi-context systems, in: T. Walsh (Ed.), IJCAI, IJCAI/AAAI, ISBN 978-1-57735-516-8, 2011,

pp. 786–791.
[19] G. Brewka, S. Ellmauthaler, J. Pührer, Multi-context systems for reactive reasoning in dynamic environments, in: T. Schaub, G. Friedrich, B. O’Sullivan

(Eds.), ECAI 2014 – 21st European Conference on Artificial Intelligence, in: Frontiers in Artificial Intelligence and Applications, vol. 263, IOS Press, 2014,
pp. 159–164.

[20] F. Buccafurri, W. Faber, N. Leone, Disjunctive logic programs with inheritance, in: D.D. Schreye (Ed.), Proceedings of the 1999 International Conference
on Logic Programming, ICLP 1999, Las Cruces, New Mexico, USA, November 29–December 4, 1999, The MIT Press, ISBN 0-262-54104-1, 1999, pp. 79–93.

[21] D. Calvanese, E. Kharlamov, W. Nutt, D. Zheleznyakov, Evolution of DL-Lite knowledge bases, in: P.F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang,
J.Z. Pan, I. Horrocks, B. Glimm (Eds.), International Semantic Web Conference (1), Shanghai, China, November 7–11, 2010, in: Lecture Notes in Computer
Science, vol. 6496, Springer, ISBN 978-3-642-17745-3, 2010, pp. 112–128.

[22] A. Colmerauer, H. Kanoui, P. Roussel, R. Pasero, Un systéme de communication homme-machine en français, Technical report, Groupe de Recherche en
Intelligence Artificielle, Université d’Aix-Marseille II, 1973.

[23] N. Costa, M. Knorr, J. Leite, Next step for NoHR: OWL 2 QL, in: M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth,
M. Dumontier, J. Heflin, K. Thirunarayan, S. Staab (Eds.), The Semantic Web – ISWC 2015 – 14th International Semantic Web Conference, Bethlehem,
Pennsylvania, United States, October 11–15, 2015, in: Lecture Notes in Computer Science, Springer, 2015.

[24] M. Dalal, Investigations into a theory of knowledge base revision, in: Proceedings of the 7th National Conference on Artificial Intelligence, AAAI 1988,
St. Paul, MN, USA, August 21–26, 1988, AAAI Press/The MIT Press, ISBN 0-262-51055-3, 1988, pp. 475–479.

[25] J. de Bruijn, D. Pearce, A. Polleres, A. Valverde, A semantical framework for hybrid knowledge bases, Knowl. Inf. Syst. 25 (1) (2010) 81–104.
[26] J. de Bruijn, T. Eiter, A. Polleres, H. Tompits, Embedding nonground logic programs into autoepistemic logic for knowledge-base combination, ACM

Trans. Comput. Log. 12 (3) (2011) 20.
[27] G. De Giacomo, M. Lenzerini, A. Poggi, R. Rosati, On the update of description logic ontologies at the instance level, in: Proceedings of the 21st National

Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, Boston, Massachusetts, USA, July 16–20,
2006, AAAI Press, 2006.

http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F636C696D612F416C626572746947474C533131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F636C696D612F416C626572746947474C533131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F636C696D612F416C626572746947474C533131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F61616D61732F416C62657274694B474C47533132s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F61616D61732F416C62657274694B474C47533132s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F61616D61732F416C62657274694B474C47533132s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C63686F7572726F6E31393835s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C63686F7572726F6E31393835s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C666572657331393936s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C666572657331393936s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C666572657331393936s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F6B722F416C66657265734C5050503938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F6B722F416C66657265734C5050503938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F6B722F416C66657265734C5050503938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C666572657332303030s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C666572657332303030s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C666572657332303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416C666572657332303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib416E424E3938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib42616164657232303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib42616164657232303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib42616164657232303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib42616164657232303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A6A6F75726E616C732F74706C702F426162624C3132s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib42616E746932303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib42616E746932303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib42616E746932303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib426F6E613034s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib426F6E6732303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427265776B6132303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427265776B6132303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427265776B6132303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427265776B6132303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F696A6361692F427265776B614546573131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F696A6361692F427265776B614546573131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427265776B6132303134s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427265776B6132303134s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427265776B6132303134s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4275636361667572726931393939s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4275636361667572726931393939s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib43616C76616E65736532303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib43616C76616E65736532303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib43616C76616E65736532303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib436F6C6D65726175657231393733s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib436F6C6D65726175657231393733s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F73656D7765622F436F7374614B4C3135s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F73656D7765622F436F7374614B4C3135s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F73656D7765622F436F7374614B4C3135s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44616C616C31393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44616C616C31393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427275696A6E32303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427275696A6E32303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib427275696A6E32303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476961636F6D6F32303036s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476961636F6D6F32303036s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476961636F6D6F32303036s1

M. Slota et al. / Artificial Intelligence 229 (2015) 33–104 103
[28] G. De Giacomo, M. Lenzerini, A. Poggi, R. Rosati, On the approximation of instance level update and erasure in description logics, in: Pro-
ceedings of the 22nd AAAI Conference on Artificial Intelligence, AAAI 2007, Vancouver, British Columbia, Canada, July 22–26, 2007, AAAI Press,
ISBN 978-1-57735-323-2, 2007, pp. 403–408.

[29] G. De Giacomo, M. Lenzerini, A. Poggi, R. Rosati, On instance-level update and erasure in description logic ontologies, J. Log. Comput. 19 (5) (2009)
745–770.

[30] J.P. Delgrande, A program-level approach to revising logic programs under the answer set semantics, in: 26th Int’l. Conference on Logic Programming
(ICLP’10), Theory Pract. Log. Program. 10 (4–6) (July 2010) 565–580 (Special Issue).

[31] J.P. Delgrande, T. Schaub, H. Tompits, A preference-based framework for updating logic programs, in: C. Baral, G. Brewka, J.S. Schlipf (Eds.), Proceedings
of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2007, Tempe, AZ, USA, May 15–17, 2007, in: Lecture
Notes in Computer Science, vol. 4483, Springer, ISBN 978-3-540-72199-4, 2007, pp. 71–83.

[32] J.P. Delgrande, T. Schaub, H. Tompits, S. Woltran, Belief revision of logic programs under answer set semantics, in: G. Brewka, J. Lang (Eds.), Principles
of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR’08, AAAI Press, 2008, pp. 411–421.

[33] J.P. Delgrande, T. Schaub, H. Tompits, S. Woltran, A model-theoretic approach to belief change in answer set programming, ACM Trans. Comput. Log.
14 (2) (2013) 14, http://dx.doi.org/10.1145/2480759.2480766.

[34] J. Dix, A classification theory of semantics of normal logic programs: I. Strong properties, Fundam. Inform. 22 (3) (1995) 227–255.
[35] P. Doherty, W. Lukaszewicz, E. Madalinska-Bugaj, The PMA and relativizing minimal change for action update, in: A.G. Cohn, L.K. Schubert, S.C. Shapiro

(Eds.), Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning, KR’98, Trento, Italy, June 2–5, 1998,
Morgan Kaufmann, 1998, pp. 258–269.

[36] C. Drescher, H. Liu, F. Baader, P. Steinke, M. Thielscher, Putting ABox updates into action, in: Proceedings of the 8th IJCAI International Workshop on
Nonmontonic Reasoning, Action and Change, NRAC-09, 2009.

[37] T. Eiter, M. Fink, G. Sabbatini, H. Tompits, On properties of update sequences based on causal rejection, Theory Pract. Log. Program. 2 (6) (2002)
721–777.

[38] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, A uniform integration of higher-order reasoning and external evaluations in answer-set programming, in:
L.P. Kaelbling, A. Saffiotti (Eds.), Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI-05, Edinburgh, Scotland, UK, July
30–August 5, 2005, Professional Book Center, ISBN 0938075934, 2005, pp. 90–96.

[39] K.D. Forbus, Introducing actions into qualitative simulation, in: N.S. Sridharan (Ed.), Proceedings of the 11th International Joint Conference on Artificial
Intelligence, IJCAI’89, Detroit, MI, USA, August 1989, Morgan Kaufmann, ISBN 1-55860-094-9, 1989, pp. 1273–1278.

[40] P. Gärdenfors, Belief revision: an introduction, in: Belief Revision, Cambridge University Press, 1992, pp. 1–28.
[41] A.V. Gelder, K.A. Ross, J.S. Schlipf, The well-founded semantics for general logic programs, J. ACM 38 (3) (1991) 620–650.
[42] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R.A. Kowalski, K.A. Bowen (Eds.), Proceedings of the 5th International

Conference and Symposium on Logic Programming, ICLP/SLP 1988, Seattle, Washington, August 15–19, 1988, MIT Press, 1988, pp. 1070–1080.
[43] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Gener. Comput. 9 (3–4) (1991) 365–385.
[44] S. Gomes, J. Alferes, T. Swift, A goal-directed implementation of query answering for hybrid MKNF knowledge bases, Theory Pract. Log. Program. 14 (2)

(2014) 239–264.
[45] R. Gonçalves, M. Knorr, J. Leite, Evolving multi-context systems, in: T. Schaub, G. Friedrich, B. O’Sullivan (Eds.), ECAI 2014 – 21st European Conference

on Artificial Intelligence, in: Frontiers in Artificial Intelligence and Applications, vol. 263, IOS Press, 2014, pp. 375–380.
[46] S.O. Hansson, Reversing the Levi identity, J. Philos. Log. 22 (6) (December 1993) 637–669.
[47] S.J. Hegner, Specification and implementation of programs for updating incomplete information databases, in: M.Y. Vardi (Ed.), Proceedings of the Sixth

ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems, PODS’87, ACM, ISBN 0-89791-223-3, 1987, pp. 146–158.
[48] A. Herzig, The PMA revisited, in: L.C. Aiello, J. Doyle, S.C. Shapiro (Eds.), Proceedings of the 5th International Conference on Principles of Knowledge

Representation and Reasoning, KR’96, Cambridge, Massachusetts, USA, November 5–8, 1996, Morgan Kaufmann, ISBN 1-55860-421-9, 1996, pp. 40–50.
[49] A. Herzig, On updates with integrity constraints, in: J.P. Delgrande, J. Lang, H. Rott, J.-M. Tallon (Eds.), Belief Change in Rational Agents: Perspectives

from Artificial Intelligence, Philosophy, and Economics, August 7–12, 2005, in: Dagstuhl Seminar Proceedings, vol. 05321, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

[50] A. Herzig, O. Rifi, Update operations: a review, in: H. Prade (Ed.), Proceedings of the 13th European Conference on Artificial Intelligence, ECAI’98,
Brighton, UK, August 23–28, 1998, John Wiley and Sons, 1998, pp. 13–17.

[51] A. Herzig, O. Rifi, Propositional belief base update and minimal change, Artif. Intell. 115 (1) (1999) 107–138.
[52] P. Hitzler, B. Parsia, Ontologies and rules, in: S. Staab, R. Studer (Eds.), Handbook on Ontologies, second edition, in: International Handbooks on

Information Systems, Springer, Berlin, ISBN 978-3-540-70999-2, 2009, pp. 111–132.
[53] V. Ivanov, M. Knorr, J. Leite, A query tool for EL with non-monotonic rules, in: H. Alani, L. Kagal, A. Fokoue, P.T. Groth, C. Biemann, J.X. Parreira, L.

Aroyo, N.F. Noy, C. Welty, K. Janowicz (Eds.), Proceedings of the 12th International Semantic Web Conference (ISWC’13), Part I, in: Lecture Notes in
Computer Science, vol. 8218, Springer, ISBN 978-3-642-41334-6, 2013, pp. 216–231.

[54] T. Janhunen, E. Oikarinen, H. Tompits, S. Woltran, Modularity aspects of disjunctive stable models, J. Artif. Intell. Res. 35 (2009) 813–857.
[55] T. Kaminski, M. Knorr, J. Leite, Efficient paraconsistent reasoning with ontologies and rules, in: Q. Yang, M. Wooldridge (Eds.), Proceedings of the

Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, AAAI Press, 2015,
pp. 3098–3105, http://ijcai.org/papers15/Abstracts/IJCAI15-437.html.

[56] H. Katsuno, A.O. Mendelzon, On the difference between updating a knowledge base and revising it, in: J.F. Allen, R. Fikes, E. Sandewall (Eds.), Proceed-
ings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning, KR’91, Cambridge, MA, USA, April 22–25, 1991,
Morgan Kaufmann Publishers, ISBN 1-55860-165-1, 1991, pp. 387–394.

[57] A.M. Keller, M. Winslett, On the use of an extended relational model to handle changing incomplete information, IEEE Trans. Softw. Eng. 11 (7) (1985)
620–633.

[58] E. Kharlamov, D. Zheleznyakov, D. Calvanese, Capturing model-based ontology evolution at the instance level: the case of DL-Lite, J. Comput. Syst. Sci.
79 (6) (2013) 835–872.

[59] M. Knorr, J.J. Alferes, P. Hitzler, Local closed world reasoning with description logics under the well-founded semantics, Artif. Intell. 175 (9–10) (2011)
1528–1554.

[60] M. Knorr, J. Leite, M. Slota, M. Homola, What if no hybrid reasoner is available? Hybrid MKNF in multi-context systems, J. Log. Comput.
(ISSN 1465-363X) (2013) 1–32, http://dx.doi.org/10.1093/logcom/ext062.

[61] R.A. Kowalski, Predicate logic as programming language, in: IFIP Congress, 1974, pp. 569–574.
[62] M. Krötzsch, S. Rudolph, P. Hitzler, Description logic rules, in: M. Ghallab, C.D. Spyropoulos, N. Fakotakis, N. Avouris (Eds.), Proceedings of the 18th

European Conference on Artificial Intelligence, ECAI2008, Patras, Greece, July 2008, IOS Press, 2008, pp. 80–84.
[63] P. Krümpelmann, G. Kern-Isberner, On belief dynamics of dependency relations for extended logic programs, in: Proceedings of the 13th International

Workshop on Non-monotonic Reasoning, Toronto, Canada, May 2010.
[64] J. Lee, R. Palla, Integrating rules and ontologies in the first-order stable model semantics (preliminary report), in: J.P. Delgrande, W. Faber (Eds.), Logic

Programming and Nonmonotonic Reasoning – 11th International Conference, LPNMR 2011, in: Lecture Notes in Computer Science, vol. 6645, Springer,
2011, pp. 248–253.

http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476961636F6D6F32303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476961636F6D6F32303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476961636F6D6F32303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476961636F6D6F32303039s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476961636F6D6F32303039s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44656C6772616E646532303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44656C6772616E646532303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44656C6772616E646532303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44656C6772616E646532303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44656C6772616E646532303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44656C6772616E646532303038s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44656C6772616E646532303038s1
http://dx.doi.org/10.1145/2480759.2480766
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44697831393935s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib446F686572747931393938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib446F686572747931393938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib446F686572747931393938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib447265736368657232303039s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib447265736368657232303039s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib456974657232303032s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib456974657232303032s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib45697465723230303562s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib45697465723230303562s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib45697465723230303562s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib466F7262757331393839s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib466F7262757331393839s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib47617264656E666F727331393932s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib47656C64657231393931s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib47656C666F6E6431393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib47656C666F6E6431393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib47656C666F6E6431393931s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476F6D657332303134s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476F6D657332303134s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476F6E63616C76657332303134s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib476F6E63616C76657332303134s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib48616E73736F6E31393933s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865676E657231393837s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865676E657231393837s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865727A696731393936s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865727A696731393936s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865727A696732303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865727A696732303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865727A696732303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865727A696731393938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865727A696731393938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4865727A696731393939s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4869747A6C657232303039s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4869747A6C657232303039s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4976616E6F7632303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4976616E6F7632303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4976616E6F7632303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4A4F54573039s1
http://ijcai.org/papers15/Abstracts/IJCAI15-437.html
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B617473756E6F31393931s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B617473756E6F31393931s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B617473756E6F31393931s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B656C6C657231393835s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B656C6C657231393835s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B6861726C616D6F7632303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B6861726C616D6F7632303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B6E6F727232303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B6E6F727232303131s1
http://dx.doi.org/10.1093/logcom/ext062
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B6F77616C736B6931393734s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B726F747A73636832303038s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4B726F747A73636832303038s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C656532303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C656532303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C656532303131s1

104 M. Slota et al. / Artificial Intelligence 229 (2015) 33–104
[65] J.A. Leite, Evolving Knowledge Bases, Frontiers of Artificial Intelligence and Applications, vol. 81, IOS Press, ISBN 1-58603-278-X, 2003, xviii+ 307 pp.,
Hardcover.

[66] J.A. Leite, L.M. Pereira, Generalizing updates: from models to programs, in: J. Dix, L.M. Pereira, T.C. Przymusinski (Eds.), Proceedings of the 3rd Inter-
national Workshop on Logic Programming and Knowledge Representation, LPKR ’97, Port Jefferson, New York, USA, October 17, 1997, in: Lecture Notes
in Computer Science, vol. 1471, Springer, ISBN 3-540-64958-1, 1997, pp. 224–246.

[67] M. Lenzerini, D.F. Savo, On the evolution of the instance level of DL-Lite knowledge bases, in: R. Rosati, S. Rudolph, M. Zakharyaschev (Eds.), Proceedings
of the 24th International Workshop on Description Logics, DL 2011, Barcelona, Spain, July 13–16, 2011, in: CEUR Workshop Proceedings, vol. 745, 2011,
CEUR-WS.org.

[68] V. Lifschitz, Frames in the space of situations, Artif. Intell. 46 (3) (1990) 365–376.
[69] V. Lifschitz, Nonmonotonic databases and epistemic queries, in: Proceedings of the 12th International Joint Conference on Artificial Intelligence, IJCAI’91,

1991, pp. 381–386.
[70] V. Lifschitz, Minimal belief and negation as failure, Artif. Intell. 70 (1–2) (1994) 53–72.
[71] V. Lifschitz, H. Turner, Splitting a logic program, in: P.V. Hentenryck (Ed.), Proceedings of the 11th International Conference on Logic Programming,

ICLP 1994, Santa Margherita Ligure, Italy, June 13–18, 1994, MIT Press, ISBN 0-262-72022-1, 1994, pp. 23–37.
[72] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Trans. Comput. Log. 2 (4) (2001) 526–541.
[73] H. Liu, C. Lutz, M. Miličić, F. Wolter, Updating description logic ABoxes, in: P. Doherty, J. Mylopoulos, C.A. Welty (Eds.), Proceedings of the 10th

International Conference on Principles of Knowledge Representation and Reasoning, KR’06, Lake District of the United Kingdom, June 2–5, 2006, AAAI
Press, ISBN 978-1-57735-271-6, 2006, pp. 46–56.

[74] J.W. Lloyd, Foundations of Logic Programming, 2nd edition, Springer, ISBN 3-540-18199-7, 1987.
[75] D. Makinson, General theory of cumulative inference, in: R. Michael, J. De Kleer, M.L. Ginsberg, E. Sandewall (Eds.), Proceedings of the 2nd Interna-

tional Workshop on Non-monotonic Reasoning, NMR’88, Grassau, FRG, June 13–15, 1988, in: Lecture Notes in Computer Science, vol. 346, Springer,
ISBN 3-540-50701-9, 1988, pp. 1–18.

[76] V.W. Marek, M. Truszczynski, Revision programming, Theor. Comput. Sci. 190 (2) (1998) 241–277.
[77] B. Motik, R. Rosati, Reconciling description logics and rules, J. ACM 57 (5) (2010) 93–154.
[78] M. Osorio, V. Cuevas, Updates in answer set programming: an approach based on basic structural properties, Theory Pract. Log. Program. 7 (4) (2007)

451–479.
[79] C. Papadimitriou, Computational Complexity, Addison–Wesley, 1994.
[80] C. Sakama, K. Inoue, An abductive framework for computing knowledge base updates, Theory Pract. Log. Program. 3 (6) (2003) 671–713.
[81] D. Scott, A decision method for validity of sentences in two variables, J. Symb. Log. 27 (1962).
[82] J. Šefránek, Static and dynamic semantics: preliminary report, in: Mexican International Conference on Artificial Intelligence, 2011, pp. 36–42.
[83] M. Slota, J. Leite, Marrying stable models with belief update, in: Proceedings of the 13th International Workshop on Non-monotonic Reasoning, NMR

2010, 2010.
[84] M. Slota, J. Leite, Towards closed world reasoning in dynamic open worlds, in: Proceedings of the 26th International Conference on Logic Programming

(ICLP’10), Theory Pract. Log. Program. 10 (4–6) (2010) 547–564 (Special Issue).
[85] M. Slota, J. Leite, On semantic update operators for answer-set programs, in: H. Coelho, R. Studer, M. Wooldridge (Eds.), Proceedings of the 19th

European Conference on Artificial Intelligence, ECAI 2010, Lisbon, Portugal, August 16–20, 2010, in: Frontiers in Artificial Intelligence and Applications,
vol. 215, IOS Press, ISBN 978-1-60750-605-8, 2010, pp. 957–962.

[86] M. Slota, J. Leite, Back and forth between rules and SE-models, in: J.P. Delgrande, W. Faber (Eds.), Proceedings of the 11th International Conference on
Logic Programming and Nonmonotonic Reasoning, LPNMR-11, Vancouver, Canada, May 16–19, 2011, in: Lecture Notes in Computer Science, vol. 6645,
Springer, ISBN 978-3-642-20894-2, 2011, pp. 174–186.

[87] M. Slota, J. Leite, Robust equivalence models for semantic updates of answer-set programs, in: G. Brewka, T. Eiter, S.A. McIlraith (Eds.), Proceedings
of the 13th International Conference on Principles of Knowledge Representation and Reasoning, KR 2012, Rome, Italy, June 10–14, 2012, AAAI Press,
ISBN 978-1-57735-560-1, 2012, pp. 158–168.

[88] M. Slota, J. Leite, A unifying perspective on knowledge updates, in: L.F. del Cerro, A. Herzig, J. Mengin (Eds.), Proceedings of the 13th European
Conference on Logics in Artificial Intelligence, JELIA 2012, Toulouse, France, September 26–28, 2012, in: Logics in Artificial Intelligence (LNAI), vol. 7519,
Springer, 2012, pp. 372–384.

[89] M. Slota, J. Leite, On condensing a sequence of updates in answer-set programming, in: F. Rossi (Ed.), Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, IJCAI’13, IJCAI/AAAI, ISBN 978-1-57735-633-2, 2013, pp. 1097–1103.

[90] M. Slota, J. Leite, The rise and fall of semantic rule updates based on SE-models, Theory Pract. Log. Program. 14 (6) (2014) 869–907, http://dx.doi.org/
10.1017/S1471068413000100.

[91] M. Slota, J. Leite, T. Swift, Splitting and updating hybrid knowledge bases, in: Proceedings of the 27th International Conference on Logic Programming
(ICLP’11), Theory Pract. Log. Program. 11 (4–5) (2011) 801–819 (Special Issue).

[92] H. Turner, Splitting a default theory, in: Proceedings of the 13th National Conference on Artificial Intelligence and 8th Innovative Applications of
Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, August 4–8, 1996, vol. 1, AAAI Press/The MIT Press, ISBN 0-262-51091-X, 1996,
pp. 645–651.

[93] H. Turner, Strong equivalence made easy: nested expressions and weight constraints, Theory Pract. Log. Program. 3 (4–5) (2003) 609–622.
[94] Y. Wang, Z. Zhuang, K. Wang, Belief change in nonmonotonic multi-context systems, in: P. Cabalar, T.C. Son (Eds.), LPNMR, in: Lecture Notes in Computer

Science, vol. 8148, Springer, ISBN 978-3-642-40563-1, 2013, pp. 543–555.
[95] M. Winslett, Reasoning about action using a possible models approach, in: Proceedings of the 7th National Conference on Artificial Intelligence, AAAI

1988, Saint Paul, MN, USA, August 21–26, 1988, AAAI Press/The MIT Press, ISBN 0-262-51055-3, 1988, pp. 89–93.
[96] M. Winslett, Updating Logical Databases, Cambridge University Press, New York, USA, ISBN 0-521-37371-9, 1990.
[97] Y. Zhang, Logic program-based updates, ACM Trans. Comput. Log. 7 (3) (2006) 421–472.
[98] Y. Zhang, N.Y. Foo, A unified framework for representing logic program updates, in: M.M. Veloso, S. Kambhampati (Eds.), Proceedings of the 20th Na-

tional Conference on Artificial Intelligence, AAAI 2005, Pittsburgh, Pennsylvania, USA, July 9–13, 2005, AAAI Press/The MIT Press, ISBN 1-57735-236-X,
2005, pp. 707–713.

http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C6569746532303033s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C6569746532303033s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C6569746531393937s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C6569746531393937s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C6569746531393937s1
http://CEUR-WS.org
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C696673636869747A31393930s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C696673636869747A31393931s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C696673636869747A31393931s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C6966733934s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C696673636869747A3139393461s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C696673636869747A3139393461s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C696673636869747A32303031s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C697532303036s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C697532303036s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C697532303036s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4C6C6F796431393837s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4D616B696E736F6E31393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4D616B696E736F6E31393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4D616B696E736F6E31393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4D6172656B31393938s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4D6F74696B32303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4F736F72696F32303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib4F736F72696F32303037s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib506170613934s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib53616B616D6132303033s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib53636F743632s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib53656672616E656B32303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303130s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313061s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313061s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313062s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313062s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313062s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303131s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303132s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303132s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303132s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313261s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313261s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313261s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F746132303133s1
http://dx.doi.org/10.1017/S1471068413000100
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313161s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib536C6F74613230313161s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib5475726E657231393936s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib5475726E657231393936s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib5475726E657231393936s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib5475726E657232303033s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F6C706E6D722F57616E675A573133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib44424C503A636F6E662F6C706E6D722F57616E675A573133s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib57696E736C65747431393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib57696E736C65747431393838s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib57696E736C65747431393930s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib5A68616E6732303036s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib5A68616E6732303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib5A68616E6732303035s1
http://refhub.elsevier.com/S0004-3702(15)00115-0/bib5A68616E6732303035s1
http://dx.doi.org/10.1017/S1471068413000100

	On updates of hybrid knowledge bases composed of ontologies and rules
	1 Introduction
	2 Background
	2.1 First-order logic and description logics
	2.1.1 Description logics

	2.2 Logic programming
	2.3 Logic of minimal knowledge and negation as failure
	2.4 MKNF knowledge bases
	2.4.1 Decidability of queries to MKNF knowledge bases

	2.5 Ontology updates
	2.6 Rule updates

	3 Dynamic MKNF knowledge bases with static rules
	3.1 A static consequence operator and its ﬁxed points
	3.1.1 Positive programs
	3.1.2 Programs with default negation

	3.2 Updating consequence operator
	3.2.1 Updating positive DMKBs with static rules
	3.2.2 Updating non-positive DMKBs with static rules

	3.3 Properties and relations

	4 Splitting properties
	4.1 Abstract splitting properties
	4.2 Semantics with splitting properties
	4.2.1 Splitting properties for MKNF knowledge bases
	4.2.2 Ontology updates
	4.2.3 Rule updates

	5 Layered dynamic MKNF knowledge bases
	5.1 Splitting-based updates of MKNF knowledge bases
	5.2 Independence of splitting sequence
	5.3 Properties and use
	5.3.1 Fidelity of the hybrid update semantics
	5.3.2 An extended example

	6 Complexity of update query answering
	6.1 Complexity of entailment from MKNF knowledge bases
	6.2 Complexity of entailment from dynamic MKNF knowledge bases
	6.2.1 DMKBs with static rules
	6.2.2 Layered DMKBs

	7 Discussion
	7.1 Related work
	7.2 Future work and extensions

	Acknowledgements
	Appendix A Proofs: background
	A.1 Properties of ﬁrst-order and subjective theories
	A.2 Restricted MKNF interpretations
	A.3 Saturated MKNF interpretations
	A.4 Semi-saturated MKNF interpretations
	A.5 Sequence-saturated MKNF interpretations

	Appendix B Proofs: dynamic MKNF knowledge bases with static rules
	B.1 Static consequence operator
	B.1.1 Static consequence operator for positive MKNF programs
	B.1.2 Static consequence operator for MKNF programs with default negation

	B.2 Updating consequence operator
	B.3 Properties and relations
	B.4 Complexity of updating DMKBs with static rules

	Appendix C Proofs: semantics with splitting properties
	C.1 MKNF knowledge bases
	C.1.1 Splitting set theorem
	C.1.2 Splitting sequence theorem

	C.2 Ontology updates
	C.3 Rule updates

	Appendix D Proofs: layered dynamic MKNF knowledge bases
	D.1 Independence of splitting sequence
	D.2 Splitting-based updates of MKNF knowledge bases
	D.3 Properties
	D.4 Complexity of updating layered DMKBs

	References

