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Abstract

Increasingly many real world applications need to intelligently access, combine and
reason with large amounts of dynamically changing and highly interconnected informa-
tion. The vision of the Semantic Web is to foster such advanced new applications by im-
buing Web content with machine-processable metadata. Throughout the last decade, two
distinct knowledge representation paradigms have been standardised to capture such
metadata: ontology languages based on Classical Logic and reasoning rules based on Logic
Programming. Both offer important features for knowledge representation and the in-
terest in their integration has recently resulted in frameworks for hybrid knowledge bases
that consist of an ontology and a rule component. However, despite the abundance of
work on dynamics of ontologies and rules, when taken separately, evolution of hybrid
knowledge bases has not been addressed. The goal of this thesis is to tackle this problem,
focusing on updates of hybrid knowledge bases. A principled, formal understanding of
updates is particularly interesting as it paves the way towards automated support for
dealing with the vast amount of constantly changing information on the Web.

In the first part of the thesis we develop two update semantics for hybrid knowledge
bases that fit the needs of particular use cases of hybrid knowledge and provide the ex-
pected results when used in specific application domains. The first semantics uses a given
ontology update operator to update the ontology component of a hybrid knowledge base
in the presence of static rules. Inspired by a realistic application, the second semantics offers
a way to modularly combine an ontology update operator with a rule update semantics. It
can be used for performing updates of hybrid knowledge bases consisting of ontology
and rule layers that share information through a rule-based interface. Both of these de-
velopments constitute solutions to the problem of hybrid updates for restricted classes of
hybrid knowledge bases.

Subsequently, we seek to provide a general solution that could handle updates of ar-
bitrary hybrid knowledge bases. After pinpointing serious difficulties due to the seman-
tic incompatibilities between existing approaches to ontology and rule updates, in the
second part of the thesis we look for ways to bring them closer together by developing
semantic characterisations of rule updates. We show that the classical, semantic, approach
to updates, even when applied to a very expressive semantic characterisation of logic
programs, leads to the violation of essential properties of existing rule update semantics.
This leads us to the development of richer semantic characterisations of logic programs.
The main result of this line of work is the introduction of a generic method for specify-
ing update operators that can capture both classical updates as well as the historically
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first rule update semantics. This constitutes the first common ground for these differ-
ent update paradigms and enables us to closely examine the semantic properties of rule
updates.

Together, the developments introduced in this thesis make it possible, for the first
time, to devise automated tools for supporting the dynamics of hybrid knowledge. At
the same time they provide a unifying perspective of both ontology and rule updates,
seemingly irreconcilable, deepening our understanding of their foundations, taken sepa-
rately and in combination.

Keywords: Semantic Web, Knowledge Representation, Belief Change, Ontologies, Logic
Programs, Hybrid Knowledge Bases, Updates



Resumo

Existem cada vez mais aplicações no mundo real que têm necessidade de aceder, com-
binar e raciocinar de forma inteligente com largas quantidades de informação interligada
e em mutação. A Web-Semântica pretende fomentar essas novas aplicações, dotando o
conteúdo da Web com meta-dados processáveis por máquinas. Ao longo da última dé-
cada, dois paradigmas distintos de representação de conhecimento foram padronizados
para lidar com esses meta-dados: linguagens de ontologias baseadas em Lógica Clássica e
regras baseadas em Programação em Lógica. Ambos possuem características importantes
para a representação de conhecimento, e o interesse na sua integração resultou, recente-
mente, em paradigmas híbridos para representação de conhecimento, contendo componentes
de ontologia e regras. No entanto, apesar da abundância de trabalho sobre a dinâmica de
ontologias e regras quando tomados separadamente, o problema da evolução de bases de
conhecimento híbridas não foi até hoje abordado. O objectivo desta tese é o de lidar com
este problema, focando na actualização de bases de conhecimento híbridos. A compreen-
são formal e baseada em princípios deste problema abrirá caminho para a automatização
do suporte para lidar com a grande quantidade de informações em constante mudança
na Web.

Na primeira parte da tese desenvolvemos duas semânticas de actualização para ba-
ses de conhecimento híbridas, que atendem às necessidades de casos de uso específicos e
fornecem os resultados esperados quando utilizadas em domínios de aplicação específi-
cos. A primeira semântica usa um operador de actualização de ontologias existente para
actualizar a componente de ontologia de uma base de conhecimento híbrida, na presença
de regras estáticas. Inspirado por uma aplicação realista, a segunda semântica oferece uma
forma modular de combinar um operador de actualização de ontologias com uma semân-
tica de actualização de regras, podendo ser usada para realizar actualizações de bases
de conhecimento híbridas compostas por camadas de ontologias e regras que comparti-
lham informações através de interfaces baseadas em regras. Ambos os desenvolvimentos
constituem soluções para o problema das actualizações para classes restritas de bases de
conhecimento híbridas.

Posteriormente, procuramos fornecer uma solução geral que pudesse lidar com actu-
alizações de bases de conhecimento híbridas arbitrárias. Depois de identificar um con-
junto de sérias dificuldades devido à incompatibilidade semântica entre as abordagens
existentes para a actualização de ontologias e de regras, na segunda parte da tese procu-
ramos formas de as aproximar, através do desenvolvimento de caracterizações semânticas
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de actualizações de regras. Mostramos que a abordagem clássica, semântica, de actuali-
zações, mesmo quando aplicada a uma caracterização semântica de programas em ló-
gica muito expressiva, resulta na violação de propriedades essenciais das semânticas de
actualização de regras existentes. Isso leva-nos ao desenvolvimento de caracterizações
semânticas de programas em lógica mais ricas. O resultado principal desta linha de tra-
balho é a introdução de um método genérico para especificar operadores de actualização
que pode capturar tanto as actualizações clássicas bem como a primeira semântica de
actualização de regras. Este constitui o primeiro terreno comum para estes paradigmas
de actualização distintos, permitindo-nos examinar de perto as propriedades semânticas
das actualizações de regras.

Em conjunto, os desenvolvimentos introduzidos nesta tese tornam possível, pela pri-
meira vez, o desenvolvimento de ferramentas automáticas de suporte à dinâmica de co-
nhecimento híbrido, fornecendo igualmente uma perspectiva unificadora das duas abor-
dagens de actualização de conhecimento, aparentemente irreconciliáveis, com o conse-
quente aprofundar da nossa compreensão sobre os fundamentos de actualizações de on-
tologias e regras, separadamente e em conjunto.

Palavras-chave: Web-Semântica, Representação de Conhecimento, Alteração de Cren-
ças, Ontologias, Programas em Lógica, Bases de Conhecimento Híbridas, Actualizações
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1
Introduction

The greatest challenge to any thinker is stating the problem in a way
that will allow a solution.

Bertrand Russell
British author, mathematician & philosopher

In this thesis we address the problem of updating hybrid knowledge bases which
consist of both Description Logic axioms as well as Logic Programming rules. We first
approach the problem from two different perspectives, both with a practical appeal, and
then make theoretical contributions towards finding a general solution.

Many human endeavours and achievements are rooted in our ability to create abstrac-
tions of the environment that surrounds us. We use them on a daily basis as substitutes
for the real world in order to focus on aspects that are relevant to our situation, ignoring
extraneous details. Deliberation about such abstractions enables us to identify patterns
where initially we could not see any, and use them to make predictions and decide upon
the best course of action.

Knowledge Representation and Reasoning (KRR) (McCarthy and Hayes, 1969; Min-
sky, 1975; Hayes, 1979; Levesque, 1984; Davis et al., 1993) is a field of research concerned
with developing means of formulating abstractions as well as systematic methods for
drawing conclusions from them. Inspired by work in a wide range of research areas,
such as philosophy, mathematics, computer science, psychology, biology or economics, it
forms one of the major subfields of Artificial Intelligence – it enables machines to process
symbolic descriptions of the world and act based on them accordingly.

During the last decade, results developed in KRR have been adopted by pioneers
working to bring about the vision of the Semantic Web (Berners-Lee et al., 2001). Led
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by the World Wide Web Consortium (W3C),1 an international community that develops
standards to ensure the long-term growth of the Web, this movement was initiated to
foster advanced new applications that need to acquire, combine and reason with infor-
mation on the Web.

The World Wide Web, even in its current form, is a very powerful medium that con-
tains vast amounts of interconnected and dynamically changing information. Existing
search engines greatly facilitate the process of finding relevant content to millions of peo-
ple around the world. Nevertheless, the functionality and accuracy of search engines is
severely constrained by the long-standing limitations of computer algorithms for pro-
cessing the nuances and ambiguities of natural language, and extracting information
from audio-visual content. The principal idea of the Semantic Web is to adopt a more
pragmatic approach: imbue Web content with machine-processable metadata.

Such metadata requires a representation language with sufficient expressivity, an un-
ambiguous interpretation accessible to both men and machines, and support for reason-
ing procedures that are guaranteed to terminate. These necessities naturally point to-
wards knowledge representation languages based on formal logic, initially divided in
two seemingly incompatible groups: Description Logics and Logic Programs. Their rec-
onciliation soon became one of the major challenges in Semantic Web research.

1.1 Description Logics and Logic Programs

Description Logics (DLs) (Baader et al., 2007) form the first group of logic-based represen-
tation languages adopted for Semantic Web standards. Usually, they are fragments of first-
order logic with decidable reasoning tasks, and offer an expressive representation language
coupled with the standard first-order semantics and sound and complete reasoning pro-
cedures. They are powerful enough to capture and extend the capabilities of existing
modelling languages used in software engineering. Furthermore, they form the foun-
dation of the W3C standard for specifying knowledge about data on the Web: the Web
Ontology Language (OWL).2 This renders Description Logics, hence Classical Logic, the
standard for knowledge representation and sharing.

One of the important features of DLs is that they do not adopt the Closed World As-
sumption (CWA), as done for instance in relational databases, so they do not assume that
the represented knowledge is complete. This is usually referred to as the Open World As-
sumption (OWA), and it essentially means that a proposition is considered false only if
the knowledge base is inconsistent with it, and the possibility of existence of objects not
explicitly mentioned in the knowledge base is taken into account. It is in accord with the
open and distributed nature of the Web where one can hardly assume to have complete
knowledge about all relevant entities.

Syntactically, a Description Logic knowledge base, frequently referred to as an ontol-
ogy (Gruber, 1993), uses three types of basic symbols: individuals, representing objects,
concepts, representing groups of objects, and roles, representing binary relations between
objects. Typically, an ontology is composed of two distinguishable parts: a TBox with
descriptions of concepts and roles, and an ABox with assertions about individuals. We
illustrate these notions in the following example:

Example 1.1 (Electronic Market – Ontology). Imagine an open electronic market where
users can exchange resources. For instance, a user can pay for an educational course

1http://www.w3.org/
2http://www.w3.org/TR/owl-overview/
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1. INTRODUCTION 1.1. Description Logics and Logic Programs

or, say, exchange computational resources for communication services. Semantic Web
technologies can help process information about users, goods and services from multiple
sources and mediate exchanges by implementing appropriate protocols and policies.

In our example, the internal ontology specifies that users can offer services and a course
is one kind of service. It also contains rather obvious facts, such as that no user is a service
and no service is a user. These terminological definitions can be encoded in a DL TBox
using the following assertions:

Course v Service ∃Offers v User

User u Service v ⊥ ∃Offers− v Service

From the formal viewpoint, these axioms describe relationships between three concepts
(Course, Service and User) and one role (Offers). The ones on the left-hand side specify
that a course is a special kind of service and that no individual can be both a user and a
service. Those on the right-hand side indicate that the domain of the role Offers is User
and its range is Service. We can equivalently translate this TBox into standard first-order
logic as follows:

∀x : Course(x) ⊃ Service(x) ∀x : (∃y : Offers(x,y)) ⊃ User(x)

∀x : User(x) ∧ Service(x) ⊃ ⊥ ∀x : (∃y : Offers(y,x)) ⊃ Service(x)

The ABox in our example contains assertions about particular users and services,
possibly imported from foreign ontologies:

User(adolf ) Course(meditation) Course(singing)

Offers(adolf ,meditation) LanguageOf(meditation, english)

Inference procedures can now be invoked to infer information that is implicitly contained
in the ontology. For example, Service(meditation) is true because every course is a service,
and Service(adolf ) is false because adolf is a user and no individual can be both a user
and a service.

A user looking for available courses taught in English can now query this ontology.
At this point, the desirability of using the Open World Assumption to reason with rep-
resented knowledge becomes noticeable. If the reasoning algorithm were to use the
Closed World Assumption, as is usually the case in relational databases, it would con-
clude that the proposition LanguageOf(singing , english) is false. But the absence of infor-
mation about the language of the singing course does not imply that it is not taught in
English. When using the Open World Assumption, the reasoning procedure will not be
able to conclude that LanguageOf(singing , english) is true nor that it is false and, possibly,
include it among the courses suggested to the enquiring user.

Actually, DLs constitute a whole family of knowledge representation formalisms,
each with different constraints regarding the complex concepts and roles one can form
from atomic ones and with different types of TBox and ABox axioms. Among them is the
prototypical DL called the Attributive Concept Language with Complements (ALC). Many
other DLs are based on ALC and their names correspond to the features they add to it.
For instance, the DL ALCI adds inverse roles (I) to ALC. The above example uses only
constructs allowed in ALCI. Further details on DLs can be found in (Baader et al., 2007).

The second logic-based knowledge representation paradigm adopted for Semantic
Web standards is Logic Programming. Syntactically it is based on rules that can naturally
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express many kinds of information and are familiar to software developers. It allows
for declarative specifications that closely resemble the problem itself, and features for-
mal, declarative and well-understood semantics, the stable models semantics (Gelfond and
Lifschitz, 1988) and its tractable approximation, the three-valued well-founded semantics
(Gelder et al., 1991), being the most prominent and widely accepted.

These semantics adopt the Closed World Assumption (CWA), i.e. knowledge is con-
sidered complete by assumption. Consequently, a proposition is false whenever it is not
entailed to be true. This type of negation is usually dubbed default negation to distinguish
it from negation in Classical Logic. And unlike Classical Logic, which is monotonic,
default negation leads to non-monotonicity: additional knowledge may refute previous
conclusions. One can thus reason with incomplete information and stable models offer an
intuitive semantics for reasoning about several possible consistent worlds.

Efficient solvers for the stable models semantics (Syrjänen and Niemelä, 2001; Leone
et al., 2006; Gebser et al., 2007) and the well-founded semantics (Rao et al., 1997) have
made it possible to use Logic Programs in real applications, such as decision support for
a space shuttle (Nogueira et al., 2001), automated product configuration (Soininen et al.,
2001; Tiihonen et al., 2003), heterogeneous data integration (Leone et al., 2005) and infer-
ring phylogenetic trees (Brooks et al., 2007), but also reasoning about action (Lifschitz,
1999b), planning (Subrahmanian and Zaniolo, 1995; Lifschitz, 1999a), diagnosis (Eiter
et al., 1999), resource allocation (Leite et al., 2009), etc. It is also widely acknowledged
that Logic Programming offers a natural way of expressing norms and laws (Sergot et al.,
1986; Kowalski, 1992, 1995; Prakken and Sartor, 2002) as well as policies (Chomicki et al.,
2000; Son and Lobo, 2001).

It has soon been realised that rules are fundamental to overcome the limitations found
in OWL (Donini et al., 1998; Grosof et al., 2003; Motik et al., 2006). Among the most im-
portant is their ability to use default negation to locally assume that parts of represented
knowledge are complete. This allows for reasoning based on the absence of information
and provides a natural mechanism for expressing exceptions and defaults, as illustrated
in the following example:

Example 1.2 (Electronic Market – Rules and Incomplete Information). Our electronic
market may need to detect different types of users to tailor advertisements to their liking.
For instance, consumers can be classified as users who do not actively offer services to
other users. In order to express this, a form of the CWA is needed to query for the absence
of offers recorded in the ontology:

HasOffer(x)← User(x),Offers(x,y).

Consumer(x)← User(x),∼HasOffer(x).

The first rule introduces a concept HasOffer for users with a recorded offer while the
second rule classifies the remaining users as members of the concept Consumer.

Rules can also be used to encode norms that frequently involve a form of presumption
of innocence and thus require the CWA. For example, a norm can specify that an offer is
made public only if offered by a user that has not violated the terms of service, with one
possible violation being an overdue payment:

Visible(y)← Offers(x,y),∼Violation(x). (1.1)
Violation(x)← OverduePayment(x). (1.2)

The first rule makes an offer visible only if no violations are currently recorded and the
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second rule specifies that an overdue payment is a violation.
Other types of information, such as users’ preferences and default behaviour of the

system in the absence of a preference, can also be naturally and declaratively represented
using rules.

Another important feature of Logic Programs is the ability to express integrity con-
straints. This is not conceivable in DLs alone since all DL assertions may have side-
effects, defeating the purpose of a constraint which is to merely check whether represented
knowledge satisfies some condition (Reiter, 1992).

Example 1.3 (Electronic Market – Constraints). In the electronic market, rules can be used
to enforce that an offering user for every service must be known:

HasOfferer(x)← Service(x),User(y),Offers(y,x).

← Service(x),∼HasOfferer(x).

The first rule introduces a concept HasOfferer with services whose offering user is known.
The second rule, a constraint, forbids a situation where some service does not belong
to the concept HasOfferer. These two rules can detect the inconsistency in the ontology
presented in Example 1.1 which arises due to a lack of information about a user that offers
the singing course. Notice that a TBox axiom such as

Service u ¬∃Offers− v ⊥

does not serve the intended purpose because it simply “generates” an unnamed offering
user for every service that doesn’t have a named one. In particular, the violation of the
intended constraint in Example 1.1 would remain undetected.

The need for rules on the Semantic Web has resulted in efforts to standardise rule lan-
guages. In 2010, the W3C standard called Rule Interchange Format (RIF)3 has established
as a standard XML language for expressing rules on the Web.

1.2 Hybrid Knowledge Bases

Standardisation of both ontology and rule languages, such as OWL and RIF, respectively,
has fostered larger and larger numbers of ontologies and rule bases with different levels
of complexity and scale. As seen in the examples above, both formalisms offer important
features for knowledge representation on the Web as well as in any other complex open
system. Whereas ontologies provide the logical underpinning of intelligent access and
information integration, rules are widely used to represent business policies, regulations
and declarative guidelines about information. What was needed was a unified knowl-
edge framework where expressivity of both formalisms could be seamlessly combined.

Such integration however turned out to be a difficult task. The principal reason for
this lies in the inherent semantic differences between the Open and Closed World As-
sumptions which need to be reconciled when predicates are concurrently defined both
by ontology axioms and using rules. It also turned out that extending even not very
expressive Description Logics with recursive Horn rules, in an unconstrained manner,
results in undecidability of basic reasoning tasks (Levy and Rousset, 1998).

Four clearly distinguishable approaches to tackle these problems have been adopted
throughout the years (Hitzler and Parsia, 2009; de Bruijn et al., 2010). The first group

3http://www.w3.org/TR/rif-overview/
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extends Description Logics with monotonic rules and adopts an overall semantics based
on first-order logic. This is the case of an early approach, AL-log (Donini et al., 1998),
as well as the Semantic Web Rule Language (SWRL) (Horrocks et al., 2004), which is a
union of the Description Logic underlying OWL and (binary) function-free Horn logic
without any restrictions. Decidability can be achieved by restricting the application of
rules to known individuals appearing in the knowledge base (DL-safety) (Krötzsch et al.,
2008b). Another similar approach proposes Description Logic Programs (Grosof et al.,
2003), a Horn fragment of OWL providing a basic form of interoperability between OWL
and Logic Programs. In (Krötzsch et al., 2008a), Description Logic Rules were presented,
consisting of rules that allow for DL-syntax. They are restricted to certain tree-shaped
structures and generalise Description Logic Programs. The main characteristic of all these
frameworks is that they stay monotonic, so they do not support vital representation fea-
tures of Logic Programs such as reasoning with assumptions and naturally expressing
exceptions.

The second group exercises a loose, modular integration where the ontology and
rules are separate from one another and new syntactic constructs are added to enable
for querying the ontology from bodies of rules. This includes dl-programs (Eiter et al.,
2004) and HEX-programs (Eiter et al., 2005). The resulting integration is only partial, but
semantic problems are easier to handle and it is possible to reuse existing implementa-
tions.

The third group consists of frameworks that define a customised semantics for a
knowledge base composed of a DL ontology and a set of rules that do not need to be
monotonic, e.g. DL-log (Rosati, 1999), r-hybrid and r+-hybrid knowledge bases (Rosati,
2005a,b), G-hybrid knowledge bases (Heymans et al., 2006) and DL+log (Rosati, 2006).
These can also be characterised using the non-classical Quantified Equilibrium Logic
(de Bruijn et al., 2010). The predicate symbols are separated in two groups, the first
interpreted under the OWA and used in both the ontology and rule parts and the second
interpreted under the CWA and only used in rules. Hence the integration is much tighter
than in the second group but a certain degree of separation is still present.

The last group embeds both the ontology and rules in a unifying non-monotonic for-
malism, such as the Autoepistemic Logic (de Bruijn et al., 2011) or the Logic of Mini-
mal Knowledge and Negation as Failure (MKNF) (Motik and Rosati, 2010). These pro-
vide a tight and semantically neat integration of the two paradigms as predicates can
be viewed simultaneously under the OWA and the CWA. Currently, the more mature of
these proposals are MKNF Knowledge Bases (Motik and Rosati, 2010): similarly as with
SWRL, DL-safety can be imposed to guarantee decidability of reasoning, and computa-
tional complexity of various combinations of Description Logics and classes of programs
has been examined. Moreover, a tractable variant of this formalism, based on the well-
founded semantics (Knorr et al., 2011), allows for a top-down querying procedure and
an implementation with support for the Description Logic ALCQ is available (Alferes
et al., 2009; Gomes et al., 2010). This is an important development because the resulting
formalism is still expressive enough to reason with assumptions and naturally express
exceptions, and at the same time opens up the possibility of using hybrid knowledge
bases in data-intensive applications.

Overall, the work on hybrid knowledge bases has matured significantly over the
years and fundamental semantic as well as computational problems were addressed suc-
cessfully: The proposed languages make it possible to represent and reason with hybrid
knowledge. Nevertheless, there is one important aspect of the Web that is not tackled by
them: its dynamic nature.
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Participants in an open environment need to deal with a constantly changing world:
new resources become available while existing ones disappear or change in unexpected
ways; likewise, preferences, norms and policies naturally undergo changes with time.
Accordingly, throughout their lifetime, knowledge bases are amended, debugged, re-
vised, get updated with fresh information, or need to be merged with other bodies of
knowledge. These tasks require the ability to resolve conflicts between original knowl-
edge and its modifications without the need to rewrite the entire knowledge base from
scratch.

These topics have been intensely studied in the context of Description Logics as well
as in the context of Logic Programs.

1.3 Ontology Updates

The dynamics of ontologies has been studied extensively, especially during the last decade,
in an area of research called ontology change. It encompasses a number of strongly related
though distinguishable subareas, such as ontology matching, ontology integration and
merging, or ontology translation (see (Flouris et al., 2008) for an overview). The purest
type of change, concerned with modifications to a single ontology, is generally referred
to as ontology evolution (Flouris et al., 2008).

A number of notably different approaches to addressing ontology evolution have
been adopted, both pragmatic and theoretical. Considerable effort has been invested in
the development of ontology editors, such as Protégé (Noy et al., 2000, 2006), OilEd (Bech-
hofer et al., 2001) or OntoEdit (Sure et al., 2003), mostly supporting low-level ontology
modifications (Stojanovic and Motik, 2002). Phases of the evolution process (Stojanovic
et al., 2002, 2003; Plessers and Troyer, 2005), ontologies of basic and complex change op-
erations (Stojanovic et al., 2002; Stuckenschmidt and Klein, 2003; Klein and Noy, 2003;
Noy and Klein, 2004) and user-selected strategies for implementing a change (Stojanovic
et al., 2002) have also been explored. Other topics include optimisation of the selection
process of axioms for user feedback (Nikitina et al., 2011) and algorithms for repairing
inconsistencies and reasoning in their presence (Haase et al., 2005; Haase and Stojanovic,
2005). However, these developments lack a firm semantic underpinning, making it hard
to formally analyse their behaviour and properties, thus constraining their applicability.

To overcome these limitations, many recent approaches are based on research in the
area of belief change, initiated by the seminal work of Alchourrón, Gärdenfors and Makin-
son (AGM) (Alchourrón et al., 1985) who proposed a set of desirable properties of change
operators on monotonic logics, now called AGM postulates. Subsequently, Keller and
Winslett (1985), and Katsuno and Mendelzon (1991) distinguished update and revision as
two very related but ultimately different belief change operations. While revision deals
with incorporating new information about a static world into a knowledge base that might
have been incorrect in describing it, update takes place when a knowledge base with cor-
rect information needs to be brought up to date when the modelled world changes. The
following example better illustrates this distinction:

Example 1.4 (Book and Magazine (Katsuno and Mendelzon, 1991)). Consider a room
with two objects in it, a book and a magazine. Suppose b means that the book is on the
floor, and m means that the magazine is on the floor. The current state of the world is
represented by a formula φ stating that either the book is on the floor or the magazine is,
but not both. We order a robot to put the book on the floor. The result of this action should
be represented by the update of φ with b. After the robot puts the book on the floor, all
we know is b. However, according to the AGM postulates, the result of the change must
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entail that m is false, despite the fact that in this scenario it is not reasonable to conclude
from the presented information that the magazine is not on the floor.

Based on these observations, Katsuno and Mendelzon (1991) concluded that though
the original AGM postulates are desirable when making revisions, they are not appropri-
ate for performing updates, and formulated a different set of postulates for updates (the
KM postulates for belief update). One of the standard operators satisfying these postulates
is Winslett’s update operator (Keller and Winslett, 1985; Winslett, 1990).

Since then, research on both belief revision and update has continued. The original
AGM and KM postulates have been thoroughly examined and evaluated, and additional
ones have been proposed. Along with the postulates, various constructive characterisa-
tions of classes of operators that satisfy them were identified (see (Grove, 1988; Rott, 1991;
Hansson, 1996; Herzig and Rifi, 1999) and references therein).

Quite early on, ontology revision has been recognised as a challenging problem that
requires input from diverse research areas (Foo, 1995). Though belief revision could be
recast to partially address revision of a single ontological concept (Wassermann, 1998;
Wassermann and Fermé, 1999), it turned out that most results could not simply be car-
ried over to deal with revision of DL ontologies. The primary reason for this is that AGM
postulates were formulated for logics with properties that most DLs do not satisfy be-
cause they only allow for limited use of negation or do not (fully) support disjunction.
Consequently, the postulates first needed to be reformulated accordingly (Flouris et al.,
2006b,c). Unfortunately, it was found that many interesting DLs, including the ones un-
derlying the OWL standard, are not AGM-compliant: no revision operator satisfying the
reformulated postulates exists (Flouris, 2006). In other words, it may happen that the
desired result of a revision can only be represented in a language that is more expressive
than the original DL, or it must be approximated and some of the postulates sacrificed.

This fundamental issue has been approached in a variety of ways (Qi and Yang, 2008).
Some developments consider revision of disjunctive DLs (Qi et al., 2006a,b,c; Qi and Du,
2009), diverging from mainstream DL research. Others consider approximations of re-
vision operators (Wang et al., 2009, 2010), or provide an algorithm for deciding logical
entailment from the revised knowledge base without computing it directly (Yang et al.,
2009). Some approaches instead follow work on base revision (Hansson, 1996), i.e. they
remove entire axioms from the knowledge base without retaining their original conse-
quences (Halaschek-Wiener and Katz, 2006; Ribeiro and Wassermann, 2007; Qi et al.,
2008). Though most approaches are directed at resolving inconsistency (lack of a first-
order model), the problem of resolving incoherence (unsatisfiability of concepts) has also
been considered (Flouris et al., 2006a; Qi et al., 2008; Qi and Du, 2009).

The work on ontology updates has encountered similar issues. It was found that even
in the absence of TBox assertions, unrestricted ABox updates using Winslett’s operator
in the DL ALCQI lead to undecidability of basic reasoning tasks (Baader et al., 2005b).
Further work on updates in DLs at least as expressive as ALC has thus focused on ABox
updates of atomic concepts (Liu et al., 2006; Bong, 2007; Drescher et al., 2009). Another
line of work has addressed ABox updates and their approximations in dialects of DL-
Lite (De Giacomo et al., 2006, 2007, 2009). These seem quite promising as they allow
for a static TBox and provide polynomial algorithms for computing the updates or their
approximations. An ABox update of this kind is shown in the following example.

Example 1.5 (Electronic Market – ABox Update). Consider the ontology of our electronic
market from Example 1.1 and suppose that the meditation course has been cancelled,
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expressed as the ABox update

¬Service(meditation) .

If all previous TBox assertions must stay valid, then Course(meditation) must become
false, otherwise we would still be able to conclude Service(meditation) which is inconsis-
tent with the update. Similarly, Offers(adolf ,meditation) must become false due to the
range restriction on role Offers.

1.4 Rule Updates

When updates started to be investigated in the context of Logic Programming, it was
only natural to consider adapting the belief update postulates and operators to deal with
rule updates (Alferes and Pereira, 1996). However, this led to counterintuitive results,
principally because one of the fundamental principles underlying belief updates is that
a knowledge base is updated on the level of its models – each model is updated sepa-
rately, modifying it as little as possible, and the new collection of models characterises
the updated knowledge base. However, as illustrated in the following example, rules in
a logic program encode essential relationships between literals which are lost when up-
dates are performed on a model by model basis without regard to the rules that produced
the models (Leite and Pereira, 1997).

Example 1.6 (Leite and Pereira (1997)). Consider an agent with beliefs represented by the
following program P:

GoHome← ∼Money. (1.3)
GoRestaurant← Money. (1.4)

Money. (1.5)

The only stable model of P is I = {Money,GoRestaurant }, capturing that the agent has
money by rule (1.5), so according to rule (1.4) it plans to go to a restaurant. Now consider
an update U with the following two rules:

∼Money← Robbed. Robbed.

If we update P by U following the fundamental ideas behind belief update, the result
must be characterised by the stable models of P after they are minimally changed to be-
come consistent with U . And in order to make I consistent with the rules in U , one needs
to modify the truth value of two atoms, Robbed and Money, arriving at the interpretation
J = { Robbed,GoRestaurant }. So after the update, the agent has no money but still plans
to go to a restaurant. The intended result, though, is that GoRestaurant should now be
false because its only justification, Money, is no longer true. Furthermore, we expect that
GoHome is now true, i.e. the rule (1.3) should be triggered because Money became false.

As a result of these observations, state-of-the-art rule update semantics, in spite of
being driven by the same basic intuitions and aspirations as their belief update counter-
parts, are based on fundamentally different principles and methods. Many adopt the
causal rejection principle (Leite and Pereira, 1997; Alferes et al., 2000; Eiter et al., 2002;
Alferes et al., 2005; Osorio and Cuevas, 2007), which states that a rule is rejected only
if it is directly contradicted by a more recent rule. This essentially means that inertia and
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minimal change, applied on the level of literals in belief change operators, is instead ap-
plied to rules and the truth values of literals follow from the set of unrejected rules. Causal
rejection semantics are useful in a number of practical scenarios (Alferes et al., 2003; Sa-
ias and Quaresma, 2004; Siska, 2006; Ilic et al., 2008) and their behaviour is intuitively
predictable.

Example 1.7 (Electronic Market – Rule Updates). Consider the ontology and rules of our
electronic market from Examples 1.1 and 1.2. Suppose that we perform the following
(rule) update:

OverduePayment(adolf ).

We can then conclude from rules (1.1) and (1.2) that Violation(adolf ) is true and, conse-
quently, Visible(meditation) is no longer true. No conflict arises after this update, so the
new rule can simply be added to the original ones.

Now consider a further update that introduces the concept of an administrator into
the system, declares that adolf is an administrator and makes administrators immune to
norm violations:

Administrator(adolf ). ∼Violation(x)← Administrator(x).

After this update, a conflict arises between the latter rule and rule (1.2): the bodies of both
rules are satisfied and their heads contradict each other. This conflict can be resolved by
any rule update semantics based on causal rejection, concluding that Violation(adolf ) is
false and thus reinstating the truth of Visible(meditation).

Alternative approaches to rule updates employ syntactic transformations and other
methods, such as abduction (Sakama and Inoue, 2003), forgetting (Zhang and Foo, 2005),
prioritisation (Zhang, 2006), preferences (Delgrande et al., 2007), or dependencies on de-
fault assumptions (Šefránek, 2006, 2011; Krümpelmann and Kern-Isberner, 2010; Krüm-
pelmann, 2012).

1.5 Problem: Updates of Hybrid Knowledge Bases

Starting from the research on ontology and rule updates, our goal in this thesis is to
investigate updates of hybrid knowledge bases which, to the best of our knowledge, have
never been addressed before.

Our research is guided by the following directives:

• to find solutions that fit the needs of particular use cases of updates of hybrid
knowledge bases and provide the expected results when used in specific applica-
tion domains;

• to seek a general solution that can be used in arbitrary use cases of updates of
hybrid knowledge bases.

In the first part of the thesis we study updates in the context of MKNF knowledge bases
(Motik and Rosati, 2010) since they provide a general and elegant semantic framework
for representing and querying hybrid knowledge. We address two interesting use cases
of MKNF knowledge bases and devise update semantics for them.

First we show how the static semantics for MKNF knowledge bases can be adapted
to allow for updates of the ontology component of a hybrid knowledge base while the rule
component remains static. This encompasses practical applications of hybrid knowledge
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bases where the ontology contains highly dynamic information and rules represent busi-
ness policies, preferences or behaviour that can be overridden by ontology updates when
necessary.

In the second use case we take inspiration from a realistic application in which the hy-
brid knowledge base can be split into ontology and rule layers that share information using
a rule-based interface. This makes it possible to modularly combine an ontology update
operator with a rule update semantics, and so define an update semantics for layered
hybrid knowledge bases. We use generalisations of the splitting theorems for logic pro-
grams (Lifschitz and Turner, 1994) to define this modular hybrid update semantics and
show that it can perform non-trivial updates and resolve conflicts as anticipated.

Both of these developments constitute solutions to the problem of hybrid updates for
restricted classes of hybrid knowledge bases and are fully compatible with one another.
Then we turn our attention to the more general problem, and ask ourselves whether these
semantics can be naturally extrapolated to arrive at a universal hybrid update semantics.

As it turns out, finding a general hybrid update semantics that produces suitable
results is more difficult than we initially expected. The most pressing problems are of a
semantic nature.

Even within the area of ontology updates, while ABox updates have been success-
fully addressed using belief update operators, as attention moved towards TBox up-
dates, it has been argued that Katsuno and Mendelzon’s model-based approach does not
provide suitable results when applied to TBoxes (Zheleznyakov et al., 2010; Slota and
Leite, 2010b). For illustration, consider the following example:

Example 1.8 (Electronic Market – TBox Updates). Take the TBox from Example 1.1 and
suppose that we want to introduce a new concept, LanguageCourse, using the TBox update

LanguageCourse v Course .

If we perform this update on the original TBox using Winslett’s update operator, we
obtain a new TBox which no longer entails the original TBox axiom

Course v Service .

This seems to be very counterintuitive since the update was only meant to introduce a
new concept into the concept hierarchy and there does not appear to be any reason to
modify its original structure. The expected result would be to simply add the new axiom
to the original TBox.

As a consequence of these observations, Zheleznyakov et al. (2010) and Calvanese
et al. (2010) use the antipole of model-based operators, dubbed formula-based, for per-
forming TBox updates. Recently, Lenzerini and Savo (2011) have used similar ideas to
tackle ABox updates, too. What is interesting about these developments is that the re-
sulting operators bear characteristics of revision rather than update, as viewed from the
perspective of belief change. This mixing of update and revision also seems to be re-
lated to work on evolution of RDFS graphs,4 an earlier W3C standard which can be seen
as a simple ontology language. While some methods employ revision (Konstantinidis
et al., 2007, 2008), others propose both model-based update and a revision-like approach
to deal with RDFS updates (Gutierrez et al., 2006, 2011). Hence, it seems that in order to
deal with ontology updates in general, one needs to provide an operator that seamlessly
combines belief revision with belief updates. This constitutes a considerable challenge in

4http://www.w3.org/RDF/
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itself due to the different nature of these change operations and different principles that
underlie them.

Furthermore, despite the issues that belief update operators have with performing
TBox updates, they still constitute the main basis for updating ABoxes and thus play an
important role in ontology updates. Hence, they need to be reconciled with rule update
semantics in order to devise a plausible universal hybrid update semantics.

Unfortunately, there are a number of fundamental and seemingly irreconcilable dif-
ferences between belief and rule updates, witnessed also by the fact that most belief
change postulates are incompatible with rule update semantics (Eiter et al., 2002). These
differences can be seen at multiple different levels. First, while belief updates are speci-
fied by modifying the models of a knowledge base, this lacks the expressivity to capture
essential dependencies between literals, expressed in rules (Leite and Pereira, 1997). Rule
updates thus rely on the syntactic structure of rules to determine the stable models after an
update. Since ontological axioms do not have such structure, i.e. they have no heads and
bodies, it is difficult to imagine how the ideas underlying rule updates could be applied
to update ontologies. This essentially takes out the possibility of merely adapting a rule
update semantics to deal with hybrid knowledge bases since the required syntactic struc-
ture is absent.

Additionally, in belief updates the truth value of a literal is typically carried by inertia
from its previous state which is determined by the set of models of the knowledge base
before the update. Since most rule update semantics only assign a set of stable models
after each update, the previous state of a literal may not be well-defined. For instance, no
stable model may have existed before the update. Moreover, rule updates apply inertia to
rules instead of literals, and active rules determine the set of literals that is justified, and
thus true. This essentially means that given an initial set of models, a change in truth
value of one literal has fixed, predetermined consequences when using a belief update
operator, while with rule updates it can affect the truth of any other literal, depending
on the rules in the original and updating programs. Also, the reason to deactivate a rule
may be retracted and the rule may be used to reinstate the literal in its head. No such
mechanism is present in belief updates.

These fundamental differences easily lead to a clash of intuitions regarding the truth
of a literal given a hybrid knowledge base on which we perform both an ontology and a
rule update simultaneously.

If we are to ever be able to achieve a universal semantics for updates of hybrid knowl-
edge bases, we need to find a unifying perspective that would embrace both ontology and
rule updates, enabling a deeper understanding of all involved methods and principles,
and creating room for their cross-fertilisation, ripening and further development. Since
an adaptation of rule update semantics to deal with ontology updates does not seem rea-
sonable, as ontologies lack the syntactic structure of rules which these semantics rely on,
what remains is to look for semantic characterisations of rule updates.

Therefore, in the second half of this thesis, we diverge from our efforts to directly
address hybrid updates and instead address this problem. As a main result, we obtain a
novel characterisation of update operators that is capable of capturing belief update op-
erators, both model- and formula-based, as well as the historically first causal rejection-
based rule update semantics.

1.6 Road Map and Contributions

The remainder of this work is organised as follows:
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Chapter 2 – Background: We present the syntax and semantics of first-order logic, de-
scription logics, logic programs and MKNF knowledge bases. Then we provide an
overview of existing work on belief update principles and operators together with
the derived work on ontology updates. Subsequently, we review the syntax-based
approaches to rule updates, including a comparison that reveals the distinguishing
as well as common properties of these semantics.

Chapter 3 – Dynamic MKNF Knowledge Bases with Static Rules: Based on a given on-
tology update operator, we define an update semantics for MKNF knowledge bases
in which the ontology component can be updated while the rules remain static. We
prove some of its basic theoretical properties, namely that it is faithful to the static
semantics for MKNF knowledge bases and to the ontology update operator it is
based on, and that it enjoys properties such as respect for primacy of new informa-
tion, immunity to tautological updates or syntax-independence w.r.t. the ontology
and its updates.

Chapter 4 – Layered Dynamic MKNF Knowledge Bases: Starting from a realistic sce-
nario that requires the use of hybrid knowledge bases, we set off to devise an up-
date semantics for MKNF knowledge bases that can be divided into a sequence of
ontology and rule layers that interact with one another through a rule-based inter-
face. For this purpose we generalise the well-known splitting theorems for logic
programs (Lifschitz and Turner, 1994) and use the ideas behind splitting to define
a hybrid update semantics using a modular combination of an ontology update
operator with a rule update semantics. We prove that the resulting semantics is
faithful to the semantics of MKNF knowledge bases as well as to the constituent
update semantics and respects primacy of new information. It is also fully compat-
ible with the semantics proposed in Chapter 3. We demonstrate that it is capable of
performing non-trivial updates and resolves conflicts in the expected manner.

Chapter 5 – Difficulties with Updates of Hybrid Knowledge Bases: In this chapter we
are concerned with general semantic issues arising from updates of TBoxes and of
hybrid knowledge bases. We show a formal result pinpointing that most model-
based update operators do not provide expected results when applied to TBoxes.
Then we use generic examples to demonstrate the deep conflicts between belief and
rule updates and show how they make it difficult to propose a universal update
semantics for hybrid knowledge bases.

Chapter 6 – Belief Updates on SE-Models: Due to the difficulties we encountered, we
turn away from updates of MKNF knowledge bases and instead aim at finding a
common basis for both belief and rule updates. We show that belief update postu-
lates and operators can be defined over SE-models, a monotonic characterisation
of logic programs that is strictly more expressive than stable models. We also prove
a counterpart of Katsuno and Mendelzon’s representation theorem for such oper-
ators. Perhaps surprisingly, we then uncover a serious drawback of the resulting
operators when compared to traditional approaches to rule updates.

Chapter 7 – Semantic Characterisations of Rules and Programs: The previous findings
motivate our search for richer semantic characterisations of logic programs that are
sufficiently expressive to capture fundamental properties of traditional rule update
semantics. We first pinpoint the exact expressivity of SE-models w.r.t. single rules
and propose a novel monotonic characterisation of rules, dubbed RE-models, which
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can distinguish important classes of rules that are indistinguishable using SE-mod-
els. We propose to view a program as the set of sets of SE- or RE-models of its rules,
define the corresponding notions of program equivalence and entailment and com-
pare them in terms of their strength.

Chapter 8 – Exception-Based Updates: Viewing a program as the set of sets of RE-mod-
els of its rules, we introduce an update framework based on introducing new mod-
els – exceptions – to the sets of models of rules in the original program. We show
that this way we are able to capture the historically first causal rejection-based rule
update semantics, enabling us to shed new light on the problem of state condensing.
We extensively examine the semantic properties of exception-based rule update op-
erators w.r.t. different notions of program entailment and equivalence. Finally, we
show that exception-based operators operators can capture a wide range of belief
update operators, creating an important bridge between traditional approaches to
rule updates and a variety of belief update operators.

Chapter 9 – Conclusions and Future Directions: In the final chapter we summarise the
contributions of this thesis and discuss desirable future developments.

Appendices A, B, C, D, E and F – Proofs: Here we present the proofs of theoretical re-
sults from Chapters 2, 3, 4, 6, 7 and 8, respectively.

The main contributions of this thesis are as follows:

• We consider ontology updates in the presence of static rules and propose a seman-
tics that can handle them, parametrised by an ontology update operator;

• Motivated by a real-world application, we tackle updates of hybrid knowledge
bases that can be split into a sequence of ontology and rule layers, and propose
a semantics for it, parametrised by an ontology update operator and a rule update
semantics;

• We formally pinpoint why belief update operators yield counterintuitive results
when used to update TBoxes (as shown in Example 1.8 for the case of Winslett’s
operator);

• We illustrate the overwhelming difficulties with defining a universal update se-
mantics for hybrid knowledge bases due to the clash of intuitions underlying belief
update operators and rule update semantics;

• We show that SE-models, an expressive monotonic characterisation of logic pro-
grams, can be used as a semantic foundation for rule update operators. Neverthe-
less, the resulting operators suffer from severe disadvantages when compared to
traditional syntax-based rule update semantics;

• We propose richer semantic characterisations of logic programs and examine the
notions of program equivalence and entailment that follow from them;

• We propose a novel method for defining update operators and show that it can
capture model-based as well as formula-based belief update operators and also
the historically first causal rejection-based rule update semantics, thus bridging the
syntax-based approach to rule updates with a semantic one.

Depending on the reader’s preferences and goals, certain parts of this thesis may be more
relevant than others. Chapter 2 sets the stage for the following chapters by defining
the necessary concepts and providing an overview of existing work on ontology and
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rule updates. Some parts of it may be skipped if the reader is already familiar with the
respective formalisms.

Chapters 3, 4 and 5 form Part II in which we address updates of MKNF knowledge
bases. Preliminary versions of some results presented in these chapters have been pub-
lished in (Slota and Leite, 2010a,b; Slota et al., 2011).

Chapters 6, 7 and 8 form Part III and are concerned with finding semantic character-
isations of rule update semantics. Some parts of these chapters have been published in
(Slota and Leite, 2010c, 2011, 2012a,b).

Parts II and III are reasonably independent of one another. They can be read in any
order and any of them may be skipped without compromising comprehensibility of the
other one. This leaves us with three recommended reading paths:

1 −→ 2 −→ 3 −→ 4 −→ 5 −→ 9

1 −→ 2 −→ 6 −→ 7 −→ 8 −→ 9

1 −→ 2 −→ 3 −→ 4 −→ 5 −→ 6 −→ 7 −→ 8 −→ 9
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2
Background

WITH AN INNOCENT SMILE, AMID A LECTURE ON MATHEMATICS. . .
Now we are going to introduce a few new concepts so that I can ex-
press myself more easily and you have a harder time understanding
what I’m talking about.

Zbyněk Kubáček
Slovak mathematician, music conductor & very memorable lecturer

In this chapter we introduce the standard syntax and semantics of first-order logic
(Section 2.1), description logics (Section 2.2), answer set programming (Section 2.3) and
MKNF knowledge bases (Section 2.4).

Subsequently, starting on page 30, we provide an overview of belief update postulates
and operators (Section 2.5), their generalisations to first-order logic (Section 2.6), and
particular approaches to ontology updates which are based on them (Section 2.7). Some
of the terminology we introduce in these sections is specific to this thesis.

Finally, in Section 2.8 we provide a historical overview of many approaches to rule
updates and discuss both the differences and similarities between them. Some of the ex-
amples and results provided here are novel and may be of interest on their own account.

2.1 First-Order Logic

We summarise the syntax and semantics of standard function-free first-order logic which
forms the basis for representing both ontological and rule-based knowledge.

The signature of a first-order language consists of disjoint non-empty sets of constant
and predicate symbols C and P. Each predicate symbol P ∈ P has an associated natural
number called its arity. Apart from the symbols in the signature, first-order formulae are
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formed using the following logical symbols:

• a fixed countably infinite set of variables, disjoint from C and P;

• the equality symbol ‘≈’;

• the logical connectives ‘¬’ and ‘∧’;

• the quantifier ‘∃’ and

• the auxiliary parenthesis ‘(’ and ‘)’.

We denote the set of predicate symbols P together with the equality symbol ≈ by P≈, i.e.
P≈ = P ∪ {≈}.

The syntax of first-order logic is summarised in the following definition:

Definition 2.1 (First-Order Syntax). A term is a constant symbol or a variable.
A first-order atom is either of the form t1 ≈ t2 or of the form P (t1, t2, . . . , tn) where

P ∈ P is a predicate symbol of arity n and t1, t2, . . . , tn are terms. We denote the set of all
first-order atoms by A.

The set of first-order formulae is the smallest set containing

• all first-order atoms;

• ¬φ, (φ1 ∧ φ2) and ∃x : φ for all first-order formulae φ, φ1, φ2 and every variable x.

A first-order formula φ is ground if it contains no variables; a sentence if every occurrence
of a variable in φ is within the scope of a quantifier.

A first-order theory is a set of first-order sentences.

In addition, we use the expressions ⊥, >, (φ1 ∨ φ2), (φ1 ⊃ φ2), (φ1 ≡ φ2) and ∀x : φ
as shortcuts for the first-order formulae p ∧ ¬p, ¬⊥, ¬(¬φ1 ∧ ¬φ2), ¬(φ1 ∧ ¬φ2), (φ1 ⊃
φ2) ∧ (φ2 ⊃ φ1) and ¬∃x : ¬φ, respectively, where p is a fixed ground first-order atom.
We drop the classification “first-order” as well as the outermost parenthesis in a formula
where this does not cause confusion.

Turning to the semantics of first-order logic, we define the standard first-order models
as well as a semantics based on interpretations that adopt the standard names assumption
and interpret the equality predicate as a congruence relation. This latter semantics is used
in the context of MKNF knowledge bases and, as we shall see further on, it is also useful
for defining first-order update operators. We conclude this section by pointing out the
main differences between these alternative semantics.

Let ∆ be a non-empty set called the universe. A first-order interpretation I over ∆ assigns
an object aI ∈ ∆ to each constant symbol a ∈ C and a relation P I ⊆ ∆n to each predicate
symbol P ∈ P of arity n. We also assume that dI = d for every d ∈ ∆ and by φ[d/x] we
denote the formula obtained from φ by replacing every unbound occurrence of variable
x with the object d. Satisfaction of a first-order sentence φ and first-order theory T in I ,
denoted by I |= T , is defined in Table 2.1.

The semantics of first-order sentences and theories is defined as follows:

Definition 2.2 (First-Order Semantics). Let T be a first-order theory. A first-order inter-
pretation I is a first-order model of T if I |= T . We denote the set of all first-order models
of T by [[T ]]FO.

Given two first-order theories T , S, we say that T first-order entails S, denoted by
T |=FO S, if [[T ]]FO ⊆ [[S ]]FO, and that T is first-order equivalent to S , denoted by T ≡FO S, if
[[T ]]FO = [[S ]]FO.

The first-order models, set of first-order models, first-order entailment and first-order
equivalence are generalised to first-order sentences by treating every sentence φ as the
theory {φ }.

20



2. BACKGROUND 2.1. First-Order Logic

Table 2.1: Standard satisfaction of first-order sentences and theories

Sentences (inductively)
I |= a ≈ b if and only if aI = bI

I |= P (a1, a2, . . . , an) if and only if (aI1, a
I
2, . . . , a

I
n) ∈ P I

I |= ¬φ if and only if I 6|= φ
I |= φ1 ∧ φ2 if and only if I |= φ1 and I |= φ2

I |= ∃x : φ if and only if I |= φ[d/x] for some d ∈ ∆

Theories
I |= T if and only if I |= φ for all φ ∈ T

The alternative semantics, adopted by Motik and Rosati (2007, 2010) in the context of
MKNF knowledge bases, consists of imposing the standard names assumption for com-
patibility with Logic Programs and interpreting the equality predicate as a congruence
relation for compatibility with Description Logics (Fitting, 1996). More formally, in this
semantics

1. we assume that the set of constant symbols C is infinite;

2. we consider only Herbrand interpretations in the semantics, i.e. interpretations I
over the universe C such that aI = a for every constant symbol a ∈ C;

3. we allow the equality predicate ≈ to be interpreted by an arbitrary congruence
relation on C that allows for replacement of equals by equals, i.e. for every interpre-
tation I ,

i. ≈I is a reflexive, symmetric and transitive relation on C;

ii. for every n ∈ N, every predicate symbol P ∈ P of arity n and all constant sym-
bols a1, a2, . . . , an, b1, b2, . . . , bn ∈ C such that ak ≈I bk for all k ∈ { 1, 2, . . . , n },

(a1, a2, . . . , an) ∈ P I if and only if (b1, b2, . . . , bn) ∈ P I .

We denote the set of all interpretations that satisfy the above conditions by I.
Technically, most members of I are not first-order interpretations as we defined them

previously because they may interpret the equality predicate by other equivalence rela-
tions than true equality. In what follows we simply call the members of I interpretations,
without the classification first-order. We only use this classification when we specifically
need to refer to standard first-order interpretations as defined previously.

Satisfaction of first-order sentences and theories in an interpretation I ∈ I is de-
fined very similarly to first-order satisfaction, the only difference being the satisfaction of
equality atoms. It is summarised in Table 2.2.

We define the models and, based on them, also entailment and equivalence between
first-order theories and sentences, as follows:

Definition 2.3 (Standard Names Semantics of First-Order Theories). Let T be a first-order
theory and I ∈ I an interpretation. We say that I is a model of T if I |= T and denote the
set of all models of T by [[T ]].

Given two first-order theories T , S, we say that T entails S, denoted by T |= S, if
[[T ]] ⊆ [[S ]], and that T is equivalent to S, denoted by T ≡ S , if [[T ]] = [[S ]]. We also say
that T is satisfiable if [[T ]] is non-empty.

The models, set of models, entailment and equivalence are generalised to first-order
sentences by treating every sentence φ as the theory {φ }.
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Table 2.2: Satisfaction of first-order sentences and theories in I ∈ I

Sentences (inductively)
I |= a ≈ b if and only if a ≈I b
I |= P (a1, a2, . . . , an) if and only if (aI1, a

I
2, . . . , a

I
n) ∈ P I

I |= ¬φ if and only if I 6|= φ
I |= φ1 ∧ φ2 if and only if I |= φ1 and I |= φ2

I |= ∃x : φ if and only if I |= φ[a/x] for some a ∈ C

Theories
I |= T if and only if I |= φ for all φ ∈ T

The basic property of the defined models is that standard first-order entailment (and
equivalence) between finite first-order theories can be equivalently expressed in terms of
entailment on models from I. This follows from the results of Fitting (1996) since in case
of a finite theory, there always remains an infinite supply of constant symbols that are not
used in it. Formally:

Proposition 2.4. Let T , S be finite first-order theories. Then T |=FO S if and only if T |= S.

Proof. Follows from Theorems 5.9.4 and 9.3.9 in (Fitting, 1996).

But in case of infinite first-order theories this result is preserved only in one direction:
standard first-order entailment implies entailment on models from I. The converse impli-
cation does not in general hold because an infinite theory can use up too many constant
symbols from C.

Proposition 2.5. Let T , S be first-order theories. Then T |=FO S implies T |= S but the converse
implication does not in general hold.

Proof. See Appendix A, page 167.

This means that care needs to be taken when we manipulate infinite first-order theo-
ries and consider their models instead of the standard first-order models.

2.2 Description Logics

Fragments of classical first-order logic with decidable reasoning tasks are typically called
Description Logics (DLs) (Baader et al., 2007). Unless stated otherwise, in this thesis we
do not constrain ourselves to a specific DL for representing ontologies. The assumption
taken in the theoretical developments is that the ontology language is a syntactic variant
of a fragment of function-free first-order logic, covering also cases when the fragment
would not normally be considered a description logic. We assume that its semantics is
given by translation to a finite first-order theory. Such translations are known for most
DLs (Baader et al., 2007).

Definition 2.6 (DL Semantics by Translation). Let φ be a DL axiom. By κ(φ) we denote
some first-order sentences that semantically characterises φ.

An ontology is a finite set of DL axioms. For a DL ontologyO, κ(O) = {κ(φ) | φ ∈ O }.
Given two ontologies O, O′, we say that O entails O′, denoted byO |= O′, if κ(O) |=FO

κ(O′), and that O is equivalent to O′, denoted by O ≡ O′, if κ(O) ≡FO κ(O′).
Given an ontology O and a first-order sentence φ, we say that O entails φ, denoted by

O |= φ, if κ(O) |=FO φ.
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Table 2.3: Interpretation of ALCIO expressions

Expression Notation Interpretation

Role expressions
Role name R RI

Inverse role R−
{

(d, e) ∈ ∆×∆
∣∣ (e, d) ∈ RI

}
Concept expressions

Universal concept > ∆
Empty concept ⊥ ∅
Concept name A AI

Concept intersection C uD CI ∩DI

Concept union C tD CI ∪DI

Concept negation ¬C ∆ \ CI
Universal restriction ∀R.C

{
d ∈ ∆

∣∣ ∀e ∈ ∆ : (d, e) ∈ RI =⇒ e ∈ CI
}

Existential restriction ∃R.C
{
d ∈ ∆

∣∣ ∃e ∈ ∆ : (d, e) ∈ RI ∧ e ∈ CI
}

Nominal { a }
{
aI
}

For the sake of completeness, in what follows we briefly present the syntax and direct
semantics of the DL ALCIO, an extension of ALC with inverse roles (I) and nominals
(O) that is used in examples throughout this work. A reader interested in further details
about DLs, reasoning tasks and their computational complexity can refer to (Baader et al.,
2007).

A DL signature consists of pairwise disjoint sets of individual names, concept names and
role names. These represent objects, groups of objects and binary relations between ob-
jects, respectively. Given these three sets, complex role and concept expressions can be
formed and used to form ontological axioms. These are divided in two groups: TBox
axioms with assertions about the terminology and ABox axioms with assertions about in-
dividuals. The formal definitions in case of ALCIO are as follows:

Definition 2.7 (ALCIO Syntax). An ALCIO role expression is either a role name R or its
inverse, denoted by R−.

The set of ALCIO concept expressions is the smallest set containing >, ⊥, all concept
names and the expressions ¬C, C u D, C t D, ∀R.C, ∃R.C and { a } for all concept ex-
pressions C, D, all role expressions R and every individual name a.

An ALCIO TBox is a finite set of axioms of the forms C v D and C ≡ D where C, D
are concept expressions. A TBox is acyclic if it contains only axioms of the form A ≡ C
such that A is a concept name, C is a concept expression that does not refer directly or
indirectly to A, and A does not occur in on the left-hand side of any other axiom in T .

An ALCIO ABox is a finite set of assertions of the forms C(a), R(a, b), ¬R(a, b), a ≈ b
and a 6≈ bwhereC is a concept expression,R is a role name and a, b are individual names.

An ALCIO ontology is a union of an ALCIO TBox and of an ALCIO ABox.

The semantics of most DLs is very similar to that of first-order logic. A DL interpre-
tation over a universe ∆ is a mapping I that assigns an object aI ∈ ∆ to every individual
name a, a set of objects AI ⊆ ∆ to every concept name A and a set of pairs of objects
RI ⊆ ∆×∆ to every role name R. This mapping is then generalised to concept and role
expressions and satisfaction of ontologies in a DL interpretation I is defined. Tables 2.3
and 2.4 summarise these definitions for the case of ALCIO.
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Table 2.4: Satisfaction of ALCIO axioms and ontologies

TBox axioms
I |= C v D if and only if CI ⊆ DI

I |= C ≡ D if and only if CI = DI

ABox axioms
I |= C(a) if and only if aI ∈ CI
I |= R(a, b) if and only if

(
aI , bI

)
∈ RI

I |= ¬R(a, b) if and only if
(
aI , bI

)
/∈ RI

I |= a ≈ b if and only if aI = bI

I |= a 6≈ b if and only if aI 6= bI

Ontologies
I |= O if and only if I |= φ for all φ ∈ O

Based on these definitions, entailment and equivalence between ALCIO ontologies
can be defined as follows:

Definition 2.8 (ALCIO Semantics). Let O be an ALCIO ontology. A DL interpretation I
is a DL model of O if I |= O. We denote the set of all DL models of O by [[O ]]DL.

Given two ontologies O, O′, we say that O DL entails O′, denoted by O |=DL O′, if
[[O ]]DL ⊆ [[O′ ]]DL, and thatO is DL equivalent toO′, denoted byO ≡DL O′, if [[O ]]DL = [[O′ ]]DL.

2.3 Answer Set Programming

Similarly as Description Logics, Logic Programming has its roots in classical first-order
logic. However, Logic Programs diverge from first-order semantics by adopting the
Closed World Assumption and allowing for non-monotonic inferences. In what follows
we introduce the syntax of extended logic programs that allow for both disjunction and
default negation in heads of rules. Then we define the stable models of such programs,
also referred to as answer sets in the literature (Gelfond and Lifschitz, 1988, 1991; Lifschitz
and Woo, 1992; Baral, 2003).

Syntactically, logic programs are built from first-order atoms without equality, as defined
in Section 2.1. An objective literal is a first-order atom p = P (t1, t2, . . . , tn) or its (strong)
negation ¬p. We denote the set of all objective literals by L and use the following notation
to refer to complementary objective literals: p = ¬p and ¬p = p for all atoms p. A default
literal is an objective literal preceded by ∼ denoting default negation. A literal is either an
objective literal or a default literal. As a convention, double default negation is absorbed,
so that ∼∼l denotes the objective literal l. Given a set of literals S, we introduce the
following notation:

S+ = { l ∈ L | l ∈ S } , S− = { l ∈ L | ∼l ∈ S } , ∼S = { ∼L | L ∈ S } .

Definition 2.9 (Logic Program Syntax). A rule is a pair of finite sets of literals π =
(H(π), B(π)). We say that H(π) is the head of π and B(π) is the body of π. Usually, for
convenience, we write π as

H(π)+;∼H(π)− ← B(π)+,∼B(π)−.

We also say that H(π)+ is the positive head of π, H(π)− the negative head of π, B(π)+ the
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Table 2.5: Satisfaction of ground literals, rules and programs

J |= l if and only if l ∈ J
J |= ∼l if and only if l /∈ J
J |= S if and only if J |= L for all L ∈ S
J |= π if and only if ∃L ∈ B(π) : J 6|= L or ∃L ∈ H(π) : J |= L
J |= P if and only if J |= π for all π ∈ P

positive body of π and B(π)− the negative body of π.
A rule is called ground if it does not contain variables; positive if it does not contain

any default literal; non-disjunctive if its head contains at most one literal; a fact if its head
contains exactly one literal and its body is empty. The grounding of a rule π is the set of
rules ground(π) obtained by replacing in π all variables with constant symbols from C in
all possible ways.

A program is a set of rules. A program is ground if all its rules are ground; positive if all
its rules are positive; non-disjunctive if all its rules are non-disjunctive. The grounding of
a program P is defined as ground(P) =

⋃
π∈P ground(π).

We define the class of acyclic programs in the standard way using level mappings Apt
and Bezem (1991).

Definition 2.10 (Apt and Bezem (1991)). A level mapping is a function ` that assigns a nat-
ural number to every ground objective literal and is extended to ground default literals
and sets of ground literals by putting `(∼L) = `(L) and `(S) = max { `(L) | L ∈ S }.

We say that a program P is acyclic if there exists a level mapping ` such that for every
rule π ∈ ground(P) it holds that `(H(π)) > `(B(π)).

The stable models of logic programs can be obtained from first-order semantics by
considering interpretations in which all constant symbols are interpreted by themselves,
and by interpreting each ground atom p separately of (though still consistently with) its
strong negation ¬p. Each such interpretation naturally corresponds to a consistent subset
of the set of all ground objective literals LG. A stable model is then an interpretation that
satisfies all rules and at the same time can be fully derived using the rules of the program
assuming that literals not present in it are false by default.

More formally, an ASP interpretation is a subset of LG that does not contain both l
and l for any ground objective literal l. Satisfaction of ground programs is obtained by
treating rules as classical implications – Table 2.5 defines satisfaction of ground literals l
and ∼l, a set of ground literals S, a ground rule π and a ground program P in an ASP
interpretation J ⊆ LG. We also say that J is a model of P if J |= P.

The stable models are established by the following definition:

Definition 2.11 (Stable Model). Let P be a ground program. An ASP interpretation J is
a stable model of P if and only if J is a subset-minimal model of the reduct of P relative to J

PJ =
{
H(π)+ ← B(π)+.

∣∣ π ∈ P ∧ J 6|= (∼H(π)− ← ∼B(π)−.)
}
.

The stable models of a non-ground program P are the stable models of ground(P). The
set of all stable models of a program P is denoted by [[P ]]SM.

A program is consistent if it has a model; coherent if it has a stable model.

Note that, unlike in (Gelfond and Lifschitz, 1991), we do not allow an inconsistent
program to have a stable model.
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2.4 MKNF Knowledge Bases

We first introduce the logic of Minimal Knowledge and Negation as Failure (MKNF)
(Lifschitz, 1991) that forms the logical basis of (Hybrid) MKNF Knowledge Bases (Motik
and Rosati, 2007, 2010). Subsequently, we define the syntax of MKNF knowledge bases
and provide semantics for them by translation to MKNF theories.

2.4.1 Minimal Knowledge and Negation as Failure

Syntactically, MKNF is an extension of first-order logic (c.f. Section 2.1) with two modal
operators: K and not.

Definition 2.12 (MKNF Syntax). The set of MKNF formulae is the smallest set containing

• all first-order atoms;

• ¬φ, (φ1 ∧ φ2) and ∃x : φ for all MKNF formulae φ, φ1, φ2 and every variable x;

• Kφ and notφ for all MKNF formulae φ.

An MKNF formula φ is ground if it contains no variables; a sentence if every occurrence
of a variable in φ is within the scope of a quantifier. An MKNF formula of the form
Kφ is called a modal K-atom, and a formula of the form notφ is called a modal not-atom;
collectively, modal K- and not-atoms are called modal atoms.

An MKNF theory is a set of MKNF sentences.

Similarly as with first-order formulae, we use the expressions ⊥, >, (φ1 ∨ φ2), (φ1 ⊃
φ2), (φ1 ≡ φ2) and ∀x : φ as shortcuts for the MKNF formulae p ∧ ¬p, ¬⊥, ¬(¬φ1 ∧ ¬φ2),
¬(φ1 ∧ ¬φ2), (φ1 ⊃ φ2) ∧ (φ2 ⊃ φ1) and ¬∃x : ¬φ, respectively, where p is a fixed ground
first-order atom. We drop the classification “MKNF” as well as the outermost parenthesis
in a formula where this does not cause confusion.

We adopt the semantics for MKNF theories that was motivated, introduced and dis-
cussed in (Motik and Rosati, 2007, 2010). It is based on using the set of interpretations I

that adopt the standard names assumption (see Section 2.1 for a definition) to interpret
the first-order connectives and providing additional semantic structures for interpreting
the modal operators. An MKNF structure is a triple (I,M,N ) where I ∈ I andM,N ⊆ I.1

Intuitively, the first component is used to interpret the first-order parts of an MKNF sen-
tence while the other two components interpret the K and not modalities, respectively.
By φ[a/x] we denote the formula obtained from φ by replacing every unbound occur-
rence of variable x with the constant symbol a. The satisfaction of a ground first-order
atom p, an MKNF sentence φ and MKNF theory T in an MKNF structure (I,M,N ) and
in anyM⊆ I is defined in Table 2.6.

An MKNF interpretation M is a non-empty subset of I.2 By M = 2I we denote the
set of all MKNF interpretations together with the empty set. The semantics of MKNF
sentences and theories is defined as follows:

Definition 2.13 (MKNF Semantics). Let T be an MKNF theory. We say that an MKNF
interpretationM is

• an S5 model of T ifM |= T ;

1Differently from (Motik and Rosati, 2010), we allow for emptyM, N in this definition as later on it will
be useful to have satisfaction defined for this marginal case.

2Notice that ifM is empty, then it vacuously holds thatM |= φ for all sentences φ. For this reason, and
in accordance with (Motik and Rosati, 2010), the empty set is not considered an MKNF interpretation.
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Table 2.6: Satisfaction of MKNF sentences and theories

Sentences (inductively)
(I,M,N ) |= p if and only if I |= p
(I,M,N ) |= ¬φ if and only if (I,M,N ) 6|= φ
(I,M,N ) |= φ1 ∧ φ2 if and only if (I,M,N ) |= φ1 and (I,M,N ) |= φ2

(I,M,N ) |= ∃x : φ if and only if (I,M,N ) |= φ[a/x] for some a ∈ C

(I,M,N ) |= Kφ if and only if (J,M,N ) |= φ for all J ∈M
(I,M,N ) |= notφ if and only if (J,M,N ) 6|= φ for some J ∈ N

Theories
(I,M,N ) |= T if and only if (I,M,N ) |= φ for all φ ∈ T

Satisfaction inM⊆ I

M |= φ if and only if (I,M,M) |= φ for all I ∈M
M |= T if and only if (I,M,M) |= T for all I ∈M

• an MKNF model of T ifM is an S5 model of T and for every MKNF interpretation
M′ )M there is some I ′ ∈M′ such that (I ′,M′,M) 6|= T .

Given two MKNF theories T , S , we say that T MKNF entails S, denoted by T |=MKNF S,
ifM |= S for every MKNF modelM of T , and that T is MKNF equivalent to S , denoted
by T ≡MKNF S, if T |=MKNF S and S |=MKNF T . We also say that T is MKNF satisfiable if T
has an MKNF model.

The S5 and MKNF models, MKNF entailment and MKNF equivalence are generalised
to MKNF sentences by treating every MKNF sentence φ as the MKNF theory {φ }.

2.4.2 Syntax and Semantics of MKNF Knowledge Bases

MKNF knowledge bases (Motik and Rosati, 2010) consist of two components over a
shared signature – an ontology O and a program P – and their semantics is given by
translation to an MKNF theory. In the following we introduce the syntax and semantics
of MKNF knowledge bases with the following deviations from (Motik and Rosati, 2010):

• We allow for default negation in heads of MKNF rules due to its importance in rule
update semantics based on causal rejection (e.g. (Leite and Pereira, 1997; Alferes
et al., 2000, 2005); c.f. Section 2.8 for an overview). As we shall demonstrate, this
renders the resulting formalism strictly more expressive than MKNF knowledge
bases as defined in (Motik and Rosati, 2010), though no expressivity is added when
we constrain ourselves to non-disjunctive rules – the typical case tackled by existing
rule update semantics.

• We do not directly include the K and not modalities in MKNF rules; instead, they
are introduced upon translation to an MKNF theory. We can afford to do this
because we do not consider MKNF+ knowledge bases that allow for non-modal
rule components. Note that, as shown in (Motik and Rosati, 2010), every MKNF+

knowledge base can be equivalently translated to an MKNF knowledge base over
a large enough generalised atom base.3

• The translation function κ (denoted by π in (Motik and Rosati, 2010)) is overridden
to also accept atoms, literals and sets of literals and produces an MKNF theory

3A generalised atom base is formally defined in the following paragraph.
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instead of an MKNF sentence. The reason for the latter is that we do not assume an
MKNF program to be finite so that we can immediately deal with infinite ground
programs that result from grounding a finite but non-ground program (the same is
actually done in (Motik and Rosati, 2010) from Section 4 onwards).

Similarly as in Section 2.1, we assume a function-free first-order signature consisting
of disjoint sets of constant and predicate symbols C and P. A generalised atom is a first-
order formula. A generalised atom is ground if it is a sentence.4 A generalised atom base
B is a set of generalised atoms such that ξ ∈ B implies ξG ∈ B whenever ξG is obtained
from ξ by replacing all its free variables with constants from C.

A generalised default literal is a generalised atom preceded by ∼. A generalised literal
is either a generalised atom or a generalised default literal. As a convention, double
default negation is absorbed, so that ∼∼ξ denotes the generalised atom ξ. Given a set of
generalised literals S, we introduce the following notation:

S+ = { ξ ∈ B | ξ ∈ S } , S− = { ξ ∈ B | ∼ξ ∈ S } , ∼S = { ∼L | L ∈ S } .

Definition 2.14 (Syntax of MKNF Knowledge Bases). An MKNF rule is a pair of finite sets
of generalised literals π = (H(π), B(π)). We say that H(π) is the head of π and B(π) is the
body of π. Usually, for convenience, we write π as

H(π)+;∼H(π)− ← B(π)+,∼B(π)−.

We also say that H(π)+ is the positive head of π, H(π)− the negative head of π, B(π)+ the
positive body of π and B(π)− the negative body of π.

An MKNF rule is called ground if it contains only ground generalised atoms; positive
if it does not contain any generalised default literal; non-disjunctive if its head contains
at most one generalised literal; a fact if its head contains exactly one generalised literal
and its body is empty. The grounding of a rule π is the set of rules ground(π) obtained by
replacing in π all generalised atoms with their groundings in all possible ways.

An MKNF program is a set of MKNF rules. An MKNF program is ground if all its
rules are ground; positive if all its rules are positive; non-disjunctive if all its rules are non-
disjunctive. The grounding of a program P is defined as ground(P) =

⋃
π∈P ground(π).

An MKNF knowledge base is a pair (O,P) where O is an ontology and P is an MKNF
program. An MKNF knowledge base is ground if P is ground; positive if P is positive;
non-disjunctive if P is non-disjunctive. The grounding of an MKNF knowledge base K is
defined as ground(K) = (O, ground(P)).

The semantics of MKNF knowledge bases is determined by translation into an MKNF
theory. To this end we utilise the function κ introduced in Section 2.2 to translate an
ontology into a first-order theory and override it to translate every MKNF knowledge
base K to an MKNF theory κ(K) as shown in Table 2.7.5

The semantics of MKNF knowledge bases is thus defined as follows:

Definition 2.15 (Semantics of MKNF Knowledge Bases). Let K be an MKNF knowledge
base. We say that an MKNF interpretationM is an S5 model of K ifM is an S5 model of
κ(K). Similarly,M is an MKNF model of K ifM is an MKNF model of κ(K). MKNF en-
tailment and MKNF equivalence are generalised to MKNF knowledge bases by treating
every MKNF knowledge base K as the MKNF theory κ(K).

4Note that a ground generalised atom may contain variables bound by a quantifier.
5Note that

∧
∅ = > and

∨
∅ = ⊥.
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Table 2.7: Transformation of MKNF Knowledge Base to MKNF Theory

Generalised atom ξ κ(ξ) = K ξ
Generalised default literal ∼ξ κ(∼ξ) = not ξ
Set of generalised literals S κ(S) = { κ(L) | L ∈ S }
MKNF rule π with vector of free variables ~x κ(π) = ∀~x :

∧
κ(B(π)) ⊃

∨
κ(H(π))

MKNF program P κ(P) = { κ(π) | π ∈ P }

MKNF knowledge base K = (O,P) κ(K) = {Kκ(φ) | φ ∈ O } ∪ κ(P)

At times it is useful to refer to the set of predicate symbols that are mentioned in an
ontology, program, MKNF knowledge base or MKNF theory. It can be defined straight-
forwardly as follows:

Definition 2.16 (Set of Relevant Predicate Symbols). Let φ be an MKNF sentence. We
inductively define the set of predicate symbols relevant to φ, denoted by pr(φ), as follows:

• If φ is a first-order atom t1 ≈ t2, then pr(φ) = {≈};
• If φ is a first-order atom P (t1, t2, . . . , tn), then pr(φ) = {P };
• If φ is of one of the forms ¬ψ, ∃x : ψ, Kψ or notψ, then pr(φ) = pr(ψ);

• If φ is of the form (ψ1 ∧ ψ2), then pr(φ) = pr(ψ1) ∪ pr(ψ2).

For an MKNF theory T and ontology axiom, ontology, literal, rule, program or MKNF
knowledge base Ω, pr(T ) =

⋃
φ∈T pr(φ) and pr(Ω) = pr(κ(Ω)).

Note that this definition assumes that the translation function κ is “well-behaved”
w.r.t. ontology axioms in the sense that, apart from the equality predicate ≈, it does not
introduce predicate symbols that were not present in the argument axiom itself.

2.4.3 Basic Properties

As was shown in (Motik and Rosati, 2010), MKNF knowledge bases are faithful to both
the ontology semantics and to the stable models semantics for logic programs. This fol-
lows by the same arguments as Proposition 2.4.

Proposition 2.17 (Faithfulness w.r.t. Ontologies (Motik and Rosati, 2010)). Let O be an
ontology and φ a first-order sentence. Then O |= φ if and only if (O, ∅) |=MKNF φ.

Given a large enough generalised atom base (one that contains all first-order atoms
without equality as well as their negations), a logic program is just a special case of
an MKNF program. Furthermore, every ASP interpretation directly corresponds to an
MKNF interpretation and every MKNF interpretation can be approximated by an ASP
interpretation as follows:

Definition 2.18 (Correspondence Between ASP and MKNF Interpretations). Let J be an
ASP interpretation andM an MKNF interpretation. The MKNF interpretation correspond-
ing to J is { I ∈ I | I |= J }. The ASP interpretation corresponding toM is { l ∈ LG | M |= l }.

The standard names assumption enforced on MKNF interpretations is sufficient to
conclude the following:

Proposition 2.19 (Faithfulness w.r.t. Stable Models (Motik and Rosati, 2010)). Let P be a
logic program and K the MKNF knowledge base (∅,P). If J is a stable model of P, then the
MKNF interpretation corresponding to J is an MKNF model of K. IfM is an MKNF model of
K, then the ASP interpretation corresponding toM is a stable model of P.
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In other words, the stable models of a logic program P are in one-to-one correspon-
dence with MKNF models of the MKNF knowledge base (∅,P).

In the remainder of this thesis we will focus only on ground MKNF knowledge bases.
This simplification is justified by the following lemma which follows from the standard
names assumption imposed by MKNF interpretations.

Lemma 2.20 (Motik and Rosati (2010)). The MKNF models of an MKNF knowledge base K
coincide with the MKNF models of its grounding ground(K).

2.4.4 Notes on Expressivity

As mentioned earlier, MKNF knowledge bases defined above add expressivity to the
MKNF knowledge bases defined in (Motik and Rosati, 2010). In particular, it is not diffi-
cult to show that without default negation in heads of rules, all MKNF models are subset-
maximal:

Proposition 2.21. LetK be an MKNF knowledge base without default negation in heads of rules.
IfM is an MKNF model of K, thenM is a subset-maximal S5 model of K.

Proof. See Appendix A, page 172.

If default negation is allowed in heads of rules, it can be used to generate non-maximal
MKNF models. For example, the rule

p;∼p.

has two MKNF models M1 = I and M2 = { I ∈ I | I |= p }, the latter a proper subset
of the former. This means that the algorithms and complexity results from (Motik and
Rosati, 2010) may not be fully applicable to MKNF knowledge bases as defined here.
Nevertheless, our definition is made so general for the sake of uniformity and conve-
nience since this way MKNF knowledge bases are able to capture logic programs with
default negation in the head, as introduced in Section 2.3. It is also worth noting that
the rule update semantics that rely on default negation in heads of rules consider only
non-disjunctive rules and, as shown by the following proposition, no extra expressivity
is added by allowing default negation in heads of non-disjunctive rules.

Proposition 2.22. Let K be an MKNF knowledge base and K′ the MKNF knowledge base ob-
tained from K by replacing every non-disjunctive rule with default negation in the head

∼ξ ← B+,∼B−. with the rule ← ξ,B+,∼B−.

Then the MKNF models of K coincide with the MKNF models of K′.

Proof. See Appendix A, page 173.

2.5 Belief Updates

Research on belief updates has been initiated with the work of Keller and Winslett (1985);
Katsuno and Mendelzon (1991) who recognised that AGM postulates do not correctly
describe changes in beliefs under all circumstances. They identified two different types
of change depending on whether the represented domain remains static, so the belief
base only needs to be augmented with additional information about the same domain,
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or whether the domain itself has changed and this change needs to be recorded in its
representation. The latter kind of change was dubbed update and described as a belief
change operation that consists of bringing a knowledge base up to date when the world described
by it changes (Katsuno and Mendelzon, 1991).

2.5.1 Katsuno and Mendelzon’s Framework

From a formal viewpoint, a typical assumption when considering belief updates is that
beliefs are represented in a propositional language over a finite set of propositional atoms
A. It is thus assumed that each belief base is represented by a single propositional for-
mula. The restriction to propositional logic nullifies the distinction between standard
first-order interpretations and interpretations under the standard names assumption,
with both types of interpretations directly corresponding with subsets of A. Henceforth,
a propositional interpretation is a subset of A that induces a truth assignment to all propo-
sitional formulae in the standard way. We also reuse the symbol I to denote the set of all
propositional interpretations, i.e. I = 2A. The set of all models of a propositional formula
φ is denoted by [[φ ]]; equivalence and entailment are defined the same way as for first-
order logic in Definition 2.3. In addition, it is said that a formula is consistent if it has at
least one model; complete if it has exactly one model.

We liberally define a belief update operator as any function that takes two inputs, the
original belief base and its update, and returns the updated belief base.

Definition 2.23 (Belief Update Operator). A belief update operator is a binary function on
the set of all propositional formulae.

Any belief update operator � is generalised to finite sequences of propositional for-
mulae 〈φi〉i<n as follows:

3〈φ0〉 = φ0

3〈φi〉i<n+1 = (3〈φi〉i<n) � φn .

To further specify the desired properties of update operators, the following eight pos-
tulates for a belief update operator � and formulae φ, ψ, µ, ν were proposed in (Katsuno
and Mendelzon, 1991):

(B1) φ � µ |= µ.

(B2) If φ |= µ, then φ � µ ≡ φ.

(B3) If [[φ ]] 6= ∅ and [[µ ]] 6= ∅, then [[φ � µ ]] 6= ∅.
(B4) If φ ≡ ψ and µ ≡ ν, then φ � µ ≡ ψ � ν.

(B5) (φ � µ) ∧ ν |= φ � (µ ∧ ν).

(B6) If φ � µ |= ν and φ � ν |= µ, then φ � µ ≡ φ � ν.

(B7) If φ is complete, then (φ � µ) ∧ (φ � ν) |= φ � (µ ∨ ν).

(B8) (φ ∨ ψ) � µ ≡ (φ � µ) ∨ (ψ � µ).

Most of these postulates can be given a simple intuitive reading. For instance, (B1)
requires that information from the update be retained in the updated belief base. This
is also frequently referred to as the principle of primacy of new information (Dalal, 1988).
Postulate is (B4) expresses that the operator must be syntax-independent – it must provide
equivalent results given equivalent inputs. Sometimes it is useful to break it up into the
following two weaker properties which, when taken together, imply (B4):

(B4.1) If φ ≡ ψ, then φ � µ ≡ ψ � µ.
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(B4.2) If µ ≡ ν, then φ � µ ≡ φ � ν.

Similarly, (B8) can be divided into the following principles:

(B8.1) (φ ∨ ψ) � µ |= (φ � µ) ∨ (ψ � µ).

(B8.2) If φ |= ψ, then φ � µ |= ψ � µ.

As the following proposition shows, in the presence of (B4.1) these principles are together
equivalent to (B8).

Proposition 2.24. Let � be a belief update operator that satisfies (B4.1). Then � satisfies (B8) if
and only if it satisfies both (B8.1) and (B8.2).

Proof. See Appendix A, page 183.

The property expressed by (B8) is at the heart of belief updates: Alternative models of
the original belief base φ are treated as possible real states of the modelled world. Each
of these models is updated independently of the others to make it consistent with the
update µ, obtaining a new set of interpretations – the models of the updated belief base.
Based on this view of updates, Katsuno and Mendelzon proved an important represen-
tation theorem that makes it possible to constructively characterise and evaluate every
operator � that satisfies postulates (B1) – (B8). The main idea, based on postulate (B8), is
formally captured by the equation

[[φ � µ ]] =
⋃

I∈[[φ ]]

incorporate([[µ ]], I) ,

where incorporate(M, I) returns the members ofM closer to I so that the original infor-
mation in I is preserved as much as possible. A natural way of defining incorporate(M, I)
is by assigning an order ≤I over I to each interpretation I and taking the minima ofM
w.r.t. ≤I , i.e. incorporate(M, I) = min(M,≤I). In the following we first formally estab-
lish the concept of an order assignment; thereafter we define when an update operator is
characterised by such an assignment.

Given a set S, a preorder over S is a reflexive and transitive binary relation over S; a
strict preorder over S is an irreflexive and transitive binary relation over S; a partial order
over S is a preorder over S that is antisymmetric. Given a preorder ≤ over S, we denote
by < the strict preorder induced by ≤, i.e. s < t if and only if s ≤ t and not t ≤ s. For
any subset T of S, the set of minimal elements of T w.r.t. ≤ is

min(T ,≤) = { s ∈ T | ¬∃t ∈ T : t < s } .

Definition 2.25 (Order assignment). Let S be a set. A preorder assignment over S is any
function ω that assigns a preorder ≤sω over S to each s ∈ S. A partial order assignment over
S is any preorder assignment ω over S such that ≤sω is a partial order over S for every
s ∈ S.

Definition 2.26 (Belief Update Operator Characterised by an Order Assignment). Let � be
a belief update operator and ω a preorder assignment over I. We say that � is characterised
by ω if for all formulae φ, µ,

[[φ � µ ]] =
⋃

I∈[[φ ]]

min
(
[[µ ]],≤Iω

)
.

A natural condition on the assigned orders is that every interpretation be the closest
to itself. This is captured by the notion of a faithful order assignment:
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Definition 2.27 (Faithful Order Assignment). A preorder assignment ω over I is faithful
if for every interpretation I the following condition is satisfied:

For every J ∈ I with J 6= I it holds that I <Iω J .

The representation theorem of (Katsuno and Mendelzon, 1991) states that operators
characterised by faithful order assignments are exactly those that satisfy the KM postu-
lates.

Theorem 2.28 (Katsuno and Mendelzon (1991)). Let � be a belief update operator. Then the
following conditions are equivalent:

a) The operator � satisfies conditions (B1) – (B8).

b) The operator � is characterised by a faithful preorder assignment.

c) The operator � is characterised by a faithful partial order assignment.

2.5.2 Specific Belief Update Operators

Katsuno and Mendelzon’s results provide a framework for belief update operators, each
specified on the semantic level by a faithful partial order assignment over I. The most in-
fluential instance of this framework is the Possible Models Approach introduced by Winslett
(1988), based on minimising the set of atoms whose truth value changes when an inter-
pretation is updated. It is defined as follows:

Definition 2.29 (Winslett’s Operator (Winslett, 1988)). Let the partial order assignment
W be defined for all interpretations I, J,K as

J ≤I
W
K if and only if (J ÷ I) ⊆ (K ÷ I) ,

where ÷ denotes set-theoretic symmetric difference. Winslett’s update operator is an arbi-
trary but fixed belief update operator �W that is characterised by W.

By unfolding the definitions above, we obtain the following characterisation of �W:

[[φ �W µ ]] =
⋃

I∈[[φ ]]

{ J ∈ [[µ ]] | ¬∃K ∈ [[µ ]] : (K ÷ I) ( (J ÷ I) } .

It is not difficult to verify that W is a faithful partial order assignment, so it follows from
Theorem 2.28 that �W satisfies postulates (B1) – (B8). Note that there is a whole class of
operators characterised by≤I

W
that differ in the syntactic representation of updated belief

bases. Insofar as we are interested in semantic properties of Winslett’s operator, it follows
from (B4) that it does not matter which operator from this class we pick as �W.

A related instance of Katsuno and Mendelzon’s framework is Forbus’ update opera-
tor which minimises the number of atoms whose truth values are modified (Forbus, 1989).
Formally:

Definition 2.30 (Forbus’ Operator (Forbus, 1989)). Let the preorder assignment F be de-
fined for all interpretations I, J,K as

J ≤I
F
K if and only if |J ÷ I| ≤ |K ÷ I| ,

where | · | denotes the cardinality of a set. Forbus’ update operator is an arbitrary but fixed
belief update operator �F that is characterised by F.
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By unfolding the definitions above, we obtain the following characterisation of �F:

[[φ �F µ ]] =
⋃

I∈[[φ ]]

{ J ∈ [[µ ]] | ¬∃K ∈ [[µ ]] : |K ÷ I| < |J ÷ I| } .

Similarly as with Winslett’s operator, since F is a faithful preorder assignment, it follows
from Theorem 2.28 that �F satisfies postulates (B1) – (B8). It is also not difficult to verify
that for all formulae φ, µ,

φ �F µ |= φ �W µ . (2.1)

The converse does not generally hold, as witnessed by φ = p∧q∧r and µ = ¬p∨(¬q∧¬r)
because

φ �F µ ≡ ¬p ∧ q ∧ r while φ �W µ ≡ (¬p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) .

This means that in some cases Forbus’ semantics preserves strictly more information from
the original belief base φ than Winslett’s operator. Depending on the particular applica-
tion domain, one or the other operator may be more appropriate (Winslett, 1990).

Despite its significance and intuitive appeal, Winslett’s operator has also received a
considerable amount of criticism. Firstly, it treats disjunction in updates exclusively and
not inclusively. For instance, if φ = ¬p ∧ ¬q and µ = p ∨ q, then

φ �W µ ≡ (p ∨ q) ∧ (¬p ∨ ¬q) ,

which is considered too restrictive in certain scenarios where the expected result is sim-
ply p∨q (Herzig, 1996; Zhang and Foo, 1996). It follows from (2.1) that such criticism also
applies to Forbus’ semantics and, as shown by Herzig and Rifi (1999), it is actually a con-
sequence of the KM postulates, namely of postulate (B5). In other words, every update
semantics that addresses this problem, such as MCD, MCD∗, MCE (Zhang and Foo, 2000)
or WSS and its syntax-independent modification (Winslett, 1990; Herzig, 1996), must vi-
olate (B5).

The general desirability of other postulates has also been questioned. For example,
(B2) is considered too strong by many (Brewka and Hertzberg, 1993; Boutilier, 1995; Do-
herty et al., 1998; Herzig and Rifi, 1999), rendering it controversial. Furthermore, (B2) is
strongly related to the following principles (Herzig and Rifi, 1999):6

(B2.>) φ � > ≡ φ.

(B2.1) φ ∧ µ |= φ � µ.

(B2.2) (φ ∧ µ) � µ |= φ.

The first two are uncontroversial as they are satisfied by all considered update operators.
In addition, in the presence of (B4.1), the latter two together are powerful enough to entail
(B2). Hence the controversial part of (B2) is (B2.2). Furthermore, (B6) entails (B2) in the
presence of (B2.>), so the criticism of (B2.2) transfers to (B6). Lastly, (B7) is considered
almost meaningless (Herzig and Rifi, 1999) because it is restricted to the marginal case of
complete belief bases.

6From the analysis by Herzig and Rifi (1999) it might seem that (B2) entails all of these principles. Al-
though this is the case with (B2.>) and (B2.2), (B2.1) cannot be derived from (B2) alone. For instance, a (rather
ridiculous) operator � such that p � q ≡ ⊥may still satisfy (B2) but does not satisfy (B2.1).

Nevertheless, it is not difficult to verify that (B2.1) does follow from (B2) in the presence of (B8.2) as follows:
Since φ ∧ µ |= µ, from (B2) it follows that (φ ∧ µ) � µ ≡ φ ∧ µ and by (B8.2) since φ ∧ µ |= φ, it follows that
(φ ∧ µ) � µ |= φ � µ. By transitivity of entailment we obtain (B2.1).
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Another issue with belief update operators is connected to the handling of integrity
constraints: suppose that ψ represents integrity constraints that must be adhered to both
before and after an update. The usual proposal to define such an operation by φ �ψ µ =
φ � (µ ∧ ψ) (Winslett, 1990) has its flaws, as demonstrated by (Lifschitz, 1990; Herzig,
1996). Many methods for addressing these issues are based on providing extra-logical
information to the update operator, such as dependencies between atoms (Herzig, 1996)
or causal rules (Doherty et al., 1998). The recent developments seem to indicate that this
is still an open problem due to the issues with integrating causal reasoning with belief
updates (Herzig, 2005; Veltman, 2005).

2.5.3 Formula-Based Operators

The belief update operators discussed until now are also called model-based because they
are characterised on the semantic level. Their characteristic property is that they are
syntax-independent, i.e. they satisfy the postulate (B4). Earlier approaches to updates,
dubbed formula-based (Winslett, 1990), operate on the syntax of a belief base and, as a
consequence, are not syntax-independent. Nevertheless, recently they were considered
for performing ontology updates, in particular for updating TBoxes (Calvanese et al.,
2010).

To define these operators, we need to generalise our definition of a belief base to
a finite set of propositional formulae. A (formula-based) update operator is defined as a
function that assigns a belief base to every pair of belief bases.

Traditional formula-based update operators are Set-Of-Theories (Fagin et al., 1983),
WIDTIO (Ginsberg, 1986; Ginsberg and Smith, 1988; Winslett, 1990) and Cross-Product
(Ginsberg, 1986). We define only the latter two because the Set-Of-Theories operator pro-
duces a collection of belief bases as its result instead of a single belief base, and is equivalent
to the Cross-Product operator which compiles these belief bases into one. These opera-
tors are based on the following idea: A natural candidate for the result of updating B by U
is a union of U with a maximal subset B′ of B that is consistent with U . These remainders
of B are formalised as follows:

Definition 2.31 (Possible Remainder). Let B and U be belief bases. We say that B′ is a
possible remainder of B w.r.t. U if the following conditions are satisfied:

1. B′ ⊆ B;

2. B′ ∪ U is consistent;

3. B′ is subset-maximal among all sets satisfying 1. and 2.

We denote the set of all possible remainders of B w.r.t. U by rem(B,U).

The distinct formula-based operators only differ in how they deal with the case when
there is more than one candidate for B′. The operator WIDTIO (When In Doubt, Throw
It Out (Winslett, 1990)) takes the safe path – it keeps exactly those formulae that belong
to the intersection of all remainders and throws away the rest.

Definition 2.32 (WIDTIO Operator). The formula-based operator ◦WIDTIO is defined for all
belief bases B, U as

B ◦WIDTIO U = U ∪
⋂

rem(B,U) .

The Cross-Product operator instead combines information from different remainders
in the resulting belief base.
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Definition 2.33 (Cross-Product Operator). The formula-based operator ◦CP is defined for
all belief bases B,U as

B ◦CP U = U ∪ { ψ }

where ψ is the formula ∨
B′∈rem(B,U)

∧
φ∈B′

φ .

It should be noted that although WIDTIO and Cross-Product are traditionally called
update operators, from the perspective of belief change they carry more characteristics of
revision than of update. WIDTIO actually coincides with the internal full meet base revision
operator, i.e. the base revision operator derived through the Levi identity from the par-
tial meet base contraction operator with the selection function γ(K) = K (c.f. (Hansson,
1993a)). Cross-Product can be seen as a change operator that lies somewhere between
belief base revision and belief set revision (Gärdenfors, 1992) – when the remainder is
unique, it adds or removes whole formulae from the belief base, just as a base revision
operator would, but when multiple remainders exist, consequences common to all re-
mainders are always kept, similarly as with the original partial meet revision operators
(Alchourrón et al., 1985).

2.6 Updates of First-Order Theories

In order to perform updates of ontologies using belief update operators, we need to gen-
eralise them to deal with updates of first-order knowledge bases.

But before we start introducing the formal definitions, let us briefly discuss the main
challenges that lie ahead. Suppose that we want to generalise the definition of Winslett’s
operator �W to update first-order theories. Recall first that in the propositional case, �W is
semantically characterised by

[[φ �W µ ]] =
⋃

I∈[[φ ]]

{ J ∈ [[µ ]] | ¬∃K ∈ [[µ ]] : (K ÷ I) ( (J ÷ I) } .

To adapt this definition to first-order logic, we somehow need to define “symmetric dif-
ference” between first-order interpretations. We can do this on a predicate by predicate
basis, turning (K ÷ I) ( (J ÷ I) into something like

∀P ∈ P :
(
PK ÷ P I

)
(
(
P J ÷ P I

)
.

However, there is one subtle problem here: Comparing interpretations of a predicate
symbol P under I , J and K only makes sense when constant symbols are interpreted
the same way under all of these interpretations. This has been recognised already in
(Winslett, 1990) and addressed by imposing that I , J and K must be over the same uni-
verse ∆ and must interpret constant symbols identically. This solution is also adopted in
the work on ABox updates in DLs at least as expressive as ALC (Liu et al., 2006; Bong,
2007; Drescher et al., 2009). Its downside is that one essentially loses support for updates
of equality assertions, as demonstrated by the following example.

Example 2.34 (Updates of Equality Assertions). Suppose that the knowledge base φ =
(a ≈ b) is updated by µ = (a 6≈ b). Then every model I of φ interprets constants a and b
as the same object d. Furthermore, if an update of I can only result in interpretations J
that interpret constants exactly as I does, then it follows that no such J is a model of µ.
As a consequence, φ �W µ must be unsatisfiable.
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Another issue, albeit a less severe one, is that with this restriction in place, we cannot
define Winslett’s first-order operator using a partial order assignment: there is no way
to impose that min([[µ ]],≤I

W
) must be empty when [[µ ]] is non-empty, as required in the

above example. This also means that the postulate (B3) would no longer be satisfied by
the operator.

A different way to address the problem is to assume that we use the standard names
assumption (De Giacomo et al., 2006, 2007, 2009). If, in addition, we interpret the equality
predicate as a congruence relation instead of true equality, as a bonus we regain support
for updates of equality assertions. In the definition of Winslett’s first-order operator we
thus assume that we work with the set of interpretations I defined in Section 2.1, i.e. inter-
pretations under the standard names assumption and with≈ interpreted as a congruence
relation. As demonstrated by Proposition 2.17, this modification is faithful to the original
semantics for DLs. Furthermore, we regain the ability to define Winslett’s operator using
a partial order assignment.

Although this approach technically allows for performing equality updates, these
may have unexpected side-effects, such as the following one:

Example 2.35. Suppose that we update the theory T = { a ≈ b } by the theory U =
{ a 6≈ b } using Winslett’s operator and assume that our language contains a unary pred-
icate P . Since equality allows for replacement of equals by equals, we know that

T |= P (a) ≡ P (b) .

Furthermore, although T �W U no longer entails a ≈ b, it still holds that

T �W U |= Pa ≡ P (b) .

In other words, the side-effects of equality from T carry over to T �W U . This sort of be-
haviour may be unexpected by the user of the formalism and brings with it also technical
difficulties due to the fact that T �W U cannot be syntactically represented without using
the predicate P even though this predicate occurs neither in T nor in U .

2.6.1 First-Order Update Operators

We proceed with the general definition of a first-order update operator. We introduce it
for the general case of first-order theories, instead of first-order sentences, since this will
be useful in Chapter 3.

Definition 2.36 (First-Order Update Operator). A first-order update operator is a binary
function on the set of all first-order theories.

Any first-order update operator � is generalised to finite sequences of first-order the-
ories 〈Ti〉i<n as follows:

3〈T0〉 = T0 ,

3〈Ti〉i<n+1 = (3〈Ti〉i<n) � Tn .

A single first-order sentence φ is updated by treating it as the theory {φ }.

Similarly as in the propositional case, first-order update operators can be defined by
specifying an order assignment on the set of all interpretations I.

Definition 2.37 (First-Order Update Operator Characterised by an Order Assignment).
Let � be a first-order update operator and ω a preorder assignment over I. We say that �

37



2. BACKGROUND 2.6. Updates of First-Order Theories

is characterised by ω if for all first-order theories T , U ,

[[T � U ]] =
⋃

I∈[[T ]]

min
(
[[U ]],≤Iω

)
.

In particular, Winslett’s first-order operator is defined as follows:7

Definition 2.38 (Winslett’s First-Order Operator (Winslett, 1990)). Let the partial order
assignment W be defined for all interpretations I, J,K ∈ I as

J ≤I
W
K if and only if ∀P ∈ P≈ :

(
P J ÷ P I

)
⊆
(
PK ÷ P I

)
.

Winslett’s first-order operator is an arbitrary but fixed first-order update operator �W that is
characterised by W.

Other model-based belief update operators could also theoretically be generalised
to the first-order case though this has not been considered in the literature on ontology
updates. One of the reasons might be that relying on the comparison of set cardinality
when the sets in question are infinite may lead to awkward results. For instance, if the
set P J ÷ P I is countably infinite, based on cardinality alone the interpretation J cannot
be preferred another interpretation K that interprets all predicate symbols except for P
just like J and PK ÷ P I is a countably infinite strict superset of P J ÷ P I .

2.6.2 Syntax-Based Properties of First-Order Updates

In this and the following section we look at some properties that can be naturally ex-
pected of first-order update operators, and in particular properties that are satisfied by
Winslett’s operator. The properties in this section have a syntactic basis and represent ba-
sic expectations regarding the behaviour of a domain-independent update operator, i.e. a
general-purpose update operator that does not take domain knowledge into account and
treats all predicates uniformly.

The first property that we consider is language conservation. Informally, if both the ini-
tial and updating theories represent knowledge about predicate symbols from the set A,
then the updated theory should not introduce knowledge about predicate symbols that
do not belong to A. The formalisation of this property relies on the notion of interpreta-
tion restriction and the related concept of saturated set of interpretations. Intuitively, a set of
interpretationsM ∈ M is saturated relative to A if it contains knowledge about predicate
symbols from A only.

Definition 2.39 (Interpretation Restriction). LetA be a set of predicate symbols, I ∈ I and
M ∈M. The restriction of I to A is an interpretation I [A] such that for every ground atom
p,

I [A] |= p if and only if pr(p) ⊆ A ∧ I |= p .

The restriction ofM to A is defined asM[A] =
{
I [A]

∣∣ I ∈M }
.

Definition 2.40 (Saturated MKNF Interpretation). Let A be a set of predicate symbols
andM∈M. We say thatM is saturated relative to A if for every interpretation I ∈ I,

I [A] ∈M[A] implies I ∈M .

7Note that we exercise a slight abuse of notation by using the same symbols W and �W for Winslett’s order
assignment and update operator in both the propositional and first-order cases.
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To formally illustrate this concept, we show that the set of models of a first-order
theory T is saturated relative to the set of predicate symbols that are relevant to T .

Proposition 2.41. Let A be a set of predicate symbols and T a first-order theory such that
pr(T ) ⊆ A. Then [[T ]] is saturated relative to A.

Proof. See Appendix A, page 176.

In other words, the set of models of a single theory conserves its language. Language
conservation for an update operator � extends the same property to sequences of first-
order theories. In particular, it expresses that � preserves the saturation relative to A
whenever A contains all predicate symbols relevant to either the initial theory or in one
of its updates.

Definition 2.42 (Language Conservation). Let � be a first-order update operator. We say
that � conserves the language if for all sets of predicate symbols A and every sequence of
first-order theories T = 〈Ti〉i<n such that for all i < n, pr(Ti) ⊆ A, [[3T ]] is saturated
relative to A.

Since Winslett’s operator treats all predicate symbols in a uniform manner, in the ab-
sence of the equality predicate it naturally satisfies this property. With equality, however,
problematic cases such as the one shown in Example 2.35 arise. Due to such issues, we
will not allow for the use of equality in Chapter 4 where we need to rely on language
conservation.

Theorem 2.43. If we do not allow for the equality predicate ≈, then Winslett’s first-order update
operator �W conserves the language.

Proof. See Appendix A, page 184.

Another important property of Winslett’s operator is that it satisfies the basic intu-
itions regarding updates of relational databases. In particular, when it is used for updating
consistent sets of literals, the literals keep their truth values by inertia. As we shall see in
Section 2.8, this constitutes a case that is handled the same way by rule update semantics
and so provides a basic layer of interoperability between belief update operators and rule
update semantics. We formally formulate this property as follows:

Definition 2.44 (Fact Update). Let � be a first-order update operator. We say that � respects
fact update if for every finite sequence of consistent sets of ground objective literals T =
〈Ti〉i<n,

[[3T ]] =
{
I ∈ I

∣∣ I |= { l ∈ LG

∣∣ ∃j < n : l ∈ Tj ∧ (∀i : j < i < n =⇒ l /∈ Ti)
} }

.

Theorem 2.45. Winslett’s first-order update operator �W respects fact update.

Proof. See Appendix A, page 184.

2.6.3 Generalising Katsuno and Mendelzon’s Postulates

Most of Katsuno and Mendelzon’s belief update postulates can be directly generalised to
the case of first-order theories and update operators. Issues arise only with the postulates
(B7) and (B8) because they require disjunction of a pair of theories to be defined. Although
semantically this is not problematic – the models of a disjunction of two theories should

39



2. BACKGROUND 2.7. Ontology Updates

be the models of either of the theories – on the syntactic level it is unclear how T ∨ S
should be specified.

In case of (B8) this situation can be partially resolved by reformulating the principle
(B8.2) which does not require disjunction and follows from (B8) together with (B4.1) (c.f.
Proposition 2.24). We can thus define the following update postulates for first-order up-
date operators:

(FO1) T � U |= U .

(FO2) If T |= U , then T � U ≡ T .

(FO2.>) T � ∅ ≡ T .

(FO2.1) T ∪ U |= T � U .

(FO2.2) (T ∪ U) � U |= T .

(FO3) If [[T ]] 6= ∅ and [[U ]] 6= ∅, then [[T � U ]] 6= ∅.
(FO4) If T ≡ S and U ≡ V , then T � U ≡ S � V .

(FO4.1) If T ≡ S, then T � U ≡ S � U .

(FO4.2) If U ≡ V , then T � U ≡ T � V .

(FO5) (T � U) ∪ V |= T � (U ∪ V).

(FO6) If T � U |= V and T � V |= U , then T � U ≡ T � V .

(FO8.2) If T |= S, then T � U |= S � U .

Note that these postulates are defined in terms of the entailment on models from I, i.e.
interpretations under the standard names assumption with equality interpreted as a con-
gruence relation. If we defined them in terms of the standard first-order entailment |=FO,
it follows from Proposition 2.5 that we would end up with a different set of postulates
when considering updates of infinite first-order theories.

It is not difficult to show that every first-order update operator characterised by a
faithful order assignment satisfies all of these postulates.

Proposition 2.46. Every first-order update operator that is characterised by a faithful preorder
assignment satisfies postulates (FO1) – (FO6) and (FO8.2).

Proof. See Appendix A, page 185.

As a consequence, Winslett’s first-order operator also satisfies the proposed postu-
lates.

Corollary 2.47. Winslett’s first-order operator �W satisfies postulates (FO1) – (FO6) and (FO8.2).

Proof. Follows from Proposition 2.46 and from the fact that W is a faithful partial order
assignment.

Note that the other half of Katsuno and Mendelzon’s representation theorem cannot
be immediately generalised to first-order logic since we are still missing a counterpart of
the crucial postulate (B8.1). The presented postulates can nevertheless serve to examine
different classes of first-order update operators. For instance, in Chapter 3 we prove
results that hold for all first-order update operators that satisfy property (FO8.2).

2.7 Ontology Updates

Formal methods for ontology updates are based on the classical update operators de-
scribed previously. The main issue with adapting first-order update operators to deal

40



2. BACKGROUND 2.7. Ontology Updates

with ontologies is that description logics are only fragments of first-order logic, so the
result of a first-order update operator may not be expressible in the DL used to encode
the original ontology and its update. Other problems stem from examples showing that
when model-based operators are used to update TBoxes, unexpected results are obtained.
Due to this, formula-based operators have been used as an alternative way of dealing
with ontology updates. We briefly describe both lines of work in the following sections.

2.7.1 Expressibility and ABox Updates

Now that we have a definition first-order update operators, and particularly we defined
Winslett’s first-order operator �W, we can think about how to use such operators to update
DL ontologies instead of first-order theories.

The basic idea is very simple: assuming that � is some first-order update operator, we
define an update of an ontology O1 by an ontology O2 as

O1 � O2 = κ(O1) � κ(O2) .

In other words, we translate both the original ontology and its update to their first-order
representations and update those instead. The problem here is that the result of κ(O1) �
κ(O2) may not be expressible in the DL that was used to encode the original ontology
O1 and its update O2. This was observed already by Baader et al. (2005a) in case of the
Description Logic ALCQI: it turned out that querying an ontology updated using �W is
undecidable and, consequently, the result of the update cannot be expressed in ALCQI.

Further work on updates in DLs at least as expressive as ALC has thus focused on
updates of ABoxes only, in particular on simple ABox updates that only allow for updates
with assertions about concept names (Liu et al., 2006; Bong, 2007; Drescher et al., 2009).
The update semantics used to perform the updates coincides with Winslett’s first-order
operator �W and several DLs have been identified in which expressibility of the updated
ABox is guaranteed. In some of these DLs, the updated ABox may be exponential in size
of the original ABox as well as of the update, while in others it may be exponential (only)
in the size of the update.

A related approach concentrates on updates of ABoxes in a family of lightweight De-
scription Logics called DL-Lite (De Giacomo et al., 2006, 2007, 2009). These even allow for
a static TBox T , treating it the same way that integrity constraints were handled in early
belief update semantics (Katsuno and Mendelzon, 1991) (c.f. the end of Section 2.5.2):

A1 �TW A2 = A1 �W (A2 ∪ T ) .

On the positive side, this means that the uncomplicated operator �W suffices to deal with
the presence of a static TBox; on the negative side, such an approach is most probably
going to suffer from the same types of issues that arise from using the same method to
augment belief update semantics with integrity constraints (Lifschitz, 1990; Herzig, 1996,
2005). This line of work also provides polynomial algorithms for computing the updated
ABoxes or their approximations, depending on which flavour of DL-Lite is considered.

2.7.2 Ontology Updates Using Formula-Based Operators

More recently, attention has also moved towards TBox updates. Calvanese et al. (2010)
argued that model-based update operators provide inappropriate results when applied
to TBoxes (c.f. Example 1.8) and suggested to use a formula-based operator instead. Un-
like with model-based operators, there are no semantic issues with lifting formula-based
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operators such as WIDTIO to deal with first-order logic or ontologies and expressibility
is also not an issue. Calvanese et al. (2010) have particularly introduced the following
formula-based operator, called Bold, for performing TBox updates in DL-Lite:

Definition 2.48 (Bold Operator (Calvanese et al., 2010)). A remainder selection function is a
function s that assigns to every set of remaindersR a remainder s(R) ∈ R.

Given a remainder selection function s, the formula-based operator ◦s
BOLD

is for all
knowledge bases B, U defined as

B ◦s
BOLD
U = U ∪ s(rem(B,U)) .

Similarly as WIDTIO, the Bold operator is strongly related to base revision operators
since it coincides with the internal base revision operator associated with the partial meet
base contraction with the selection function γ(K) = { s(K) } (c.f. (Hansson, 1993a)).

More recently, Lenzerini and Savo (2011) have used an operator inspired by WIDTIO
to tackle ABox updates, too. Nevertheless, their operator performs a deductive closure
of the ABox before it computes the remainders, so it seems to be strongly related to the
standard full meet AGM revision operator (Alchourrón et al., 1985).

2.8 Rule Updates

State-of-the-art rule update semantics are based on fundamentally different principles
and methods when compared to their belief update counterparts. As illustrated in Ex-
ample 1.6, the main reason for this is that modifications on the level of individual stable
models (Alferes and Pereira, 1996), akin to model-based belief update operators, are un-
able to capture the essential relationships between literals encoded in rules (Leite and
Pereira, 1997).

There exist a number of approaches for rectifying this issue, each with a significantly
different technical realisation. This section provides an overview of existing rule update
semantics, pointing at some of the technical as well as semantic differences between them.

However, our main goal is to identify properties that these semantics have in common
because these can serve as general guiding principles for updates of hybrid knowledge
bases. Thus, instead of performing a thorough formal analysis and comparison of rule
update semantics, we rely on examples to show how these semantics are interrelated and
refrain from presenting all technical details which would only detain us from reaching
our goals. We do pay more attention to semantics based on causal rejection that have been
thoroughly studied in the literature and are subject of Chapter 8 where we develop a
semantic characterisation of one of them.

Rule update semantics typically deal only with ground non-disjunctive rules and
some do not allow for default negation in their heads. While some of them follow the
belief update tradition and construct an updated program given the original program
and its update, others only assign a set of stable models to a pair or sequence of pro-
grams where each component represents an update of the preceding ones. In order to
compare these semantics, we adopt the latter, less restrictive point of view. The “input”
of a rule update semantics is thus defined as follows:

Definition 2.49 (Dynamic Logic Program). A dynamic logic program (DLP) is a finite se-
quence of ground non-disjunctive logic programs.

Given a DLP P , we denote by all(P ) the set of all rules belonging to the programs in
P . We say that P is acyclic if all(P ) is acyclic.
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In order to avoid issues with rules that are repeated in multiple components of a
DLP, we assume throughout this section that every rule is uniquely identified in all set-
theoretic operations. This could be formalised by assigning a unique name to each rule
and performing operations on names instead of the rules themselves. The technical real-
isation is left to the reader.

The set of stable models assigned to dynamic logic programs under a particular up-
date semantics will be denoted as follows:

Definition 2.50 (Rule Update Semantics). A rule update semantics S is characterised by a
(partial) function [[ · ]]S that assigns a set of ASP interpretations [[P ]]S to a dynamic logic
program P . We call each member of [[P ]]S an S-model of P .

We first discuss a major group of semantics based on the causal rejection principle (Leite
and Pereira, 1997; Buccafurri et al., 1999; Alferes et al., 2000; Eiter et al., 2002; Alferes et al.,
2005; Osorio and Cuevas, 2007) in Section 2.8.1, followed by semantics based on prefer-
ences (Zhang, 2006; Delgrande et al., 2007) in Section 2.8.2. Section 2.8.3 is devoted to
semantics that bear characteristics of revision rather than update (Sakama and Inoue,
2003; Osorio and Zepeda, 2007; Delgrande, 2010) and touches upon approaches that ma-
nipulate dependencies on default assumptions induced by rules (Šefránek, 2011; Krüm-
pelmann and Kern-Isberner, 2010; Krümpelmann, 2012). Finally, in Section 2.8.4 we for-
mulate fundamental common properties of the introduced rule update semantics.

2.8.1 Causal Rejection-Based Semantics

The causal rejection principle (Leite and Pereira, 1997) forms the basis of a number of rule
update semantics. Informally it can be stated as follows:

A rule should be rejected when it is directly contradicted by a more recent rule.

Formalisms based on this principle focus only on conflicts between heads of rules. Ini-
tially, only conflicts between objective literals in rule heads were considered and default
negation in rule heads was not allowed (Leite and Pereira, 1997; Eiter et al., 2002). Later
it was found that this approach has certain limitations, namely that some belief states,
represented by stable models, become unreachable (Alferes et al., 2000; Leite, 2003). For
example, no update of the program P = { p. } leads to a stable model where neither p
nor ¬p is true. Default negation in rule heads was thus used to regain reachability of
such states. For instance, the update U = { ∼p.,∼¬p. } forces p to be unknown, regard-
less of its previous state. In the following we thus present the semantics from (Leite and
Pereira, 1997; Eiter et al., 2002) in their generalised forms that coincide with their original
definitions on programs without default negation in rule heads (Leite, 2003).

A conflict between rules occurs when the head literal of one rule is the default or
strong negation of the head literal of the other rule. Similarly as in (Leite, 2003), we
consider the conflicts between an objective literal and its default negation as primary
while conflicts between objective literals are handled by expanding the DLP accordingly.
In particular, whenever the DLP contains a rule with an objective literal l in its head, its
expansion also contains a rule with the same body and the literal ∼l in its head, where l
denotes the literal complementary to l, i.e. l = ¬p if l is the atom p and l = p if l is the
objective literal ¬p. Formally:

Definition 2.51 (Expanded Version of a DLP). Let P = 〈Pi〉i<n be a DLP. The expanded
version of P is the DLP P e = 〈Pe

i 〉i<n where for every i < n,

Pe
i = Pi ∪

{
∼l← B(π).

∣∣ π ∈ Pi ∧H(π) = { l } ∧ l ∈ LG

}
.
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The additional rules in the expanded version capture the coherence principle: when
an objective literal l is derived, its complement l cannot be concurrently true and thus
∼l must be true. In this way, every conflict between complementary objective literals
directly translates into a conflict between an objective literal and its default negation.
This enables us to define a conflict between a pair of rules as follows: we say that rules π,
σ are in conflict, denoted by π 1 σ, if and only if

H(π) = ∼H(σ) 6= ∅ .

The historically first rule update semantics is the justified update semantics, or JU-se-
mantics for short (Leite and Pereira, 1997), with the idea to define a set of rejected rules,
which depends on a stable model candidate, and then verify that the candidate is indeed
a stable model of the remaining rules.

Definition 2.52 (JU-Semantics (Leite and Pereira, 1997)). Let P = 〈Pi〉i<n be a DLP and
J an ASP interpretation. We define the set of rejected rules rej

JU
(P , J) as

rej
JU

(P , J) = { π ∈ Pi | ∃j ∃σ : i < j < n ∧ σ ∈ Pj ∧ π 1 σ ∧ J |= B(σ) } .

The set [[P ]]JU of JU-models of a DLP P consists of all stable models J of the program

all(P e) \ rej
JU

(P e, J) .

Under the JU-semantics, a rule π is rejected if and only if a more recent rule σ is in
conflict with π and the body of σ is satisfied in the stable model candidate J . Note that the
latter condition is essential – without it, rules might get rejected simply because a more
recent rule σ has a conflicting head, without a guarantee that σ will actually be activated.

A related semantics which prevents rejected rules from rejecting other rules is the
update answer sets semantics, or AS-semantics for short (Eiter et al., 2002):

Definition 2.53 (AS-Semantics (Eiter et al., 2002)). Let P = 〈Pi〉i<n be a DLP and J an
ASP interpretation. We define the set of rejected rules rej

AS
(P , J) as

rej
AS

(P , J) =
{
π ∈ Pi

∣∣ ∃j ∃σ : i < j < n ∧ σ ∈ Pj \ rej
AS

(P , J) ∧ π 1 σ ∧ J |= B(σ)
}
.8

The set [[P ]]AS of AS-models of a DLP P consists of all stable models J of the program

all(P e) \ rej
AS

(P e, J) .

The definitions of the JU- and AS-semantics are fairly straightforward and reflect intu-
itions about rule updates better than an approach based on a belief update construction,
such as (Alferes and Pereira, 1996). As an illustration, let us look at the result of these
semantics when applied to Example 1.6:

Example 2.54 (Leite and Pereira (1997)). Consider again the program P from Example 1.6
which contains the rules

GoHome← ∼Money. GoRestaurant← Money. Money.

8Note that although this definition is recursive, the defined set is unique. This is because we assume
that every rule is uniquely identified and to determine whether a rule from Pi is rejected, the recursion only
refers to rejected rules from programs Pj with j strictly greater than i. One can thus first find the rejected
rules in Pn (always ∅ by the definition), then those in Pn−1 and so on until P1.
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and its update U with the rules

∼Money← Robbed. Robbed.

Following the discussion in Example 1.6, the expected stable model of the DLP 〈P,U〉 is
J = {Robbed,GoHome }. Also, rej

JU
(〈P,U〉e, J) = rej

AS
(〈P,U〉e, J) = {Money. }, and J is

indeed a stable model of the remaining rules in all(〈P,U〉e). Furthermore, J is the only
ASP interpretation with these properties, so

[[〈P,U〉 ]]JU = [[〈P,U〉 ]]AS = { J } .

Nevertheless, problematic examples which are not handled correctly by these seman-
tics have also been identified (Leite, 2003). Many of them involve tautological updates,
the intuition being that a tautological rule (i.e. a rule whose head literal also belongs to
its body) cannot indicate a change in the modelled world because it is always true. It
thus follows that a tautological update should not affect the stable models of the original
program. This is also reflected in the belief update principle (B2.>).

An example of a misbehaviour of the AS-semantics is the DLP

P 1 = 〈{ p. } , {¬p. } , { p← p. }〉 with [[P 1 ]]AS = { {¬p } , { p } } . (2.2)

where the expected result is a single stable model {¬p }. In this case, the JU-semantics
provides a solution: since it allows rejected rules to reject, the initial rule is always rejected
and [[P 1 ]]JU = { {¬p } } as expected. Unfortunately, there are also numerous DLPs to
which the JU-semantics assigns unwanted models, e.g.

P 2 = 〈{ p. } , {∼p← ∼p. }〉 with [[P 2 ]]JU = [[P 2 ]]AS = { ∅, { p } } . (2.3)

The unwanted stable model ∅ arises because the default assumption ∼p is “reinstated”
despite p being initially asserted as a fact. This problem is addressed by constraining the
set of default assumptions in the dynamic stable models semantics, or DS-semantics for short
(Alferes et al., 2000):

Definition 2.55 (DS-Semantics (Alferes et al., 2000)). Let P = 〈Pi〉i<n be a DLP and J an
ASP interpretation. The set of rejected rules rej

DS
(P , J) is identical to the set rej

JU
(P , J)

and we define the set of default assumptions def(P , J) as

def(P , J) = { ∼l | l ∈ LG ∧ ¬∃π ∈ all(P ) : H(π) = { l } ∧ J |= B(π) } .

The set [[P ]]DS of DS-models of a DLP P consists of all ASP interpretations J such that

J ′ = least([all(P e) \ rej
DS

(P e, J)] ∪ def(P e, J)) ,

where J ′ = J ∪ ∼(LG \ J) and least(·) denotes the least model of the argument program
with all literals treated as atoms.

Note that it follows from the definition of a (regular) stable model that J is a JU-stable
model of a DLP P if and only if

J ′ = least([all(P ) \ rej
DS

(P , J)] ∪ ∼(LG \ J)) ,

Hence the difference between the JU- and DS-semantics is only in the set of default as-
sumptions that can be adopted to construct the model. In particular, if a rule that derives
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an objective literal l is present in all(P ), then ∼l is not among the default assumptions
in the DS-semantics although it could be used as a default assumption in the JU seman-
tics. The DS-semantics thus resolves problems with examples such as (2.3), i.e. it holds
that [[P 2 ]]DS = { { p } }. But even the DS-semantics exhibits problematic behaviour when
tautological updates are involved, e.g.

P 3 = 〈{ p.,¬p. } , { p← p. }〉 with [[P 3 ]]JU = [[P 3 ]]AS = [[P 3 ]]DS = { { p } } . (2.4)

The expected result here is that no stable model should be assigned to P 3 because initially
it has none and the tautological update should not change anything about that situation.
Trouble with tautological and some other types of irrelevant updates has been finally
resolved by Alferes et al. (2005) who defined the refined extension principle as well as a
rule update semantics satisfying the principle. The definition of this semantics is, almost
magically, very similar to the DS-semantics, the only difference being that in the set of
rejected rules, i ≤ j is required instead of i < j. The semantics is thus called the refined
dynamic stable models semantics, or RD-semantics for short:

Definition 2.56 (RD-Semantics (Alferes et al., 2005)). Let P = 〈Pi〉i<n be a DLP and J an
ASP interpretation. We define the set of rejected rules rej

RD
(P , J) as

rej
RD

(P , J) = { π ∈ Pi | ∃j ∃σ : i ≤ j < n ∧ σ ∈ Pj ∧ π 1 σ ∧ J |= B(σ) } .

The set [[P ]]RD of RD-models of a DLP P consists of all ASP interpretations J such that

J ′ = least([all(P e) \ rej
RD

(P e, J)] ∪ def(P e, J)) ,

where J ′ and least(·) are as before.

Due to satisfying the refined extension principle, the RD-semantics is completely im-
mune to tautological updates. For instance, in case of example (2.4) we obtain [[P 3 ]]RD =
∅. As we shall see, a vast majority of rule update semantics, even those that have been de-
veloped much later and are not based on causal rejection, are not immune to tautological
updates.

The rule update semantics introduced above are strongly related to one another. The
above considerations show that undesired stable models of the AS-, JU- and DS-seman-
tics were eliminated by enlarging the set of rejected rules or by shrinking the set of default
assumptions. The following theorem shows that no additional stable models were added
in the process:

Theorem 2.57 (Leite (2003); Alferes et al. (2005)). Let P be a DLP. Then,

[[P ]]AS ⊇ [[P ]]JU ⊇ [[P ]]DS ⊇ [[P ]]RD .

Moreover, for each inclusion above there exists a DLP for which the inclusion is strict.

Furthermore, all of these semantics coincide when only acyclic DLPs are considered,
showing that the differences in the definitions of rejected rules and default assumptions
are only relevant in the presence of cyclic dependencies between literals.

Theorem 2.58 (Homola (2004)). Let P be an acyclic DLP. Then,

[[P ]]AS = [[P ]]JU = [[P ]]DS = [[P ]]RD .
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The relation between these semantics and other formalisms has also been studied.
It has been shown in (Eiter et al., 2002) that the AS-semantics coincides with the non-
disjunctive case of the semantics for inheritance programs by Buccafurri et al. (1999).
Zhang and Foo (2005) showed how the AS- and DS-semantics can be characterised in
terms of logic program forgetting.

One of the open issues with these semantics is that one cannot easily condense a DLP to
a single logic program that could be used instead of the DLP to perform further updates.
The first obstacle is that the stable models of a DLP may be non-minimal, e.g.

P 4 = 〈{ p., q ← p. } , {∼p← ∼q. }〉 with [[P 4 ]]RD = { ∅, { p, q } } .

Since stable models of non-disjunctive programs are subset-minimal, no such program
can have the set of stable models [[P 4 ]]RD. Condensing to a disjunctive program is also
problematic because rule update semantics are constrained to non-disjunctive programs
only, so after a condensation one would not be able to perform any further updates.

Nevertheless, for each of the four discussed semantics (AS-, JU-, DS- and RD-seman-
tics), there do exist translations of a DLP to a single non-disjunctive program over an
extended language whose stable models correspond one-to-one with the stable models as-
signed to the DLP under the respective rule update semantics. Due to the language exten-
sion, the new program cannot simply be updated directly as a substitute for the original
DLP, but may serve as a way to study the computational properties of the rule update
semantics and as a way to implement it using existing answer-set solvers.

Related to this are also the semantics proposed by Osorio and Cuevas (2007) as sim-
pler substitutes for the AS-semantics. Unlike the semantics discussed above, they are
not defined declaratively, instead they are specified directly by translating the initial pro-
gram and its update to a single program over the same language. The first translation
essentially weakens the rules from the original program by making them defeasible, i.e.
a rule l ← B(π) is transformed into the rule l ← B(π),∼l. The authors have shown that
the resulting semantics is equivalent to the AS-semantics if a single update is performed
and the updating program contains a tautology l ← l for every objective literal l. Due to
its simplicity, this semantics is not sensitive to the addition and removal of tautologies,
but it adopts the problematic behaviour of the AS-semantics even when the tautologies
are removed from the updating program. For example, when considering the DLPs

P 5 = 〈{ p.,¬p. } , ∅〉 and P ′5 = 〈{ p.,¬p. } , { p← p.,¬p← ¬p. }〉

the AS-semantics correctly assigns no model to P 5 although its sensitivity to tautological
updates causes P ′5 to have two AS-models: { p } and {¬p }. The first semantics suggested
by Osorio and Cuevas (2007) assigns these two stable models to both P 5 and P ′5, so it
exhibits problematic behaviour even on DLPs that were correctly handled by the AS-se-
mantics.

The second translation is more involved as it produces a program that may not be
expressible by a non-disjunctive program. The resulting update semantics is shown to
coincide with the AS-semantics in case only a single update is performed. Note that since
the AS-semantics coincides with the JU-semantics on DLPs of length two, the above men-
tioned relationships between semantics from (Osorio and Cuevas, 2007) and the AS-se-
mantics also hold for the JU-semantics. Their behaviour on DLPs of length three or more
has not been studied.
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2.8.2 Preference-Based Semantics

A smaller group of rule update semantics relies on syntactic transformations and seman-
tics for prioritised logic programs. In these semantics, default negation in heads of rules is
not considered.

Formally, a prioritised logic program is a pair (P,≺) where P is a program and ≺
is a strict partial order over P. The intuitive meaning of ≺ is that if π ≺ σ, then σ is
more preferred than π. There exist a number of different semantics for prioritised logic
programs. Their goal is to plausibly use the preference relation ≺ to choose the preferred
stable models among the stable models of P.

One rule update semantics of this type was defined by Zhang (2006) and relies on
the semantics for prioritised logic programs from (Zhang, 2003).9 Generally speaking,
the semantics is assigned to a prioritised logic program (P,≺) by pruning away less
preferred rules, obtaining an ordinary logic programP≺ ⊆ P called a reduct. A prioritised
logic program may have zero or more reducts and the preferred stable models are all the
stable models of all the reducts. For a detailed discussion of reducts and their properties
the reader can refer to (Zhang, 2003).

Subsequently, the update semantics defined in (Zhang, 2006) performs an update of
a program P by a program U by performing the following steps:

1. Take some stable model JP of P.

2. Update JP by U using a specialised semantics for performing interpretation up-
dates, somewhat similar to (Marek and Truszczynski, 1998) but specified using a
prioritised logic program. Denote some ASP interpretation resulting from this up-
date by J〈P,U〉.

3. Extract a maximal subset P′ of P that is coherent with J〈P,U〉.10

4. The set of reducts of the prioritised logic program (P′ ∪ U ,P′ × U) is the result of
updating P by U .

As explained in (Zhang, 2006), the intuition behind the first two steps is that simply
taking a maximal subset of P coherent with U is too crude an operation because it does
not take into account the source of a conflict.

Example 2.59 (Intuition For Steps 1. and 2. (Zhang, 2006)). Consider the programs

P : p.

q ← r.
and

U : r ← p.

¬q ← r.

SinceP∪U is incoherent, some part ofP needs to be eliminated to regain coherence. There
are two maximal subsets of P that are coherent with U : { p. } and { q ← r. }. However,
intuition suggests that the former set is preferable since the direct conflict between rules
(q ← r.) and (¬q ← r.) provides a justification for eliminating the rule (q ← r.) and thus
keeping the fact (p.).

The approach taken, then, is to first take a stable model of P and update it by U ,
obtaining a new ASP interpretation J〈P,U〉 that reflects the new information in U . After-
wards, a maximal set of rules from P coherent with J〈P,U〉 is used to form a prioritised
logic program that prefers rules from U over rules from P. The reducts of this program
form the result of the update.

9Note that the preference relation in these papers is reversed w.r.t. the one we use in this thesis, i.e. π ≺ σ
means in (Zhang, 2003, 2006) that π is more preferred than σ.

10That is, a maximal P′ ⊆ P such that there exists a stable model of P′ ∪ { l. | l ∈ J〈P,U〉 }.
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Due to the possibility of having multiple reducts as possible results of the update, it is
not completely clear how updates can be iterated. Do we choose one reduct and commit
to it? Which one do we choose, then? Or do we simply consider all of the reducts and all
possible evolutions? Due to these unresolved issues, we formally define this semantics
only for DLPs of length two. We call it preference-based Zhang’s semantics, or PRZ-semantics
for short.

Definition 2.60 (PRZ-Semantics (Zhang, 2006)). Let P = 〈P,U〉 be a DLP without default
negation in heads of rules. The set [[P ]]PRZ of PRZ-models of P is the union of sets of stable
models of all reducts obtained by performing the steps 1. – 4. above.

One distinguishing feature of the PRZ-semantics is that by relying on a stable model
of P for conflict resolution, it is unable to detect “latent” conflicts between rules that have
not been “triggered” in the initial stable model or its update. This is illustrated in the
following example:11

Example 2.61 (Undetected Latent Conflicts in (Zhang, 2006)). Consider the programs

P : p← r.

q ← r.
and

U : r.

¬p← q.

and let P = 〈P,U〉. The single stable model of P is JP = ∅ and its update by U results in
the interpretation J〈P,U〉 = { r } which is coherent with P. The resulting prioritised logic
program (P ∪ U ,P × U) has only one reduct, P ∪ U , that has no stable model. In other
words, [[P ]]PRZ = ∅ and the conflict between P and U remained unresolved. Note also
that [[P ]]AS = [[P ]]JU = [[P ]]DS = [[P ]]RD = { {¬p, q, r } }.

The semantics from (Zhang, 2006) is also sensitive to tautological updates:

Example 2.62 (Tautological Updates in (Zhang, 2006)). Consider the programs

P : p← ∼¬p.
¬p← ∼p.

and U : p← p.

Both stable models { p } and {¬p } of P remain unchanged after an update by U and thus
both rules of P are retained in the resulting prioritised logic program (P ∪ U ,P × U).
Its only reduct, however, is the program { p← ∼¬p., p← p. }, which has a single stable
model { p }. The tautological update has thus discarded one of the stable models of P.

It also follows from the results of (Zhang, 2006) that the computational complexity of
the PRZ-semantics is higher than that of the causal rejection-based semantics.

Preference-based rule update semantics were also considered by Delgrande et al.
(2007), utilising the semantics for prioritised logic programs examined in (Schaub and
Wang, 2003).12 Instead of defining how a prioritised logic program (P,≺) can be charac-
terised in terms of reducts, as in (Zhang, 2003), Schaub and Wang (2003) specify condi-
tions that a stable model of P must satisfy in order to be a preferred stable model of (P,≺).
They use three such conditions, defined in the literature on programs with preferences,

11This example does not apply to an earlier version of the PRZ-semantics from (Zhang and Foo, 1998).
This is because the maximal subset P′ of P chosen for constructing the prioritised logic program is required
to be coherent with both J〈P,U〉 and U , not only with J〈P,U〉 as in (Zhang, 2006).

12Prioritised logic programs are called ordered logic programs in (Schaub and Wang, 2003; Delgrande et al.,
2007).
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dubbed D-preference, W-preference and B-preference, which yield an increasing number of
preferred stable models. For further details about these preference strategies the reader
can refer to (Schaub and Wang, 2003) and the references therein.

Unlike in (Zhang, 2006), the methodology chosen for performing rule updates is
based on relatively simple transformations into a prioritised logic program. In order
to define these transformations, we first need to introduce the following notation for ar-
bitrary programs P and U :

Pd =
{
l← B(π),∼l.

∣∣ (l← B(π).) ∈ P
}

C(P,U) =
{

(π, σ)
∣∣ ∃l ∈ LG : π ∈ P ∧ σ ∈ U ∧H(π) = { l } ∧H(σ) = { l }

}
c(P,U) = { π, σ | (π, σ) ∈ C(P,U) }

Intuitively, Pd denotes a program obtained from P by making all its rules defeasible,
analogically to the semantics based on weakenings by Osorio and Cuevas (2007). The set
C(P,U) contains pairs of rules from P and U with conflicting heads and c(P,U) contains
rules from P and U involved in such conflicts.

Delgrande et al. (2007) proposed three different operators for updating a program P
by a program U , each of which outputs a different prioritised logic program:

P ∗0 U =
(
Pd ∪ Ud,Pd × Ud

)
P ∗1 U =

(
Pd ∪ Ud, C(Pd,Ud)

)
P ∗2 U =

(
c(P,U)d ∪ ((P ∪ U) \ c(P,U)), C(Pd,Ud)

)
Informally, ∗0 makes all rules from P and U defeasible and gives preference to every rule
from U over any rule from P. The operator ∗1 produces a more cautious preference rela-
tion, only preferring rules from U over rules from P with conflicting heads. In addition,
the operator ∗2 refrains from weakening rules that are not involved in any conflict.

It is argued in (Delgrande et al., 2007) that these operators can be naturally generalised
to account for arbitrary (finite) sequences of programs as follows:

∗(〈Pi〉i<n) =

{
P0 ∗ P1 if n = 2

∗(〈Pi〉i<n−1) ∗ Pn−1 if n > 2

Nevertheless, this definition is slightly incomplete since the result of operators ∗0, ∗1, ∗2
is not an ordinary logic program but a prioritised one. The question then arises as to
what happens with the priority relation of an intermediate result, say P0 ∗ P1, when it
is further updated by P2. Is it going to be discarded or merged with the new preference
relation? In either case, the result should be specified by the definition.

In the following we assume that the preference relations are merged and measures
are taken to ensure that the merged relation remains a strict partial order, i.e. transitivity
is enforced after the merge. We can now define the update semantics of (Delgrande et al.,
2007) for arbitrary DLPs. We call them the PRXi-semantics with X representing the pref-
erence strategy (i.e. X is one of D, W, B) and i denoting the particular operator used for
forming the prioritised logic program (i.e. i ∈ { 0, 1, 2 }).

Definition 2.63 (PRXi-Semantics (Delgrande et al., 2007)). Let P be a DLP without de-
fault negation in heads of rules, X be one of D, W, B and i ∈ { 0, 1, 2 }. The set [[P ]]PRXi
of PRXi-models of P is the set of preferred stable models of the prioritised logic program
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∗i(P ) under the preference strategy X.

The overall properties of these rule update semantics depend on the chosen operator
(∗0, ∗1 or ∗2) and on the chosen preference strategy (D-, W- or B-preference). Neverthe-
less, as shown on examples in (Delgrande et al., 2007), all PRXi-semantics are sensitive to
tautological updates. The following example shows an interesting behaviour that distin-
guishes these semantics from the previously discussed ones:

Example 2.64 (Default Assumptions vs. Facts in (Delgrande et al., 2007)). Consider the
programs

P : ¬p. and U : p← ∼¬p.

and let P = 〈P,U〉. For any operator ∗i and preference strategy X, [[P ]]PRXi = { { p } }.
This indicates that the default assumption in the updating program is given preference
over the fact in the initial program. If we interpret p as Man(mary), then this example
shows that if initially Man(mary) is known to be false and later we learn that

Man(x)← ∼¬Man(x). ,

meaning that by default all individuals are men, then this immediately changes our
knowledge about Man(mary): we now know that Man(mary) is true!

It seems more natural to give preference to initial facts over default assumptions in
more recent rules. Note that [[P ]]AS = [[P ]]JU = { { p } , {¬p } } and [[P ]]DS = [[P ]]RD =
[[P ]]PRZ = { {¬p } }, i.e. the causal rejection semantics with unrestricted set of default as-
sumptions allow both { p } and {¬p } to be stable models of P while the “fixed” versions
of these semantics together with Zhang’s preference-based semantics actually prefer the
initial fact over the default assumption.

2.8.3 Other Approaches

Sakama and Inoue (2003) have proposed a rule update semantics that is clearly based on
ideas from belief revision, similarly as formula-based belief update operators. In partic-
ular, they define that a program P′ ∪ U achieves the update of P by U if P′ is a maximal
subset of P such that P′ ∪ U has a stable model.

As with the PRZ-semantics, we define the semantics of Sakama and Inoue (2003) only
for DLPs of length two because it is not clear how one should deal with multiple results
of an update. We call the resulting semantics the RVS-semantics:

Definition 2.65 (RVS-Semantics (Sakama and Inoue, 2003)). Let P = 〈P,U〉 be a DLP.
The set [[P ]]RVS of RVS-models of P is the union of sets of stable models of all programs
P′ ∪ U where P′ is a maximal subset of P such that P′ ∪ U is coherent.

As discussed in Example 2.59, the approach adopted by the RVS-semantics pays no
attention to the source of conflicts – any solution of a conflict is as good as any other as
long as only a minimal set of rules is eliminated. Another consequence is that conflicts
are removed at any cost, even if there is no plausible way to explain why the update
should restore coherence. This has been criticised in (Leite, 2003), arguing that every
conflict has several causes and each type of conflict should be dealt with accordingly.
One consequence of this is that an empty or tautological update may restore coherence
(and consistency) of an initial program. If we compare this to belief change principles
and operators, such a behaviour is typical of revision but is not desirable for updates.
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Similar ideas form the basis of the rule revision semantics proposed by Delgrande
(2010). Note that since the distinction between program update and revision, as these
terms are used in the literature, is somewhat blurry, in the following we also refer to
this semantics as an update semantics. Informally, the stable model of a sequence of pro-
grams is constructed by first keeping all rules from the last program and committing to
a minimal set of default literals used to derive one of its stable models. Subsequently, a
maximal coherent subset of the previous program is added and further commitments are
made. This process is iterated until the first program of the sequence is processed. For
illustration, consider the DLP

P = 〈{ p. } , { q. } , { r ← ∼p., r ← ∼q. }〉 .

We start with the last program of the sequence which has the stable model { r }. This
stable model can be derived either using the literal ∼p or ∼q and we need choose one
of these and commit to it. If we pick the former, the overall set of literals we commit
to at this stage is {∼p, r }. We then proceed to the second program and realise that it
is coherent with our commitments as well as the rules from the last program. We thus
add q to our set of commitments and the fact (q.) to the set of rules that we are going to
keep. Proceeding to the first program of the sequence, the rule within it is inconsistent
with our commitment to ∼p, so it needs to be discarded. The set of objective literals we
committed to until now, namely { q, r }, forms one stable model of P . Note that if we
initially commit to ∼q, we obtain the stable model { p, r }.

A reader interested in the technical subtleties of this semantics is encouraged to con-
sult (Delgrande, 2010). In this thesis we refer to this semantics as the RVD-semantics and
constrain ourselves to the following, rather informal definition.

Definition 2.66 (RVD-Semantics (Delgrande, 2010)). Let P be a DLP. The set [[P ]]RVD of
RVD-models of P is the set of answer sets of P as defined in Definition 4.4 of (Delgrande,
2010).

Similarly as the RVS-semantics, the RVD-semantics resolves conflicts at any cost, a
consequence of which is that empty and tautological updates restore coherence and con-
sistency. Furthermore, it exhibits the same behaviour as the PRXi-semantics in Exam-
ple 2.64, i.e. it prefers to satisfy default assumptions in further programs to satisfying
earlier facts. It actually goes even further than the PRXi-semantics, as illustrated in the
following example:

Example 2.67 (Default Assumptions vs. Facts in (Delgrande, 2010)). Consider the pro-
grams

P : p. and U : q ← ∼p.

and let P = 〈P,U〉. We obtain [[P ]]RVD = { { q } }, as opposed to [[P ]]AS = [[P ]]JU =
[[P ]]DS = [[P ]]RD = [[P ]]PRZ = [[P ]]PRXi = [[P ]]RVS = { { p } }. This indicates that the default
assumptions in the updating program are given preference over facts from the initial
program even more aggressively than in case of the PRXi-semantics. If we interpret p as
Dog(gordo) and q as¬CanBark(gordo), then this example shows that if initially Dog(gordo)
is known to be true and later we learn that

¬CanBark(x)← ∼Dog(x). ,

meaning that, by default, individuals that are not dogs can’t bark, then this immediately
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Table 2.8: Applicability of rule update semantics

Semantics Applicability

AS, JU, DS, RD Arbitrary DLPs.
PRXi, RVD DLPs without default negation in heads of rules.
PRZ, RVS DLPs of length two without default negation in heads of rules.

modifies our knowledge about gordo: we no longer know whether Dog(gordo) is true or
not and, in addition, we conclude that CanBark(gordo) is (explicitly) false.

A methodology based on maximal subsets of the initial program coherent with its
update was also used by Osorio and Zepeda (2007) for updating programs under the
pstable models semantics. The idea is used indirectly by augmenting the bodies of original
rules with additional literals and using an abductive framework to minimise the set of
rules “disabled” by falsifying the added literal. We do not further consider this semantics
because it diverges from the standard notion of a stable model and uses pstable models
instead.

Finally, there also exist approaches based on a semantic framework that directly en-
codes literal dependencies induced by rules, and performs changes on the dependencies
instead of on the rules themselves. The advantage over dealing with rules is that the
dependency relation is monotonic, so AGM postulates and operators can be applied to
it directly (Krümpelmann and Kern-Isberner, 2010; Krümpelmann, 2012). In the work of
Šefránek (2006, 2011), the dependency framework is used for specifying irrelevant updates,
an instance of which are tautological updates, and designing update semantics immune
to such irrelevant updates.

2.8.4 Fundamental Properties

As demonstrated above, rule update semantics are based on a number of different ap-
proaches and constructions and provide different results even on very simple examples.
But the goal of this thesis is to address updates of hybrid knowledge bases which sub-
sume logic programs. Any resulting hybrid update framework, when applied only to
rules, induces a corresponding rule update semantics. So from the point of view of find-
ing a suitable hybrid update framework, the fundamental properties that rule update seman-
tics have in common are more important than the differences between them.

In this section we indicate and examine five such properties. We call them syntactic
because their formulation requires that we refer to the syntax of the respective DLP. The
first three properties are satisfied by all rule update semantics that we formally intro-
duced above. The other two are satisfied by semantics based on causal rejection and thus
serve as entry points for comparing any rule update semantics with all causal rejection-
based semantics simultaneously.

Note that the distinct semantics have been defined for different classes of DLPs. When
we say that a semantics S satisfies a particular property, we constrain ourselves only to
DLPs that it can handle as inputs. The classes of DLPs to which the introduced semantics
are applicable is summarised in Table 2.8.

The first fundamental property captures the fact that rule update semantics produce
only supported models. In a static setting, support (Apt et al., 1988; Dix, 1995b) is one of
the basic conditions that Logic Programming semantics are intuitively designed to satisfy.
Its generalisation to the dynamic case is straightforward.
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Definition 2.68 (Support). Let S be a rule update semantics, P a program, l an objective
literal and J an ASP interpretation. We say that

• P supports l in J if for some rule π ∈ P, l ∈ H(π) and J |= B(π);

• P supports J if every objective literal l ∈ J is supported by P in J ;

• S respects support if for every DLP P to which S is applicable and every S-model J
of P , all(P ) supports J .

In other words, a rule update semantics respects support if every objective literal l,
true in a stable model assigned to some DLP, is in the head of some rule whose body is
true in the same model. Such a rule then provides a justification for l.

A consequence of support is that the rule update semantics satisfies a counterpart of
language conservation, as formulated in Definition 2.42 for first-order update operators. In
the context of rule updates it can be defined as follows:

Definition 2.69 (Language Conservation for Rule Updates). Let S be a rule update se-
mantics. We say that S conserves the language if for all sets of predicate symbols A, every
DLP P = 〈Pi〉i<n to which S is applicable and every S-model J of P , if pr(Pi) ⊆ A for all
i < n, then pr(J) ⊆ A.

Though support and language conservation are very basic requirements, and cer-
tainly too weak to be sufficient for a “good” rule update semantics, they seem to be very
intuitive from the Logic Programming perspective. And, indeed, they are satisfied by all
rule update semantics that we introduced previously.

Theorem 2.70 (Respect for Support and Language Conservation). Let X be one of D, W,
B and i ∈ { 0, 1, 2 }. The rule update semantics AS, JU, DS, RD, PRZ, PRXi, RVS and RVD re-
spect support and conserve the language.

Proof (sketch). See Appendix A, page 186.

The third fundamental property for rule update semantics expresses the usual expec-
tation regarding how facts should be updated by newer facts. An analogical property
also holds for Winslett’s first-order update operator (c.f. Theorem 2.45), so this case can
be seen as the common ground for both ontology and rule updates.

Definition 2.71 (Fact Update). Let S be a rule update semantics. We say that S respects
fact update if for every finite sequence of consistent sets of facts P = 〈Pi〉i<n to which S is
applicable, the unique S-model of P is the ASP interpretation{

l ∈ LG

∣∣ ∃j < n : (l.) ∈ Pj ∧ (∀i : j < i < n =⇒
{
l.,∼l.

}
∩ Pi = ∅)

}
.

Fact update enforces literal inertia, which forms the basis for belief update operators
such as Winslett’s or Forbus’, but only for the case when both the initial program and its
updates are consistent sets of facts. Similarly as before, all rule update semantics adhere
to this property.

Theorem 2.72 (Respect for Fact Update). Let X be one of D, W, B and i ∈ { 0, 1, 2 }. The rule
update semantics AS, JU, DS, RD, PRZ, PRXi, RVS and RVD respect fact update.

Proof (sketch). See Appendix A, page 187.

The fourth and fifth syntactic properties are fundamental for all semantics based on
causal rejection. The first of them is the causal rejection principle itself.
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Definition 2.73 (Causal Rejection). Let S be a rule update semantics. We say that S re-
spects causal rejection if for every DLP P = 〈Pi〉i<n to which S is applicable, every S-model
J of P , all i < n and all rules π ∈ Pi,

J 6|= π implies ∃j ∃σ : i < j < n ∧ σ ∈ Pe
j ∧ π 1 σ ∧ J |= B(σ) .

This principle requires a cause for every violated rule in the form of a more recent rule
with a conflicting head and a satisfied body. It is hard-wired in the definitions of sets of
rejected rules of the four rule update semantics that are based on it.

Theorem 2.74 (Respect for Causal Rejection). The rule update semantics AS, JU, DS and
RD respect causal rejection.

Proof (sketch). See Appendix A, page 188.

The final syntactic property stems from the fact that all rule update semantics based
on causal rejection coincide on acyclic DLPs (Homola, 2004; Alferes et al., 2005). Thus, the
behaviour of any rule update semantics on acyclic DLPs can be used as a way to compare
it to all these semantics simultaneously.

Definition 2.75 (Acyclic Justified Update). Let S be a rule update semantics. We say that
S respects acyclic justified update if for every acyclic DLP P to which S is applicable, the set
of S-stable models of P coincides with [[P ]]JU.

Theorem 2.76 (Respect for Acyclic Justified Update). The rule update semantics AS, JU,
DS and RD respect acyclic justified update.

Proof (sketch). See Appendix A, page 188.
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Part II

Updates of MKNF Knowledge Bases
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3
Dynamic MKNF Knowledge Bases

with Static Rules

JOÃO: So, how’s your work going?
MARTIN: Eh. . . well, it’s pretty frustrating. Belief update just doesn’t

fit with rule updates at all! When I try to combine them, I lose
all intuition about what the result should actually do. . .

JOÃO: Have you tried simplifying the problem a bit?
MARTIN: Hmm. . . I guess not.
JOÃO: Maybe you should.

SEPTEMBER 2009, LISBON, PORTUGAL

Now that all necessary technical background has been covered, we are ready to start
addressing the problem of updating hybrid knowledge bases. From a theoretical view-
point our objective is to identify a general-purpose update semantics for MKNF knowl-
edge bases. More specifically, we would like to assign some sort of dynamic MKNF models
to any pair of MKNF knowledge bases representing the original knowledge base and its
update. It would also be interesting to do the same for sequences of MKNF knowledge
bases, similarly as with belief and rule updates. We thus introduce the following concept:

Definition 3.1 (Dynamic MKNF Knowledge Base). A finite sequence of MKNF knowl-
edge bases is called a dynamic MKNF knowledge base (or DMKB for short).

In this chapter we address a simplified version of this general problem by constrain-
ing ourselves to updates of the ontology component of MKNF knowledge bases while
the rule component remains static. In other words, we assume that rules in a hybrid
knowledge base remain static or change infrequently so they can be kept up to date by
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manual editing. Though this restricts the applicability of the resulting update semantics,
it still encompasses many practical applications of hybrid knowledge bases, particularly
those where the ontology contains highly dynamic information and rules represent de-
fault preferences or behaviour that can be overridden by ontology updates when neces-
sary. It allows for reasoning with assumptions and naturally expressing exceptions and
provides a seamless two-way interaction between the ontology and rules.

From a more technical viewpoint, the proposed hybrid update semantics is obtained
by generalising an immediate consequence operator that characterises MKNF models of
MKNF knowledge bases. The operator is augmented with a first-order update operator
that takes care of ontology updates and then used to define dynamic MKNF models of
DMKBs with static rules. The semantics is thus parametrised by a first-order update oper-
ator; we particularly consider Winslett’s operator as one way to instantiate the semantics
and show how it behaves on a simple example.

To the best of our knowledge, this is the first proposal of an update semantics for
hybrid knowledge bases. Its overall theoretical properties depend on the properties of
the adopted first-order update operator. Assuming that the operator satisfies some of
the basic update postulates, we show that the derived hybrid update semantics enjoys a
number of desirable properties, namely it

• is faithful to the (static) semantics of MKNF knowledge bases;

• is faithful to the first-order update operator that it is based on;

• adheres to the principle of primacy of new information;

• is immune to tautological updates, i.e. such updates do not affect the semantics.

• is syntax-independent w.r.t. the original ontology and its updates;

Similarly as in most existing work on rule updates, we assume that all MKNF rules
are ground and non-disjunctive. In addition, we do not allow for rules with empty heads
and for rules with default negation in their heads. These restrictions do not remove any
further expressivity: an empty head is interchangeable with the head {⊥} and gener-
alised default literals can be eliminated from non-disjunctive rule heads as described in
Proposition 2.22. In the rest of this chapter we implicitly work under these assumptions.

The remainder of this chapter is structured as follows: In Section 3.1 we define the
consequence operator for characterising MKNF models of MKNF knowledge bases while
in Section 3.2 we imbue this operator with the ability to perform ontology updates and
use it to define an update semantics for DMKBs with static rules. We formulate and prove
the basic formal properties of this framework in Section 3.3 and conclude in Section 3.4.

The relevant proofs can be found in Appendix B. Preliminary versions of this work
have been published in (Slota and Leite, 2010a,b). Differently from those papers, the
semantics presented here is not limited to using Winslett’s operator for performing on-
tology updates – any member of a large class of first-order update operators can be used
for this purpose.

3.1 Static Consequence Operator

We begin by showing how the semantics of MKNF knowledge bases can be characterised
in terms of a consequence operator. The basic idea is very similar to the usual two-valued
immediate consequence operator from Logic Programming: given a positive MKNF pro-
gram, the operator returns the heads of all MKNF rules that are activated by the argument
interpretation. This idea can be generalised to deal with positive MKNF knowledge bases
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by joining the heads of active rules with the translation of the ontology and returning the
set of models of the resulting first-order theory. Formally:

Definition 3.2 (Consequence Operators). LetK = (O,P) be a positive MKNF knowledge
base. The immediate consequence operators TP and TK are defined for allM∈M as follows:

TP(M) =
⋃
{H(π) | π ∈ P ∧M |= κ(B(π)) } ,

TK(M) = [[TP(M) ∪ κ(O)]] .

Note that an analogous consequence operator operating on sets of modal atoms was
presented in (Motik and Rosati, 2010).

We can view the set M of all MKNF interpretations together with the empty set as
a complete lattice with the greatest element I.1 The following example illustrates how
the operator can be iterated, starting from the greatest element I, until a fixed point is
reached which coincides with the MKNF model of the MKNF knowledge base.

Example 3.3 (Iterating the Consequence Operators). Consider the MKNF knowledge
base K = (O,P) where2

O : p ∨ ¬q P : q ← r.

q ← s.

r.

Starting from the interpretationM0 = I, we will iterate the operator TK until we reach
a fixed point. SinceM0 does not satisfy the body of the first two rules in P but trivially
satisfies the body of the last one, it follows that TP(M0) = { r } and the first application
of TK can determined as follows:

TK(M0) = [[TP(M0) ∪ O ]] = [[{ r, p ∨ ¬q } ]] =M1 .

We can now see thatM1 satisfies the bodies of the first and third rule, yielding TP(M1) =
{ q, r } and thus

TK(M1) = [[TP(M1) ∪ O ]] = [[{ q, r, p ∨ ¬q } ]] = [[{ p, q, r } ]] =M2 .

The interpretation M2 is a fixed point of TK because it satisfies the bodies of the same
rules asM1 and further applications of TK have no effect on it. Moreover,M2 is also the
unique MKNF model of K.

The process demonstrated above works in general. To formally establish it, we first
note that TK is a monotonic function.

Proposition 3.4 (Monotonicity of TK). Let K be a positive MKNF knowledge base. Then TK is
a monotonic function on the complete lattice (M,⊆).

Proof. See Appendix B, page 189.

1Note that usually it is the least element that is considered in analogical constructions from Logic Pro-
gramming and the least fixed point of an operator is computed. The same could be done here but we refrain
from doing so as it requires one to use a partial order on M that is the reverse of the usual subset relation
and this may easily cause confusion.

2To make this demonstration simpler, we assume that the ontology O is a set of propositional formulae
and κ(O) = O.
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Hence, by the Knaster-Tarski theorem, TK has the greatest fixed point. This can be ei-
ther the empty set, in which case K has no MKNF model, or it coincides with the unique
MKNF model of K. In other words, TK offers a constructive characterisation of the se-
mantics of positive MKNF knowledge bases.

Proposition 3.5 (MKNF Model of a Positive MKNF Knowledge Base). Let K be a positive
MKNF knowledge base. An MKNF interpretation is an MKNF model of K if and only if it is the
greatest fixed point of TK.

Proof. See Appendix B, page 190.

To add support for default negation in bodies of MKNF rules, we can use essentially
the same strategy as the one used for defining stable models (Gelfond and Lifschitz,
1988). Given an MKNF knowledge baseK, we first eliminate default negation by forming
the reduct of K w.r.t. a candidate modelM. This reduct consists of the original ontology
and positive parts of rules with negative bodies satisfied inM.

Definition 3.6 (Reduct of an MKNF Knowledge Base). Let K = (O,P) be an MKNF
knowledge base andM an MKNF interpretation. The reduct of K w.r.t.M is the MKNF
knowledge base KM =

(
O,PM

)
where

PM =
{
H(π)← B(π)+.

∣∣ π ∈ P ∧M |= κ
(
∼B(π)−

) }
.

The following example shows that using the reduct we can determine the semantics
of an MKNF knowledge base K: an interpretationM is an MKNF model of K if and only
ifM is the MKNF model of the positive MKNF knowledge base KM.

Example 3.7 (Determining MKNF Models Using the Reduct). Let K′ = (O,P′) be an
MKNF knowledge base where O = { p ∨ ¬q } is as in Example 3.3 and

P′ : q ← r.

q ← s.

r ← ∼s.
s← ∼r.

The reduct of K′ w.r.t.M2 = [[{ p, q, r } ]] is (K′)M2 = K = (O,P) where P is as in Exam-
ple 3.3. This is becauseM2 does not satisfy the negative body ∼r of the last rule in P′,
so the rule is discarded, while it satisfies the negative body ∼s of the third rule, so the
rule turns into the fact (r.) in the reduct. We have already shown thatM2 is the MKNF
model of K. It is also one of the two MKNF models of K′. The other MKNF model,
M′2 = [[{ p, q, s } ]] can be obtained in a similar manner, by first forming the reduct of K′
w.r.t.M′2 and then verifying thatM′2 is the MKNF model of the reduct.

As the following proposition shows, this relationship holds in general.

Proposition 3.8 (MKNF Model of an MKNF Knowledge Base). Let K be an MKNF knowl-
edge base. An MKNF interpretationM is an MKNF model of K if and only if it is the MKNF
model of KM.

Proof. See Appendix B, page 191.
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3.2 Updating Consequence Operator

We have seen in the previous section that MKNF models of an MKNF knowledge base
K can be characterised in terms of reducts and the consequence operator TK, similarly as
with stable models of a logic program. In order to deal with updates to the ontology part
of the knowledge base, we can modify the consequence operator so that the ontology
gets updated accordingly whenever the operator is applied. Nevertheless, this strategy
does not let us perform rule updates as they are not performed on the level of models
and instead rely on rule syntax, making it difficult to resolve conflicts between rules and
ontology axioms. Therefore, we constrain ourselves to dealing with are DMKBs that have
static rules, as defined here:

Definition 3.9 (DMKB with Static Rules). We say that a DMKB 〈(Oi,Pi)〉i<n has static
rules if Pi = ∅ for all i such that 0 < i < n.

So assume that we are given a DMKB with static rules K and that K is positive, i.e.
all component MKNF knowledge bases of K are positive. Furthermore, suppose that we
want to use the first-order update operator � to perform ontology updates. We can use �
within the consequence operator to reflect the updates in K as follows:

Definition 3.10 (Updating Consequence Operator). Let � be a first-order update oper-
ator and K = 〈(Oi,Pi)〉i<n a positive DMKB with static rules. The updating immediate
consequence operator T �K is defined for allM∈M as follows:

T �K(M) = [[(TP0(M) ∪ κ(O0)) � O1 � · · · � On−1 ]] .

The following example illustrates the workings of the introduced consequence oper-
ator when we adopt Winslett’s operator to perform ontology updates.

Example 3.11 (Iterating the Updating Consequence Operator). Consider the DMKB K =
〈K0,K1〉where K0 = (O0,P0), K1 = (O1, ∅) and O0, P0 and O1 are as follows:

O0 : p ∨ ¬q P0 : q ← r. O1 : ¬r ∧ ¬s
q ← s.

r.

s.

Clearly, K has static rules. We can thus iteratively apply the updating consequence op-
erator T �WK , starting from the MKNF interpretationM0 = I, until we reach a fixed point.
After the first application we obtain the following:

T
�W
K (M0) = [[(TP0(M0) ∪ O0) �W O1 ]]

= [[{ r, s, p ∨ ¬q } �W {¬r,¬s } ]]
= [[{ p ∨ ¬q,¬r,¬s } ]] =M1 .

Furthermore, T �WK (M1) =M1 becauseM1 triggers only the facts (r.) and (s.) in P0, just
as M0 did. It is not difficult to verify that M1 is the greatest fixed point of T �WK and
following the analogy with the static case, we can declareM1 to be the dynamic MKNF
model of K. Note thatM1 does not satisfy the two facts in P0 since they were overridden
by the updating ontology.
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If we can show that T �K is monotonic, then it is guaranteed to have the greatest fixed
point which we can use to assign a semantics to any positive DMKB with static rules. As it
turns out, T �K is monotonic if � satisfies the principle (FO8.2).

Proposition 3.12 (Monotonicity of T �K). Let � be a first-order update operator and K a positive
DMKB with static rules. If � satisfies (FO8.2), then T �K is a monotonic function on the complete
lattice (M,⊆).

Proof. See Appendix B, page 191.

So assuming that � satisfies (FO8.2), we can declare the greatest fixed point of T �K as
the semantics of K. The following definition establishes the notion of a �-dynamic MKNF
model.

Definition 3.13 (Semantics for Positive DMKBs with Static Rules). Let � be a first-order
update operator that satisfies (FO8.2) and K a positive DMKB with static rules. An MKNF
interpretationM is a �-dynamic MKNF model of K if it is the greatest fixed point of T �K ;

Note that every positive DMKB with static rules has at most one �-dynamic MKNF
model. It may have no such model when the greatest fixed point of T �K is the empty set
because the empty set is not an MKNF interpretation.

Default negation can now be treated the same way as in the static case. We first
establish the notion of a reduct of a DMKB in the expected way.

Definition 3.14 (Reduct of a DMKB). Let K = 〈Ki〉i<n be a DMKB with static rules and
M an MKNF interpretation. The reduct of K w.r.t.M is the DMKB KM =

〈
KMi

〉
i<n

.

In the following example we illustrate how the reduct can be used to determine the
semantics of a DMKB with static rules.

Example 3.15 (Assigning Dynamic MKNF Models Using the Reduct). Take the DMKB
K ′ = 〈K′0,K1〉 where K′0 = (O,P′), O and P′ are as in Example 3.7 and K1 is as in
Example 3.11. Consider the MKNF interpretationM1 = [[{ p ∨ ¬q,¬r,¬s } ]]. The reduct
of K ′ w.r.t.M1 is (K ′)M1 = K where K is the positive DMKB from Example 3.11. This
is because becauseM1 satisfies both ∼r and ∼s, so both rules with negative bodies from
P′ become facts in the reduct. SinceM1 is also the �W-dynamic MKNF model of K, we
declare it as the �W-dynamic MKNF model of K ′.

Furthermore, note thatM1 is the only MKNF interpretation satisfying this condition.
While the initial MKNF knowledge base K′ had two MKNF models, after the update it
only has one because the generating cycle in P′ was overridden by information in K1.

We can now define the dynamic MKNF models of an arbitrary DMKB with static rules
K as those MKNF interpretationsM that are MKNF models of the reduct KM.

Definition 3.16 (Semantics for DMKBs with Static Rules). Let � be a first-order update
operator that satisfies (FO8.2) and K a DMKB with static rules. An MKNF interpretation
M is a �-dynamic MKNF model of K if it is a �-dynamic MKNF model of KM.

Finally, we define a concrete consequence relation by considering the skeptical conse-
quences of �W-dynamic MKNF models, i.e. in this definition we use Winslett’s first-order
operator for performing ontology updates.

Definition 3.17 (Consequence Relation). Let K be a DMKB with static rules and T an
MKNF theory. We say that K MKNF entails T , denoted by K |=MKNF T , if M |= T for
every �W-dynamic MKNF modelM of K.
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Consequence relations for other update operators as well as credulous and other
types of logical consequence can be obtained analogously.

Let us now demonstrate the defined update semantics on a simple example:

Example 3.18 (Updating a DMKB with Static Rules). Consider the following initial MKNF
knowledge base K0 = (T ,P) where

T : A ≡ B t C (3.1)
D ≡ ¬A u ∃R−.A (3.2)

P : ¬A(x)← ∼A(x). (3.3)
R(x,y)← A(x), E(y),∼E(x). (3.4)

The TBox assertion (3.1) together with rule (3.3) define the concept A as a union of con-
cepts B and C and they make this concept interpreted under the closed world assump-
tion instead of the open world assumption, i.e. whenever for some constant a we cannot
conclude that A(a) is true, the rule (3.3) infers ¬A(a). Assertion (3.2) defines concept D
as those members b of ¬A for which there exists some a from A with R(a, b). Rule (3.4)
infersR(a, b) whenever a is inA but not inE and b is inE. Note that the schema variables
x, y are used merely as substitutes for the set of all ground instances of the rules.

Due to the issues that Winslett’s operator has with TBox updates (c.f. Example 1.8),
we consider only ABox updates and keep the TBox static throughout the process by re-
asserting it in each update. In Chapter 5 we show that the problems with TBox updates
are not specific to Winslett’s operator but extend to a large class of model-based update
operators.

We also assume that the two constant symbols a, b are part of the language.
Initially, we can conclude by rule (3.3) that ¬A(a) and ¬A(b) are entailed by K0. Sup-

pose we want to update K0 by the ABox A1 = {A(a) }. We form the update K1 =
(A1 ∪ T , ∅) and the DMKB K1 = 〈K0,K1〉 and conclude that

K1 |=MKNF {A(a),¬A(b) } .

A further update by A2 = {¬B(a) } introduces a possibility of A(a) not being true in
case B(a) was true before and C(a) was false. This renders the truth of A(a) unknown
and sinceA is interpreted under the closed world assumption, we can conclude thatA(a)
is false. Formally, for K2 = (A2 ∪ T , ∅) and K2 = 〈K0,K1,K2〉we can observe that

K2 |=MKNF { ¬A(a),¬B(a),¬A(b) } .

Now consider the ABox update A3 = {C(a), E(b) }. Given (3.1), this reinstates A(a).
Furthermore, rule (3.4) can now infer R(a, b) and by (3.2) we obtain D(b). Formally, if we
put K3 = (A3 ∪ T , ∅) and K3 = 〈K0,K1,K2,K3〉, then it holds that

K3 |=MKNF {A(a),¬B(a), C(a),¬A(b), E(b), R(a, b), D(b) } .

In the next update A4 = {E(a) } we block the body of rule (3.4), which also prevents
D(b) from being inferred. Thus for K4 = (A4 ∪ T , ∅) and K4 = 〈K0,K1,K2,K3,K4〉 we
have

K4 |=MKNF {A(a),¬B(a), C(a),¬A(b), E(b), E(a) } .

The last update A5 = {¬E(a),¬R(a, b) } illustrates how the conclusion of a rule may
be overridden by an update – though the body of rule (3.4) is satisfied, its head does
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not become true since it is in direct conflict with A5. So if K5 = (A5 ∪ T , ∅) and K5 =
〈K0,K1,K2,K3,K4,K5〉, then

K5 |=MKNF {A(a),¬B(a), C(a),¬A(b), E(b),¬E(a),¬R(a, b) } .

3.3 Properties and Relations

We now look at some basic formal properties of the introduced update framework for
DMKBs with static rules. Throughout this section we assume that � is some first-order
update operator that satisfies (FO8.2).

First we establish that our update semantics is faithful to the main ingredients it is
based upon: the semantics of MKNF knowledge bases and the first-order update opera-
tor �. The former property can be formulated as follows:

Theorem 3.19 (Faithfulness w.r.t. MKNF Knowledge Bases). Let K = (O,P) be an MKNF
knowledge base. An MKNF interpretation M is an MKNF model of K if and only if M is a
�-dynamic MKNF model of 〈K〉.

Proof. See Appendix B, page 192.

Note that a consequence of this result and of Propositions 2.17 and 2.19 is that the
introduced update semantics is also faithful w.r.t. ontologies and stable models.

Turning to the relation with the first-order update operator �, we show that if the
initial program is empty, then the assigned dynamic MKNF model coincides with the se-
mantics of updating the initial ontology with all subsequent ones in the DMKB. Formally:

Theorem 3.20 (Faithfulness w.r.t. First-Order Update Operator). Let K = 〈(Oi, ∅)〉i<n
be a DMKB. An MKNF interpretation M is a �-dynamic MKNF model of K if and only if
M = [[3〈Oi〉i<n ]].

Proof. See Appendix B, page 192.

Now we consider other important properties that are typically expected of an update
semantics. The first one, known as the principle of primacy of new information (Dalal, 1988),
guarantees that every dynamic MKNF model satisfies the most recent update. This can
also be seen as a counterpart of the belief update postulate (FO1) and in order for the
property to hold, the first-order update operator must satisfy (FO1).

Theorem 3.21 (Primacy of New Information). Suppose that � satisfies (FO1) and let K =
〈Ki〉i<n be a DMKB with static rules such that n > 0. IfM is a �-dynamic MKNF model of K,
thenM |= κ(Kn−1).

Proof. See Appendix B, page 192.

The second property, inherited from the first-order update operator, states that up-
dates by tautological ontologies do not influence the resulting models. This can be seen
as a counterpart of the postulate (FO2.>) and is satisfied if the first-order update operator
satisfies (FO2.>) and (FO4). Note that a similar property is violated by most existing rule
update semantics (c.f. Section 2.8).

Theorem 3.22 (Immunity to Tautological Updates). Suppose that � satisfies (FO2.>) and
(FO4) and let K = 〈(Oi,Pi)〉i<n be a DMKB with static rules such that Oj ≡ ∅ for some j with
0 < j < n and

K ′ = 〈(Oi,Pi)〉i<n∧i 6=j .

66



3. DYNAMIC MKNF KNOWLEDGE BASES WITH STATIC RULES 3.3. Properties and Relations

Then K and K ′ have the same �-dynamic MKNF models.

Proof. See Appendix B, page 192.

The final property guarantees that our update semantics does not depend on the syn-
tax of ontologies, only on their semantics. It essentially shows that substituting an ontol-
ogy for an equivalent one at any point in the DMKB always leads to the same result. This
property can be seen as a counterpart of postulate (FO4.2) and partially also postulate
(FO4.1). It holds if the first-order update operator satisfies (FO4).

Theorem 3.23 (Syntax Independence). Suppose that � satisfies (FO4). Let K = 〈(Oi,Pi)〉i<n
and K ′ = 〈(O′i,P′i)〉i<n be DMKBs with static rules such that P0 = P′0 and Oi ≡ O′i for all
i < n. Then K and K ′ have the same �-dynamic MKNF models.

Proof. See Appendix B, page 193.

Note that a similar property does not hold for the initial program P0. For example,
programs such as

P : p.

q.
and

Q : p← q.

q.

have the same stable models and are even strongly equivalent (Lifschitz et al., 2001), but
an update byO = ¬q produces different results for P andQ, respectively. More formally,
〈(∅,P), (O, ∅)〉 has a �W-dynamic MKNF modelM such thatM |= p while 〈(∅,Q), (O, ∅)〉
has a �W-dynamic MKNF modelM′ such thatM′ 6|= p. We believe that this is in accord
with intuitions regarding the two initial programs. It may be the case that for stronger no-
tions of program equivalence that are better suited for updates, such as update equivalence
proposed in (Leite, 2003), this property is satisfied. This is to some extent related with
the developments in Chapters 7 and 8 where we investigate stronger notions of program
equivalence and their suitability in the context of rule updates.

For similar reasons, it is not possible to prove properties that correspond to other
belief update postulates. Consider for instance postulate (FO2). The first issue is that by
relying on the defined consequence relation, we can only approximate its formulation as
follows:

If (O,P) |=MKNF O′, then 〈(O,P), (O′, ∅)〉 |=MKNF (O,P).

In other words, instead of equivalence on the right-hand side of the postulate, we only
have entailment. But even this weaker principle is not satisfied. As a counterexample,
consider the program

P : p← ∼q. r ← p. s← p.

q ← ∼p. r ← q,∼r. ¬s← q.

and the ontology O′ = { r, s }. Though it is true that (∅,P) |=MKNF O′ because (∅,P) has
a single MKNF model that entails both r and s, it is not true that 〈(∅,P), (O′, ∅)〉 |=MKNF

(∅,P) because 〈(∅,P), (O′, ∅)〉 has two �W-dynamic MKNF models, one of which entails
both q and s, so it does not satisfy the last rule in P.

In fact, this behaviour is inherited from stable models which do not satisfy the very
similar property of cumulativity (Makinson, 1988; Dix, 1995a). Hence it is likely that (FO2)
is not going to be satisfied by any hybrid update semantics that is faithful to the stable
models semantics.
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A similar analysis can be also done for (FO3) if we identify “consistency” with exis-
tence of a (�-dynamic) MKNF model. Thus the corresponding property would read as
follows:

If both (O,P) and (O′, ∅) have an MKNF model,
then 〈(O,P), (O′, ∅)〉 has a �-dynamic MKNF model.

It is not difficult to show that this property is not satisfied – as a counterexample, con-
sider the program P = { p← q,∼p. } and ontology O′ = { q }. Though both (∅,P)
and (O′, ∅) have MKNF models, the DMKB 〈(∅,P), (O′, ∅)〉 does not have a �W-dynamic
MKNF model.

The cases of most other belief update postulates are even more involved because they
require notions such as disjunction of two MKNF knowledge bases and it is not clear how
these can be defined appropriately.

3.4 Discussion

In this chapter we have proposed the first update semantics for MKNF knowledge bases,
parametrised by a first-order update operator. It can essentially deal with a constrained
but interesting scenario in which the rules represent static knowledge, policies, norms
and default preferences, and the evolving ontology represents the open and dynamic
environment. It can be used in realistic scenarios where the general concepts and rules
are relatively fixed, and individuals tend to change their state frequently. This is the case
of many real life institutions where data about stakeholders changes on a regular basis
while the general rules and structures change only occasionally.

We have also demonstrated how the resulting semantics behaves if we pick Winslett’s
operator as the underlying update operator. Due to the problems that Winslett’s opera-
tor has with performing TBox updates, in the example we constrain ourselves to ABox
updates. In Chapter 5 we revisit this issue, showing that these problems are not specific
to Winslett’s operator but extend to all relevant model-based update operators. Hence
TBox updates need to be studied further and unified with ABox updates before a suit-
able universal hybrid update semantics can be defined.

Subsequently, we turned to the properties of the proposed update semantics and
proved that it is faithful to both the semantics for MKNF knowledge bases as well as to
the underlying first-order update operator. We also looked more closely at other generic
properties of the semantics, showing that it satisfies the principle of primacy of new infor-
mation, is immune to tautological updates, and also syntax-independent w.r.t. the initial
ontology an its updates. These properties roughly correspond to the belief update postu-
lates (FO1), (FO2.>) and (FO4).

On the other hand, the failure of our semantics to satisfy postulates such as (FO2) or
(FO3) is not surprising. A wide range of classical update and revision postulates was
already studied in the context of rule updates, only to find that most of them were not
satisfied by existing rule update semantics (Eiter et al., 2002). Part of the problem is the
fact that it is not clear how the original postulates should reinterpreted in the face of
non-monotonic semantics such as stable or MKNF models.
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4
Layered Dynamic

MKNF Knowledge Bases

JOÃO: So you say that a general update semantics for hybrid knowl-
edge bases is a mystery. How about particular scenarios? Can
we deal with those?

MARTIN: Many use cases are simply rules on top of the ontology.
The more complex ones, like Terry’s scenario. . . it still seems
that the ontology is not arbitrarily mixed with rules. It’s more
like there are some sort of ontology and rule layers that only
share information to a certain extent.

JOÃO: So we could try to extract these layers and deal with them
separately?

MARTIN: Perhaps. . .

JANUARY 2011, LISBON, PORTUGAL

We have seen in the previous chapter how to define a plausible update semantics for
DMKBs with static rules. Despite the importance of this first step towards a universal hy-
brid update semantics, its applicability is limited since typically all parts of a knowledge
base are subject to change. As an example, consider the following scenario where both
an ontology and rules are needed to assess the risk of imported cargo.

Example 4.1 (MKNF Knowledge Base for Cargo Imports). The customs service for any
developed country assesses imported cargo for a variety of risk factors including ter-
rorism, narcotics, food and consumer safety, pest infestation, tariff violations, and in-
tellectual property rights.1 Assessing this risk, even at a preliminary level, involves

1The system described here is not intended to reflect the policies of any country or agency.
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extensive knowledge about commodities, business entities, trade patterns, government
policies and trade agreements. Some of this knowledge may be external to a given cus-
toms agency: for instance the broad classification of commodities according to the in-
ternational Harmonized Tariff System (HTS), or international trade agreements. Other
knowledge may be internal to a customs agency, such as lists of suspected violators or of
importers who have a history of good compliance with regulations. While some of this
knowledge is relatively stable, much of it changes rapidly. Changes are made not only at
a specific level, such as knowledge about the expected arrival date of a shipment; but at
a more general level as well. For instance, while the broad HTS code for tomatoes (0702)
does not change, the full classification and tariffs for cherry tomatoes for import into the
US changes seasonally.

Figure 4.1 shows a simplified fragment K = (O,P) of such a knowledge base. In this
fragment, a shipment has several attributes: the country of its origination, the commodity
it contains, its importer and producer. The ontology contains a geographic classification,
along with information about producers who are located in various countries. It also con-
tains a classification of commodities based on their harmonised tariff information (HTS
chapters, headings and codes, c.f. http://www.usitc.gov/tata/hts). Tariff infor-
mation is also present, based on the classification of commodities. Finally, the ontology
contains (partial) information about three shipments: s1 , s2 and s3 . There is also a set of
rules indicating information about importers, and about whether to inspect a shipment
either to check for compliance of tariff information or for food safety issues.

In the present chapter we define a hybrid update semantics that can deal with sce-
narios such as the one described above. The semantics is parametrised by a first-order
update operator and a rule update semantics. It can deal with an interesting class of
DMKBs in which the interaction between the ontology and rules is limited but, unlike
in Chapter 3, both the ontology and rules can be updated. One way to look at it is as a
modular combination of a first-order update operator with a rule update semantics.

The main ideas for identifying this class of DMKBs come from the splitting theorems
for Logic Programs (Lifschitz and Turner, 1994). We extract the essence of this work to
characterise splittings of MKNF knowledge bases, sequences of ontologies, DLPs and
DMKBs. We subsequently show that many semantics, such as MKNF models of MKNF
knowledge bases, the models assigned by Winslett’s first-order operator to a sequence
of ontologies, or models assigned to DLPs by a number of rule update semantics, satisfy
the splitting properties in essentially the same way as was shown by Lifschitz and Turner
(1994) for stable models of logic programs.

Ultimately, these results enable us to define an update semantics for those DMKBs
that can be split into a sequence of ontology and rule layers that share information using a
rule-based interface. Each ontology layer is then updated using a first-order update oper-
ator, each rule layer using a rule update semantics, and the partial results are combined
to obtain an overall dynamic MKNF model. We show that the defined hybrid update
semantics enjoys several desirable characteristics, namely that it

• is faithful to the (static) semantics of MKNF knowledge bases;

• is faithful to the first-order update operator that it is based on;

• is faithful to the rule update semantics that it is based on;

• is in line with the hybrid update semantics introduced in Chapter 3;

• adheres to the principle of primacy of new information;

• properly deals with non-trivial updates in the scenario from Example 4.1.
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* * * O * * *

Commodity ≡ (∃HTSCode.>) EdibleVegetable ≡ (∃HTSChapter. { ‘07’ })
CherryTomato ≡ (∃HTSCode. { ‘07020020’ }) Tomato ≡ (∃HTSHeading. { ‘0702’ })
GrapeTomato ≡ (∃HTSCode. { ‘07020010’ }) Tomato v EdibleVegetable
CherryTomato v Tomato GrapeTomato v Tomato
CherryTomato u Bulk ≡ (∃TariffCharge. { $0 }) CherryTomato u GrapeTomato v ⊥
GrapeTomato u Bulk ≡ (∃TariffCharge. { $40 }) Bulk u Prepackaged v ⊥
CherryTomato u Prepackaged ≡ (∃TariffCharge. { $50 })
GrapeTomato u Prepackaged ≡ (∃TariffCharge. { $100 })
EURegisteredProducer ≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity ≡ (∃ExpeditableImporter.>) u (∃CommodCountry.EUCountry)

ShpmtCommod(s1 , c1 ) ShpmtDeclHTSCode(s1 , ‘07020020’)
ShpmtImporter(s1 , i1 ) CherryTomato(c1 ) Bulk(c1 )
ShpmtCommod(s2 , c2 ) ShpmtDeclHTSCode(s2 , ‘07020020’)
ShpmtImporter(s2 , i2 ) CherryTomato(c2 ) Prepackaged(c2 )
ShpmtCountry(s2 , portugal)
ShpmtCommod(s3 , c3 ) ShpmtDeclHTSCode(s3 , ‘07020010’)
ShpmtImporter(s3 , i3 ) GrapeTomato(c3 ) Bulk(c3 )
ShpmtCountry(s3 , portugal) ShpmtProducer(s3 , p1 )
RegisteredProducer(p1 , portugal) EUCountry(portugal)
RegisteredProducer(p2 , slovakia) EUCountry(slovakia)

* * * P * * *

AdmissibleImporter(x)← ∼SuspectedBadGuy(x).
SuspectedBadGuy(i1 ).
ApprovedImporterOf(i2 ,x)← EdibleVegetable(x).
ApprovedImporterOf(i3 ,x)← GrapeTomato(x).
CommodCountry(x,y)← ShpmtCommod(z,x),ShpmtCountry(z,y).
ExpeditableImporter(x,y)← AdmissibleImporter(y),ApprovedImporterOf(y,x).
CompliantShpmt(x)← ShpmtCommod(x,y),HTSCode(y, z),ShpmtDeclHTSCode(x, z).
RandomInspection(x)← ShpmtCommod(x,y),Random(y).
PartialInspection(x)← RandomInspection(x).
PartialInspection(x)← ShpmtCommod(x,y),∼LowRiskEUCommodity(y).
FullInspection(x)← ∼CompliantShpmt(x).
FullInspection(x)← ShpmtCommod(x,y),Tomato(y),ShpmtCountry(x, slovakia).

Figure 4.1: MKNF knowledge base for Cargo Imports
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In order to use a rule update semantics for updating MKNF rules, we constrain our-
selves to a generalised atom base that consists of objective literals, meaning that MKNF
programs coincide with logic programs. For the same reason we assume that every rule
is ground and has exactly one literal in its head. Furthermore, in this chapter we do
not consider the equality predicate because it interferes with language conservation of
Winslett’s first-order update operator (c.f. Example 2.35). In the rest of this chapter we
implicitly work under these assumptions.

The remainder of this chapter is structured as follows: Section 4.1 introduces an ab-
straction of splitting properties that is applicable to many logical frameworks and in Sec-
tion 4.2 we use this abstraction to show that the semantics of MKNF knowledge bases as
well as many update semantics satisfy the splitting properties. In Section 4.3 we use the
previously established results to identify a class of layered DMKBs to which we assign
an update semantics by modularly combining first-order updates with rule updates. Sec-
tion 4.4 is concerned with formal properties of the resulting hybrid update semantics and
illustrates how it can be applied to the scenario described in Example 4.1. We discuss the
future directions in Section 4.5.

The relevant proofs can be found in Appendix C. A preliminary version of this work
has been published in (Slota et al., 2011). The present contribution additionally contains
a formulation of the generic splitting properties and is more general since it allows for
various combinations of first-order and rule update semantics, not just for one fixed pair
as in (Slota et al., 2011).

4.1 Generalised Splitting Properties

The splitting properties were first studied by Lifschitz and Turner (1994) in the context
of Logic Programs, generalising the notion of program stratification. Roughly speaking,
the idea is to define a condition under which the stable models of a program P can be
completely determined from the stable models of its subprograms. This is certainly true if
the subprograms are constructed over mutually disjoint sets of objective literals – indeed,
in this case every stable model of P is a union of stable models of its subprograms. The
same holds vice versa if we check for consistency, i.e. every consistent union of stable
models of subprograms is a stable model of P.

The splitting properties take this idea further by allowing subprograms to share lit-
erals in a constrained, cascading manner. Assuming that we aim for a splitting into two
subprograms, one of them can “feed” information into the second one. The subprograms
are then called the bottom and top of P and the condition imposed on them is that literals
shared between them must not occur in heads of rules in the top. This essentially ensures
that rules in the top cannot influence inferences made in the bottom. It follows that each
stable model of P is a union of a stable model X of the bottom and of a stable model Y
of the top in which all shared atoms have been pre-interpreted under X . The converse
holds as well if consistency ofX ∪Y is ensured. As a matter of fact, the same relationship
holds if we split P into an arbitrary sequence of layers where each layer is allowed to
“feed” information into the following ones.

Our aim in this chapter is to define an update semantics for DMKBs that consist of
one or more ontology and rule layers that may feed information into subsequent layers.
Updates of each layer, depending on whether it is an ontology or a rule layer, are handled
by a first-order update operator or by a rule update semantics, respectively. The resulting
models are then collected and an overall dynamic MKNF model is assembled. These
ideas are materialised in Section 4.3 where we also show that if both the first-order update
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operator and rule update semantics have the splitting property, then regardless of which
splitting of the DMKB we pick, we arrive at the same set of dynamic MKNF models.

Since we rely so heavily on splitting properties, we first give their generic formula-
tion that can be instantiated for a particular formalism – be it default logic, as was done in
(Turner, 1996), or MKNF knowledge bases, first-order update operators, rule update and
hybrid update semantics, as we do in subsequent sections of this chapter. The abstrac-
tions we use for this purpose are inspired by similar abstractions in (Brewka and Eiter,
2007).

We consider logical formalisms and their semantics from an abstract perspective, as
established by the following definition:

Definition 4.2 (Logical Formalism and Semantics). A logical formalism is a pair (T, S)
where T denotes a set of syntactically correct theories and S a set of semantic structures
to be assigned to such theories. A semantics S for (T, S) is given by a partial function
[[ · ]]S : T → 2S that assigns sets of acceptable belief states from S to theories from T.

For the rest of this section we assume that the logical formalism (T, S) is fixed but the
semantics S is not. We also assume that there exists a binary operation ] such that for
all semantic structures X ,Y ∈ S, X ] Y denotes a structure that combines information
from X and Y . Note that if X is inconsistent with Y , then X ]Y need not belong to S. For
example, if S is the set of ASP interpretations, then I]J = I∪J and if I∪J contains a pair
of complementary literals, then it is not itself an ASP interpretation. We also assume that
] has a neutral element 0 ∈ S, i.e. X ] 0 = 0 ]X = X for all X ∈ S, and that [[∅ ]]S = {0 }.
In case of ASP interpretations this neutral element is ∅.

The splitting problem for (T, S) is specified by

• defining the splitting sets for every theory T ∈ T and

• defining, for every T ∈ T, every splitting set U for T and every X ∈ S, the theories
bU (T ), tU (T ) and eU (T ,X ).

Intuitively, a splitting set U for a theory T is a set of syntactic building blocks, such as
literals or predicate symbols, such that T can be split in two parts: a part that defines the
semantics of elements of U , and of no others, and a part that defines the semantics of the
remaining elements based on the semantics of elements from U . The former is called the
bottom of T relative to U and denoted by bU (T ). The latter is the top of T relative to U and
is denoted by tU (T ). The set eU (T ,X ) is the reduct of T relative to U and is obtained from
the top tU (T ) by pre-interpreting elements of U in X . The following example illustrates
these notions:

Example 4.3 (Splitting Set, Bottom, Top and Reduct of Logic Programs). In case of logic
programs under the stable models semantics, T is the set of all logic programs, S is the set
of all ASP interpretations and every splitting set is some set of objective literals (Lifschitz
and Turner, 1994). Consider the program

P : p.

q ← p,∼r.

One splitting set for this program is U = { p } because P can be split in two sets, bU (P) =
{ p. } and tU (P) = { q ← p,∼r. }, such that bU (P) only contains literals from U and tU (P)
does not contain literals from U in heads of rules.

Furthermore, the reduct eU (P, J) depends on the ASP interpretation J . If J |= p,
then eU (P, J) = { q ← ∼r. } while if J 6|= p, then eU (P, J) = ∅. In other words, eU (P, J)
consists of rules from tU (P) with all literals from U pre-interpreted in J .

73



4. LAYERED DYNAMIC MKNF KNOWLEDGE BASES 4.1. Generalised Splitting Properties

In the next section we formally define splitting sets, bottoms and reducts for various
formalisms, such as MKNF knowledge bases, finite sequences of ontologies, DLPs and
DMKBs. Nevertheless, the specifics of these definitions are not required for defining what
it means for a semantics S to satisfy the splitting properties. Assuming that the notions of
splitting set, bottom, top and reduct are known for the logical formalism (T, S), we can
define a solution w.r.t. a splitting set as follows:

Definition 4.4 (Solution w.r.t. a Splitting Set). Let S be a semantics for (T, S) and U a
splitting set for a theory T ∈ T. An S-solution to T w.r.t. U is a pair of semantic structures
(X ,Y) such that X ∈ [[bU (T )]]S and Y ∈ [[eU (T ,X )]]S and X ] Y ∈ S.

The splitting set property requires that the models assigned to a theory T correspond
one to one with the solutions to T w.r.t. some splitting set. Formally:

Definition 4.5 (Splitting Set Property). We say that a semantics S for (T, S) satisfies the
splitting set property if for all theories T ∈ T for which [[T ]]S is defined and every splitting
set U for T ,

[[T ]]S = { X ] Y | (X ,Y) is an S-solution to T w.r.t. U } .

If, instead of a single splitting set, we consider a sequence of such sets, we can divide
a theory into a sequence of layers and formulate a generalised version of the splitting
set property. This part of the theory relies on transfinite sequences of sets, so we first
introduce the following basic concepts:

Definition 4.6 (Sequence). A (transfinite) sequence is a family whose index set is an initial
segment of ordinals, {α | α < µ }. The ordinal µ is the length of the sequence. A sequence
of sets 〈Uα〉α<µ is monotone if Uβ ⊆ Uα whenever β ≤ α, and continuous if, for each limit
ordinal α < µ, Uα =

⋃
β<α Uβ . A sequence 〈Ui〉i<n is finite if n < ω.

Assuming that all splitting sets are subsets of some fixed set U, we define a splitting
sequence as follows:

Definition 4.7 (Splitting Sequence). A splitting sequence for a theory T ∈ T is a monotone,
continuous sequence 〈Uα〉α<µ of splitting sets for T such that

⋃
α<µ Uα = U.

In order to define a solution w.r.t. a splitting sequence, we need to collect models of
layers of T induced by the splitting sequence. The first layer of T is the part of T that
only describes elements from U0. Formally, this is exactly bU0(T ), so we obtain X0 as one
of its models. Proceeding inductively, for every ordinal α + 1 < µ, the corresponding
layer of T is the part of T that describes elements from Uα+1, with elements from Uα
pre-interpreted in models of previous layers. Given our notation, and assuming that the
binary operator ] can be generalised to arbitrary subsets of S, Xα+1 is chosen as one of
the models of eUα(bUα+1(T ),

⊎
β≤αXβ). Limit ordinals form a marginal case – since the

splitting sequence is continuous, the set Uα \
⋃
β<α Uβ is empty for every limit ordinal α,

hence the corresponding layer of T is empty as well and, consequently, Xα = 0. These
observations lead to the following definition:

Definition 4.8 (Solution w.r.t. a Splitting Sequence). Let S be a semantics for (T, S) and
U = 〈Uα〉α<µ a splitting sequence for a theory T ∈ T. An S-solution to T w.r.t. U is a
sequence of semantic structures 〈Xα〉α<µ such that

1. X0 ∈ [[bU0(T )]]S;
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2. For any ordinal α such that α+ 1 < µ,

Xα+1 ∈
[[
eUα

(
bUα+1(T ),

⊎
β≤αXβ

)]]
S

;

3. For any limit ordinal α < µ, Xα = 0;

4.
⊎
α<µXα ∈ S.

The splitting sequence property is now a straightforward adaptation of the splitting
set property.

Definition 4.9 (Splitting Sequence Property). We say that a semantics S for (T, S) satisfies
the splitting sequence property if for all theories T ∈ T for which [[T ]]S is defined and every
splitting sequence U = 〈Uα〉α<µ for T ,

[[T ]]S =
{⊎

α<µXα
∣∣∣ 〈Xα〉α<µ is an S-solution to T w.r.t. U

}
.

4.2 Semantics with Splitting Properties

Now we take a look at instantiations of splitting properties for the cases of MKNF knowl-
edge bases, ontology updates and rule updates. Unlike in (Lifschitz and Turner, 1994),
we consider sets of predicate symbols instead of sets of ground literals as our splitting
sets. By doing this, the set of ground literals with the same predicate symbol is consid-
ered either completely included in a splitting set or completely excluded from it. While
this makes our approach less general than if we considered each ground literal individ-
ually, it simplifies considerably the splitting of TBoxes because they contain axioms with
an implicit universal quantifier.

4.2.1 MKNF Knowledge Bases

We instantiate splitting properties for MKNF knowledge bases as follows:

• The set of theories T is the set of all MKNF knowledge bases;

• The set of semantic structures S is the set of all MKNF interpretations;

• ] is the set intersection ∩with the neutral element 0 = I;

• The semantic function [[ · ]]S returns all MKNF models of the argument MKNF knowl-
edge base.

A splitting set for an MKNF knowledge base is defined analogically to a splitting set
for a logic program, with the additional constraint that each ontology axiom must either
use only predicate symbols from the splitting set, or only predicate symbols outside the
splitting set.

Definition 4.10 (Splitting Set for an Ontology, Program and MKNF Knowledge Base). Let
K = (O,P) be an MKNF knowledge base and U ⊆ P a set of predicate symbols. We say
that U is a

• splitting set for O if for every axiom φ ∈ O, if pr(φ) ∩ U 6= ∅, then pr(φ) ⊆ U ;

• splitting set for P if for every rule π ∈ P, if pr(H(π)) ∩ U 6= ∅, then pr(π) ⊆ U ;

• splitting set for K if it is a splitting set for both O and P.
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The bottom of an MKNF knowledge base relative to a splitting set U contains ontol-
ogy axioms and rules that contain only predicate symbols from U . The top, on the other
hand, contains the remaining ontology axioms and rules. Formally:

Definition 4.11 (Bottom and Top of an Ontology, Program and MKNF Knowledge Base).
Let K = (O,P) be an MKNF knowledge base and U ⊆ P a set of predicate symbols. We
define the bottom of O and P relative to U as

bU (O) = { φ ∈ O | pr(φ) ⊆ U } and bU (P) = { π ∈ P | pr(π) ⊆ U } .

The bottom of K relative to U is bU (K) = (bU (O), bU (P)).
The top of O, P and K is defined as tU (O) = O \ bU (O), tU (P) = P \ bU (P) and

tU (K) = (tU (O), tU (P)), respectively.

Next, we need to define the reduct that makes it possible to use an MKNF model X of
the bottom of K = (O,P) to simplify the top of K. The top of the ontology tU (O) cannot
be reduced in this manner because it only contains predicate symbols that do not belong
to U . In case of the top of the program tU (P), we can discard rules that contain a body
literal L with pr(L) ⊆ U that is not satisfied in X , and eliminate the remaining literals L
with pr(L) ⊆ U . This is formally captured as follows:

Definition 4.12 (Reduct of a Program and MKNF Knowledge Base). Let K = (O,P) be
an MKNF knowledge base, U ⊆ P a set of predicate symbols and X ∈ M. We define the
reduct of P relative to U and X as

eU (P,X ) = {H(π)← { L ∈ B(π) | pr(L) ⊆ P \ U } . | π ∈ tU (P)

∧ X |= κ({ L ∈ B(π) | pr(L) ⊆ U }) } .

The reduct of K relative to U and X is eU (K,X ) = (tU (O), eU (P,X )).

The definitions of splitting properties now follow from the generic ones defined in
Section 4.1. As the following theorem shows, the MKNF models semantics satisfies both
splitting properties:

Theorem 4.13 (Splitting Theorem for MKNF Knowledge Bases). The MKNF models seman-
tics for MKNF knowledge bases satisfies the splitting set and splitting sequence properties.

Proof. See Appendix C, page 206.

An MKNF knowledge base can be split in a number of different ways. For example,
∅ and P are splitting sets for any MKNF knowledge base and sequences such as 〈P〉,
〈∅,P〉 are splitting sequences for any MKNF knowledge base. The following example
shows a more elaborate splitting sequence for the Cargo Imports knowledge base from
Example 4.1.

Example 4.14 (Splitting the Cargo Imports Knowledge Base). Consider the MKNF knowl-
edge base K = (O,P) presented in Figure 4.1. One of the non-trivial splitting sequences
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for K is U = 〈U0, U1, U2, U3〉, where

U0 = {Commodity/1,EdibleVegetable/1,Tomato/1,CherryTomato/1,

GrapeTomato/1,HTSCode/2,HTSChapter/2,HTSHeading/2,Bulk/1,

Prepackaged/1,TariffCharge/2,ShpmtCommod/2,ShpmtImporter/2,

ShpmtDeclHTSCode/2,ShpmtProducer/2,ShpmtCountry/2 } ,
U1 = U0 ∪ {AdmissibleImporter/1,SuspectedBadGuy/1,ApprovedImporterOf/2 } ,
U2 = U1 ∪ {RegisteredProducer/2,EUCountry/1,EURegisteredProducer/1,

CommodCountry/2,ExpeditableImporter/2, LowRiskEUCommodity/1 } ,
U3 = U2 ∪ {CompliantShpmt/1,Random/1,RandomInspection/1,PartialInspection/1,

FullInspection/1 } .

This splitting sequence divides K into the four layers shown in Figure 4.2. The first layer
contains all ontological knowledge regarding commodity types as well as information
about shipments. The second layer contains rules for classifying importers using internal
records and information from the first layer. The third layer contains axioms with geo-
graphic classification, information about registered producers and, based on information
about commodities and importers from the first two layers, it defines low risk commodi-
ties coming from the European Union. The final layer contains rules for deciding which
shipments should be inspected based on information from previous layers.

4.2.2 Ontology Updates

As described in Section 2.7, we use first-order update operators to deal with updates of
ontologies. In this context, given a first-order update operator �, the generic splitting
properties can be instantiated as follows:

• The set of theories T contains finite sequences of first-order theories;

• The set of semantic structures S = 2I contains sets of interpretations that adopt
the standard names assumption and interpret equality as a congruence relation (c.f.
Section 2.4 for the definition of I and Section 2.6 for motivation on its use as a basis
for first-order updates);

• Similarly as before, ] is the set intersection ∩with the neutral element 0 = I;

• The semantic function [[ · ]]S is defined by [[T ]]S = { [[3T ]] }.

The splitting set, top, bottom and reduct of a first-order theory are defined analogi-
cally to the same notions for ontologies defined in the previous section. These are then
naturally generalised to deal with sequences of first-order theories. For instance, the bot-
tom of a sequence of first-order theories is the sequence of bottoms of theories in the
sequences.

Definition 4.15 (Splitting Set, Bottom, Top and Reduct for First-Order Theories). Let T
be a first-order theory, T = 〈Ti〉i<n a finite sequence of first-order theories and U ⊆ P a
set of predicate symbols. We say that U is a

• splitting set for T if for every formula φ ∈ T , if pr(φ) ∩ U 6= ∅, then pr(φ) ⊆ U ;

• splitting set for T if for every i < n, U is a splitting set for Ti.
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* * * bU0(K) * * *

Commodity ≡ (∃HTSCode.>) EdibleVegetable ≡ (∃HTSChapter. { ‘07’ })
CherryTomato ≡ (∃HTSCode. { ‘07020020’ }) Tomato ≡ (∃HTSHeading. { ‘0702’ })
GrapeTomato ≡ (∃HTSCode. { ‘07020010’ }) Tomato v EdibleVegetable
CherryTomato v Tomato GrapeTomato v Tomato
CherryTomato u Bulk ≡ (∃TariffCharge. { $0 }) CherryTomato u GrapeTomato v ⊥
GrapeTomato u Bulk ≡ (∃TariffCharge. { $40 }) Bulk u Prepackaged v ⊥
CherryTomato u Prepackaged ≡ (∃TariffCharge. { $50 })
GrapeTomato u Prepackaged ≡ (∃TariffCharge. { $100 })

ShpmtCommod(s1 , c1 ) ShpmtDeclHTSCode(s1 , ‘07020020’)
ShpmtImporter(s1 , i1 ) CherryTomato(c1 ) Bulk(c1 )
ShpmtCommod(s2 , c2 ) ShpmtDeclHTSCode(s2 , ‘07020020’)
ShpmtImporter(s2 , i2 ) CherryTomato(c2 ) Prepackaged(c2 )
ShpmtCountry(s2 , portugal)
ShpmtCommod(s3 , c3 ) ShpmtDeclHTSCode(s3 , ‘07020010’)
ShpmtImporter(s3 , i3 ) GrapeTomato(c3 ) Bulk(c3 )
ShpmtCountry(s3 , portugal) ShpmtProducer(s3 , p1 )

* * * tU0(bU1(K)) * * *

AdmissibleImporter(x)← ∼SuspectedBadGuy(x).
SuspectedBadGuy(i1 ).
ApprovedImporterOf(i2 ,x)← EdibleVegetable(x).
ApprovedImporterOf(i3 ,x)← GrapeTomato(x).

* * * tU1(bU2(K)) * * *

EURegisteredProducer ≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity ≡ (∃ExpeditableImporter.>) u (∃CommodCountry.EUCountry)
CommodCountry(x,y)← ShpmtCommod(z,x),ShpmtCountry(z,y).
ExpeditableImporter(x,y)← AdmissibleImporter(y),ApprovedImporterOf(y,x).

RegisteredProducer(p1 , portugal) EUCountry(portugal)
RegisteredProducer(p2 , slovakia) EUCountry(slovakia)

* * * tU2(bU3(K)) * * *

CompliantShpmt(x)← ShpmtCommod(x,y),HTSCode(y, z),ShpmtDeclHTSCode(x, z).
RandomInspection(x)← ShpmtCommod(x,y),Random(y).
PartialInspection(x)← RandomInspection(x).
PartialInspection(x)← ShpmtCommod(x,y),∼LowRiskEUCommodity(y).
FullInspection(x)← ∼CompliantShpmt(x).
FullInspection(x)← ShpmtCommod(x,y),Tomato(y),ShpmtCountry(x, slovakia).

Figure 4.2: Layers of the MKNF knowledge base for Cargo Imports
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The bottom and top of T relative to U are the theories

bU (T ) = { φ ∈ T | pr(φ) ⊆ U } and tU (T ) = O \ bU (T ) .

The bottom and top of T relative to U are the sequences of theories

bU (T ) = 〈bU (Ti)〉i<n and tU (T ) = 〈tU (Ti)〉i<n .

Given some X ∈M, the reduct of T relative to U and X is eU (T ,X ) = tU (T ) and the reduct
of T relative to U and X is eU (T ,X ) = tU (T ).

Now that these definitions are established, we can use the generic definitions of split-
ting properties from Section 4.1 and instantiate them for first-order updates. Since every
sequence of first-order theories has a single set of models, the resulting properties are
simpler than their general form. Particularly, given a sequence of first-order theories T
and a splitting set U for T , the splitting set property requires that

[[3T ]] = [[3 bU (T )]] ∩ [[3 tU (T )]] .

Similarly, given a splitting sequence U = 〈Uα〉α<µ for T , the splitting sequence property
requires that

[[3T ]] = [[3 bU0(T )]] ∩
⋂

α+1<µ

[[3 tUα(bUα+1(T ))]] .

If we pick Winslett’s first-order operator as �, then both of these properties are satisfied.

Theorem 4.16 (Splitting Theorem for Winslett’s First-Order Update Operator). The se-
mantics for sequences of first-order theories induced by Winslett’s first-order operator �W satisfies
the splitting set and splitting sequence properties.

Proof. See Appendix C, page 211.

However, as illustrated in the following example, many first-order update operators
characterised by order assignments do not satisfy the splitting properties.

Example 4.17 (Violation of Splitting Properties by First-Order Update Operators). Con-
sider the sequence of theories T = 〈T0, T1〉 where T0 = { p, q } and T1 = {¬p,¬q } for
some ABox assertions p and q. Furthermore, suppose that U is a set of predicate symbols
such that pr(p) ⊆ U and pr(q) ⊆ P \ U . It follows that U is a splitting sequence for T ,
bU (T ) = 〈{ p } , {¬p }〉 and tU (T ) = 〈{ q } , {¬q }〉. Now take a first-order update opera-
tor � characterised by a faithful order assignment ω such that for some ABox assertion r
the following holds:

• for all interpretations I , J ,K with I |= p∧q, J |= ¬p∧¬q,K |= ¬p∧¬q the following
holds:

J <Iω K if and only if J |= r ∧K 6|= r .

• for all interpretations I , J , K with I |= p ∧ ¬q, J |= ¬p ∧ ¬q, K |= ¬p ∧ ¬q the
following holds:

J <Iω K if and only if J = I ∧K 6= I .
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• for all interpretations I , J , K with I |= ¬p ∧ q, J |= ¬p ∧ ¬q, K |= ¬p ∧ ¬q the
following holds:

J <Iω K if and only if J = I ∧K 6= I .

It follows from these relationships that

[[3T ]] = [[{ p, q } � {¬p,¬q } ]] |= r

while
[[3 bU (T )]] ∩ [[3 tU (T )]] = [[{ p } � {¬p } ]] ∩ [[{ q } � {¬q } ]] 6|= r .

These two observations are in conflict with the splitting set property.
Note that a first-order update operator that violates the splitting set property must

be domain-dependent, i.e. the preorder assignment it is based on encodes some domain
knowledge by causing a change in the interpretation of one predicate symbol to affect
other predicate symbols. For instance, the assignment ω in the above example prefers
interpretations that entail r over those that don’t when making a transition from a state
when both p and q were true to a state where they are both false, but not under other
circumstances. In this way, ω encodes some domain-specific relationships between p, q
and r. General-purpose operators, such as Winslett’s, that treat all predicate symbols
uniformly, do adhere to the splitting properties, so updates in syntactically independent
parts of an ontology are also semantically independent from one another.

4.2.3 Rule Updates

Given a rule update semantics S, the splitting properties for DLPs can be derived from
the generic ones as follows:

• The set of theories T contains all DLPs;

• The set of semantic structures S coincides with the set of all ASP interpretations;

• The operator ] is the set union ∪ and its neutral element is 0 = ∅;
• The semantic function [[ · ]]S is as defined by the rule update semantics S, i.e. it re-

turns the set of S-stable models of the argument DLP.

Since rule update semantics work with ASP interpretations instead of MKNF inter-
pretations, we define program reduct w.r.t. an ASP interpretation as the program reduct
w.r.t. the corresponding MKNF interpretation (c.f. Definition 2.18). Note that despite the
different definition, the resulting concept is in line with the same notion in (Lifschitz and
Turner, 1994).

Definition 4.18 (Reduct of a Program w.r.t. a Splitting Set). Let P be a program, U ⊆ P

a set of predicate symbols, J an ASP interpretation and M the MKNF interpretation
corresponding to J . We define the reduct of P w.r.t. U and J as eU (P, J) = eU (P,M).

The splitting set, bottom, top and reduct of a DLP are now straightforward adapta-
tions of the same notions for single programs.

Definition 4.19 (Splitting Set, Bottom, Top and Reduct for a DLP). Let P = 〈Pi〉i<n be a
DLP and U a set of predicate symbols. We say that U is a splitting set for P if for all i < n,
U is a splitting set for Pi.
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The bottom and top of P relative to U are defined as bU (P ) = 〈bU (Pi)〉i<n and tU (P ) =
〈tU (Pi)〉i<n, respectively. Given an ASP interpretation J , the reduct of P relative to U and
J is defined as eU (P , J) = 〈eU (Pi, J)〉i<n.

Given these definitions, the splitting properties for a rule update semantics S are di-
rectly derived from the generic ones defined in Section 4.1. Intuitively, given a DLP P
and a splitting set U , the splitting set property requires that every J ∈ [[P ]]S be the union
of some J ′ ∈ [[bU (P )]]S and some J ′′ = [[eU (P , J ′)]]S. The splitting sequence property
generalises the same requirement to splitting sequences. Many rule update semantics,
such as the causal rejection-based rule update semantics, can be shown to satisfy both
splitting properties.

Theorem 4.20 (Splitting Theorem for Rule Update Semantics). The rule update semantics
AS, JU, DS and RD satisfy the splitting set and splitting sequence properties.

Proof (sketch). See Appendix C, page 212.

Note, however, that not all rule update semantics satisfy the splitting properties. This
is demonstrated for the RVS-semantics in the following example:

Example 4.21 (Violation of Splitting Properties by RVS-Semantics). Consider the DLP

P = 〈{ p., q ← p. } , {¬q ← p. }〉 .

Suppose that U is a set of predicate symbols such that pr(p) ⊆ U and pr(q) ⊆ P \ U . It
follows that U is a splitting sequence of P and we have bU (P ) = 〈{ p. } , ∅〉 and tU (P ) =
〈{ q ← p. } , {¬q ← p. }〉.

The DLP P has two RVS-models: { p,¬q } and ∅. However, the only RVS-model of
bU (P ) is { p } and eU (P , { p }) = 〈{ q. } , {¬q. }〉 has the unique RVS-model {¬q }. The
splitting set property is thus violated because the RVS-model ∅ of P is not the union of
an RVS-model of the bottom of P and of an RVS-model of the corresponding reduct of
P .

4.3 Splitting-Based Updates of MKNF Knowledge Bases

We are now ready to utilise the splitting properties as a foundation for a hybrid update
semantics. In the following we identify a class of DMKBs in which the interaction be-
tween ontology axioms and rules is limited and show how splitting enables us to use a
given first-order update operator and a given rule update semantics to define updates of
such DMKBs.

Throughout the remainder of this chapter we assume that some first-order update
operator � and some rule update semantics S are given and fixed.

We start by defining a basic DMKB which can be handled by � or S alone. More
specifically, we allow a basic DMKB to contain

a) arbitrary ontological axioms but no rules except for positive facts (i.e. rules with an
empty body and a single objective literal in the head);

b) arbitrary rules but no ontological axioms whatsoever.

Formally:

Definition 4.22 (Basic DMKB). We say that a hybrid knowledge base K = (O,P) is
ontology-based if P is a consistent set of positive facts; rule-based if O is empty; basic if
it is either ontology- or rule-based.
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A DMKB K = 〈Ki〉i<n is ontology-based if for all i < n, Ki is ontology-based; rule-based
if for all i < n, Ki is rule-based; basic if it is either ontology- or rule-based.

Ontology-based DMKBs can be handled by the first-order update operator � while
rule-based DMKBs can be updated using the rule update semantics S. This can be for-
malised as follows:

Definition 4.23 (Update Semantics for Basic DMKBs). Let K = 〈(Oi,Pi)〉i<n be a basic
DMKB. An MKNF interpretationM is a (�,S)-dynamic MKNF model of K if either

a) K is ontology-based andM = [[3〈κ(Oi) ∪ { l | (l.) ∈ Pi }〉i<n ]], or

b) K is rule-based andM corresponds to some J ∈ [[〈Pi〉i<n ]]S.

By allowing programs in an ontology-based DMKB to contain positive facts, we pave
the way towards extending the class of basic DMKBs to a much larger class for which we
define an update semantics through splitting. Turning back to the splitting-based update
semantics for DMKBs, the central idea is that if a DMKB K can be split into multiple
layers, each of which consists of a basic DMKB, then the above defined update semantics
for basic DMKBs can be used to assign a semantics to K. We thus define the splitting set,
bottom, top and reduct for DMKBs as follows:

Definition 4.24 (Splitting Set, Bottom, Top and Reduct for a DMKB). Let K = 〈Ki〉i<n be
a DMKB and U a set of predicate symbols. We say that U is a splitting set for K if for all
i < n, U is a splitting set for Ki.

The bottom and top of K relative to U are defined as bU (K) = 〈bU (Ki)〉i<n and tU (K) =
〈tU (Ki)〉i<n, respectively.

Given some X ∈ M, the reduct of K relative to U and X is defined as eU (K,X ) =
〈eU (Ki,X )〉i<n.

With these definitions in place, we can instantiate the generic definitions from Sec-
tion 4.1 and obtain the definition of a splitting sequence as well as of a solution w.r.t. a
splitting set and splitting sequence. But we still need to make sure that after splitting, the
obtained DMKBs are basic. In case of a single splitting set U this amounts to requiring
that the bottom layer bU (K) be a basic DMKB and the reduct eU (K,X ) also be a basic
DMKB. Similarly, for a splitting sequence U = 〈Uα〉α<µ we need to make sure that bU0(K)
is a basic DMKB and for every ordinal α such that α+ 1 < µ, eUα(bUα+1(K),X ) is a basic
DMKB. The following definition establishes the notion of a layering splitting sequence by
requiring exactly these conditions given an arbitrary choice of X .

Definition 4.25 (Layering Splitting Sequence). Let K be a DMKB and U = 〈Uα〉α<µ a
splitting sequence for K. We say that U is a layering splitting sequence for K if bU0(K) is a
basic DMKB and for any ordinalα such thatα+1 < µ and everyX ∈M, eUα(bUα+1(K),X )
is also a basic DMKB. We say that K is layered if some layering splitting sequence for K
exists.

The definition of a solution to a DMKB K w.r.t. a layering splitting sequence is an
instantiation of the abstract definition in Section 4.1. We formulate it here for the sake of
completeness and use solutions to establish the concept of a (�,S)-dynamic MKNF model
of K w.r.t. a layering splitting sequence.

Definition 4.26 (Solution to a Layered DMKB). Let K = 〈(Oi,Pi)〉i<n be a DMKB and
U a layering splitting sequence for K. A solution to K w.r.t. U is a sequence of MKNF
interpretations 〈Xα〉α<µ such that
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1. X0 is a (�,S)-dynamic MKNF model of bU0(K);

2. For any ordinal α such that α+ 1 < µ, Xα+1 is a (�,S)-dynamic MKNF model of

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
;

3. For any limit ordinal α, Xα = I;

4.
⋂
α<µXα 6= ∅.

We say thatM is a (�,S)-dynamic MKNF model of K w.r.t. U ifM =
⋂
α<µXα for some

solution 〈Xα〉α<µ to K w.r.t. U .

However, the (�,S)-dynamic MKNF models defined above depend on a particular
splitting sequence and there is no guarantee that under a different splitting, the same
models will be obtained. In the following we introduce conditions under which these
models are independent of a splitting sequence. In particular, we need to assume the
following properties of � and S:

1. Splitting properties: Both � and S must satisfy the splitting properties. If this were
not the case, then solutions might depend on a splitting sequence even for basic
DMKBs.

2. Language conservation: Language conservation (c.f. Definitions 2.42 and 2.69) must
also be satisfied by both � and S, for otherwise they may interfere with one another
when used to update syntactically unrelated layers of the DMKB.

3. Fact update: Finally, since DMKBs consisting of a sequence of consistent sets of facts
are classified by Definition 4.22 as both ontology- and rule-based, their semantics is
given by both � and by S. This ambivalence is unavoidable if we want to allow both
an ontology and a rule layer to contain only facts, and in particular to be simply
empty. Nevertheless, if the semantics assigned to such sequences of fact bases by
� differs from the semantics assigned by S, the resulting hybrid update semantics
cannot generalise � nor S. In order to avoid such anomalies, we assume that both �
and S respect fact update (c.f. Definitions 2.44 and 2.71).

Note that if we consider Winslett’s operator for performing ontology updates and some
causal rejection-based rule update semantics for performing rule updates, all of these
properties are satisfied (c.f. Theorems 4.16, 4.20, 2.43, 2.70, 2.45 and 2.72). Under these
assumptions, we can show that (�,S)-dynamic MKNF models are independent of the
choice of the layering splitting sequence.

Proposition 4.27 (Independence of Splitting Sequence). Let U , V be layering splitting se-
quences for a DMKB K. If both � and S have the splitting sequence property, conserve the
language and respect fact update, thenM is a (�,S)-dynamic MKNF model of K w.r.t. U if and
only ifM is a (�,S)-dynamic MKNF model of K w.r.t. V .

Proof. See Appendix C, page 217.

We can now safely introduce the dynamic MKNF model of a layered DMKB, inde-
pendent of a particular layering splitting sequence:

Definition 4.28 (Update Semantics for Layered DMKBs). Suppose that both � and S have
the splitting sequence property, conserve the language and respect fact update, and let
K be a layered DMKB. An MKNF interpretationM is a (�,S)-dynamic MKNF model of K
ifM is a (�,S)-dynamic MKNF model of K w.r.t. some layering splitting sequence.
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Note that since 〈P〉 is a layering splitting sequence for any basic DMKB, it follows
from Proposition 4.27 that the above definition is compatible with the previously defined
semantics for basic DMKBs (c.f. Definition 4.23).

4.4 Properties and Use

The purpose of this section is twofold. First, we establish the basic properties of the
defined hybrid update semantics, showing that it is faithful to the (static) semantics of
MKNF knowledge bases as well as the first-order update operator and rule update se-
mantics it is based upon. We also prove that it respects one of the most widely accepted
principles underlying update semantics in general, the principle of primacy of new in-
formation, and is in line with the hybrid update semantics introduced in Chapter 3. Our
second goal is to illustrate its usefulness by considering updates of the MKNF knowledge
base about Cargo Imports presented in Example 4.1.

We assume throughout this section that both the first-order update operator � and the
rule update semantics S have the splitting sequence property, conserve the language and
respect fact update.

We first define two basic properties of a rule update semantics that we need to assume
in some of the theoretical results. The first property requires faithfulness of a rule update
semantics to stable models while the second is concerned with respect for primacy of
new information. Both properties are satisfied by most existing rule update semantics.

Definition 4.29 (Properties of Rule Update Semantics). Let S be a rule update semantics.
We say that S

• is faithful to the stable models semantics if for every program P, an ASP interpretation
J is a stable model of P if and only if J is an S-model of the DLP 〈P〉;
• respects primacy of new information if for every DLP P = 〈Pi〉i<n such that n > 0 and

every S-model J of P it holds that J |= Pn−1.

Our first formal result about the hybrid update semantics shows that it is faithful to
the semantics of MKNF knowledge bases. For this to work, we need to assume that the
rule update semantics is faithful to the stable models semantics.

Theorem 4.30 (Faithfulness w.r.t. MKNF Knowledge Bases). Suppose that S is faithful to
the stable models semantics and let 〈K〉 be a layered DMKB. An MKNF interpretationM is an
MKNF model of K if and only ifM is a (�,S)-dynamic MKNF model of 〈K〉.

Proof. See Appendix C, page 220.

An immediate consequence of this result and of Propositions 2.17 and 2.19 is that the
defined update semantics is also faithful w.r.t. ontologies and stable models.

Furthermore, the semantics is faithful to the first-order update operator � and the rule
update semantics S that it is based on.

Theorem 4.31 (Faithfulness w.r.t. First-Order Update Operator). Let K = 〈(Oi, ∅)〉i<n be
a DMKB. An MKNF interpretation M is a (�,S)-dynamic MKNF model of K if and only if
M = [[3〈Oi〉i<n ]].

Proof. See Appendix C, page 220.
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Theorem 4.32 (Faithfulness w.r.t. Rule Update Semantics). Let K = 〈(∅,Pi)〉i<n be a
DMKB. If J is an S-model of 〈Pi〉i<n, then the MKNF interpretation corresponding to J is a
(�,S)-dynamic MKNF model of K. IfM is a (�,S)-dynamic MKNF model of K, then the ASP
interpretation corresponding toM is an S-model of 〈Pi〉i<n.

Proof. See Appendix C, page 220.

Similarly as the update semantics in Chapter 3, assuming that � satisfies (FO1) and
S respects primacy of new information, our semantics also respects it.

Theorem 4.33 (Primacy of New Information). Suppose that � satisfies (FO1) and S respects
primacy of new information and let K = 〈Ki〉i<n be a layered DMKB such that n > 0. IfM is a
(�,S)-dynamic MKNF model of K, thenM |= κ(Kn−1).

Proof. See Appendix C, page 221.

Besides, the update semantics is compatible with the semantics from Chapter 3 – both
of them provide the same results when applied to layered DMKBs with static rules, i.e. to
the class of DMKBs that they can both handle.

Theorem 4.34 (Compatibility with Update Semantics from Chapter 3). Suppose that � sat-
isfies (FO2.>) and (FO8.2) and that S is faithful to the stable models semantics. Let K be a layered
DMKB with static rules. An MKNF interpretationM is a �-dynamic MKNF model of K if and
only ifM is a (�,S)-dynamic MKNF model of K.

Proof. See Appendix C, page 227.

The following example illustrates how the semantics can be used in the Cargo Imports
domain to incorporate new, conflicting information into an MKNF knowledge base.

Example 4.35 (Updating the Cargo Imports Knowledge Base). The MKNF knowledge
baseK in Figure 4.1 has a single MKNF modelM. We shortly summarise what is entailed
by this model. First, since the shipments s1 , s2 , s3 differ in the kind of tomatoes or in their
packaging, each of them is assigned a different tariff charge. HTS codes of commodities
inside all three shipments match the declared HTS codes, so CompliantShipment(si) is
entailed for all i. The rules for importers imply that while both AdmissibleImporter(i2 ) and
AdmissibleImporter(i3 ) are true, AdmissibleImporter(i1 ) is not true because i1 is a suspected
bad guy. It also follows that ApprovedImporterOf(i2 , c2 ) and ApprovedImporterOf(i3 , c3 )
hold and, because of that, ExpeditableImporter(c2 , i2 ) and ExpeditableImporter(c3 , i3 ) are
also true. Both shipments s2 and s3 come from a European country, so c2 and c3 belong
to LowRiskEUCommodity. But this is not true for c1 since there is no expeditable importer
for it. Consequently, PartialInspection(s1 ) holds.

We now consider an update caused by several independent events in order to illus-
trate different aspects of the hybrid update semantics. We assume to be using Winslett’s
first-order operator �W to deal with ontology updates and the RD-semantics to deal with
rule updates.

Suppose that during the partial inspection of s1 , grape tomatoes are found instead
of cherry tomatoes. Second, we suppose that i2 is no longer an approved importer for
any kind of tomatoes due to a history of mis-filing. Third, due to a rat infestation on the
boat with shipment s3 , c3 is no longer considered a low risk commodity. Finally, because
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of workload constraints, partial inspections for shipments with commodities from a pro-
ducer registered in a country of the European Union will be waived. These events lead
to the following update K′ = (O′,P′) where O′ contains the assertions

GrapeTomato(c1 ) ,

¬LowRiskEUCommodity(c3 )

as well as all TBox axioms from O,2 and P′ contains the following rules:3

∼ApprovedImporterOf(i2 ,x)← Tomato(x).

∼PartialInspection(x)← ShpmtProducer(x,y),EURegisteredProducer(y).

Note that the splitting sequence U defined in Example 4.14 is a layering splitting se-
quence for the DMKB 〈K,K′〉. The four layers of K and K′ are listed in Figures 4.2
and 4.3, respectively. The first layer 〈bU0(K), bU0(K′)〉 contains only ontology axioms
and so is ontology-based. The second and fourth layers 〈tU0(bU1(K)), tU0(bU1(K′))〉 and
〈tU2(bU3(K)), tU2(bU3(K′))〉 contain only rules and so are rule-based. On the other hand,
the third layer 〈tU1(bU2(K)), tU1(bU2(K′))〉 contains a mixture of rules and ontology ax-
ioms but all the rules have positive heads and predicate symbols of body literals belong
to U1, so the reduct of the third layer will necessarily be ontology-based.

In order to arrive at a (�W,RD)-dynamic MKNF model of 〈K,K′〉 with respect to U ,
a (�W,RD)-dynamic MKNF model of each layer is determined separately and models of
previous layers serve to “feed” information into the current layer.

In our case, we first find the model X0 of the first layer of K updated by the first
layer of K′. Due to the TBox axioms, this results in c1 no longer being a member of
CherryTomato. The HTS code of c1 also changes to ‘07020010’. Note that the conflict
between old and new knowledge is properly resolved by Winslett’s operator.

Subsequently, the RD-semantics is used to find the model of the second layer of K
updated by the second layer of K′. This rule update results in i2 no longer being an ap-
proved importer for c2 . As before, the conflict that arose is resolved by the RD-semantics.

Given the (�W,RD)-dynamic MKNF models of the first two layers, the model of the
third layer of K is now different because i2 is no longer an expeditable importer of c2 .
As a consequence, c2 is no longer a member of the concept LowRiskEUCommodity. Also,
due to the update in the third layer, c3 is not a member of LowRiskEUCommodity. The
conflicting situation is again resolved by Winslett’s operator and results in the (�W,RD)-
dynamic MKNF model X2 of the third layer of 〈K,K′〉.

Finally, due to the changes in all three previous layers, the rules in the fourth layer
imply that CompliantShpmt(s1 ) does not hold and, as a consequence, FullInspection(s1 )
holds. Also, PartialInspection(s2 ) holds because c2 is not a low risk commodity. But even
though c3 is also not a low risk commodity, PartialInspection(s3 ) does not hold. This is
due to the rule update of the fourth layer according to which the inspection of s3 must
be waived because s3 comes from an EU registered producer. The resulting model X3 of
the last layer is determined by the RD-semantics.

Note that the sequence 〈X0,X1,X2,X3〉 is a solution to 〈K,K′〉 w.r.t. the splitting se-
quence 〈U0, U1, U2, U3〉 and the unique (�W,RD)-dynamic MKNF model assigned to 〈K,K′〉
is the MKNF interpretationM = X0 ∩ X1 ∩ X2 ∩ X3.

2Due to the difficulties that Winslett’s operator has with updating TBoxes (c.f. Example 1.8), we reinclude
all TBox axioms from O in O′ in order to keep them static throughout the example.

3We assume that all rule variables are grounded prior to applying our theory.
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* * * bU0(K′) * * *

Commodity ≡ (∃HTSCode.>) EdibleVegetable ≡ (∃HTSChapter. { ‘07’ })
CherryTomato ≡ (∃HTSCode. { ‘07020020’ }) Tomato ≡ (∃HTSHeading. { ‘0702’ })
GrapeTomato ≡ (∃HTSCode. { ‘07020010’ }) Tomato v EdibleVegetable
CherryTomato v Tomato GrapeTomato v Tomato
CherryTomato u Bulk ≡ (∃TariffCharge. { $0 }) CherryTomato u GrapeTomato v ⊥
GrapeTomato u Bulk ≡ (∃TariffCharge. { $40 }) Bulk u Prepackaged v ⊥
CherryTomato u Prepackaged ≡ (∃TariffCharge. { $50 })
GrapeTomato u Prepackaged ≡ (∃TariffCharge. { $100 })

GrapeTomato(c1 )

* * * tU0(bU1(K′)) * * *

∼ApprovedImporterOf(i2 ,x)← Tomato(x).

* * * tU1(bU2(K′)) * * *

EURegisteredProducer ≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity ≡ (∃ExpeditableImporter.>) u (∃CommodCountry.EUCountry)

¬LowRiskEUCommodity(c3 )

* * * tU2(bU3(K′)) * * *

∼PartialInspection(x)← ShpmtProducer(x,y),EURegisteredProducer(y).

Figure 4.3: Layers of the update to the MKNF knowledge base for Cargo Imports

4.5 Discussion

We have introduced a hybrid update semantics for DMKBs consisting of ontology and
rule layers and demonstrated its usefulness in a realistic scenario. The semantics is capa-
ble of performing non-trivial updates, automatically resolving conflicts in the expected
manner, and propagating new information across the knowledge base. Its practical use-
fulness is underlined by the fact that the full expressivity of MKNF knowledge bases does
not seem to be necessary in a number of use cases of hybrid knowledge. The separation
of a hybrid knowledge base into distinct ontology and rule layers seems to be a natural
way of controlling, from the perspective of a knowledge engineer, how the different types
of knowledge interact.

One of the main technical advantages of this approach is that one can fully reuse ex-
isting ontology and rule update semantics without the need to modify them internally
in any way. In particular, our construction works when the given ontology and rule up-
date semantics satisfy the splitting properties which we formulated formally in Section 4.1,
conserve the language and respect fact update. We have also shown that the static MKNF
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semantics as well as Winslett’s first-order operator, commonly used for performing on-
tology updates, and many rule update semantics, such as the causal rejection-based ones,
satisfy the splitting properties. These update semantics can thus be used to parametrise
the defined update semantics for layered MKNF knowledge bases.

Furthermore, we proved that the semantics enjoys a number of desirable theoreti-
cal properties, namely that it is faithful to the semantics for MKNF knowledge bases as
well as to the constituent ontology and rule update semantics. Also, in case both the
ontology and rule update semantics respect primacy of new information, the resulting
hybrid update semantics also respects it. Another interesting theoretical result is that the
framework is in line with the update semantics for DMKBs with static rules presented in
Chapter 3. In other words, when both semantics are applicable to a particular DMKB,
they produce the same dynamic MKNF models for it.
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5
Difficulties with Updates

of Hybrid Knowledge Bases

Chaos is found in greatest abundance wherever order is being
sought. It always defeats order, because it is better organized.

Terry Pratchett
Interesting Times

In the previous two chapters we addressed the problem of hybrid updates in two
constrained scenarios, each of them applicable to different use cases of hybrid knowledge
bases. We showed that the proposed solutions are fully compatible with each other, i.e.
when both are applicable to a particular DMKB, the provided result is the same. The
natural question that comes to mind is: Can they be naturally extrapolated to arrive at a
universal hybrid update semantics?

In this chapter we discuss the overall difficulties with finding such a universal seman-
tics and argue that in order to define appropriate hybrid update semantics, more needs
to be understood regarding TBox updates and the interconnection between belief and
rule updates. This motivates us to turn away from directly addressing hybrid updates
and concentrate, in the remainder of this thesis, on bridging the gap between belief and
rule updates which may bring new insights in both these areas and provide means for
suitably combining them.

The first set of issues in trying to define semantics for DMKBs stems from the fact that
even when we constrain ourselves to ontologies or rules alone, we find serious problems
without established solutions. We could see throughout Section 2.8 that existing rule
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update semantics, though they share a common basis, differ significantly from one an-
other, even on very simple examples. Currently there does not seem to exist any consen-
sus within the community regarding which semantics is best under what circumstances.
Rather, it seems that this area of research is still waiting for a breakthrough that would
clarify how rule update semantics are related to one another as well as to belief change
postulates and operators. In addition, work on updates of disjunctive programs is virtu-
ally non-existent.

On the ontology side, in Section 2.7 we briefly described the problems with express-
ibility of the updated ontology in the original DL. In case of ABox updates, it has been
shown that in certain DLs expressibility of the updated ABox is guaranteed. Neverthe-
less, computational cost remains an important issue, especially in the case of expressive
DLs where the ABox may grow exponentially with each update.

But the difficulties with ontology updates are most evident when we consider TBox
updates. In Example 1.8 we have shown that Winslett’s update operator, most commonly
used to deal with ABox updates, leads to rather unexpected results when used to update
TBoxes. Furthermore, intuition suggests that this behaviour is not limited to Winslett’s
operator. We devote Section 5.1 to formalising this intuition and showing that model-
based update operators are incompatible with certain expectations regarding TBox up-
dates. This suggests that methods other than those studied in the area of belief updates
need to be explored in order to deal with TBox updates. Currently there is still very little
research addressing this topic, an exception being (Calvanese et al., 2010).

Furthermore, the capital differences between methods underlying ontology and rule
updates make their semantic combination very troublesome. We illustrate some of the
related problems on examples in Section 5.2, pointing at how this hinders a definition of
a general-purpose hybrid update semantics.

Given all these difficulties, in Section 5.3 we justify our decision to devote the follow-
ing chapters to bridging the gap between belief and rule updates by looking for semantic
counterparts of traditional syntax-based rule update semantics.

5.1 Problems with TBox Updates

We illustrated in Example 1.8 that Winslett’s operator does not seem to be appropriate for
performing TBox updates. This has motivated Calvanese et al. (2010) to abandon model-
based belief updates altogether and use other types of operators for updating TBoxes,
namely the formula-based update operators that bear a strong resemblance to belief re-
vision operators (c.f. Section 2.5.3 for more details).

In the present section we generalise the case made by Example 1.8 to argue that not
only Winslett’s operator, but any model-based belief update operator necessarily leads to
problematic behaviour when used for updating TBoxes. We do so by proving an impos-
sibility result, showing that certain natural expectations from TBox update operators are
incompatible with fundamental belief update postulates.

Let us first extract the essence of the problematic behaviour from Example 1.8. Sup-
pose that A, B and C are concept names. Then the following holds:

{B v A } �W { C v B } 6|= B v A .

In other words, though we would not expect the update to influence the original knowl-
edge, Winslett’s operator �W actually weakens the original axiom.

In order to extend this result to other model-based belief update operators, we need
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to consider two slightly modified instances of the above situation. In both of them we
perform the same update

U = { C v B1, C v B2, { a } v C } . (5.1)

The purpose of U is to introduce C as a new subconcept of concepts B1 and B2 and to
assert that a belongs to C. Now consider two independent initial situations

T1 = {B1 v A } and T2 = {B2 v ¬A } . (5.2)

The expectation is that since U only introduces the new concept C, it should not affect
the original information in T1 nor in T2. More formally, it should hold that

T1 � U |= T1 and T2 � U |= T2 . (5.3)

As it turns out, this is impossible if the update operator � satisfies postulates (FO1), (FO3),
and (FO8.2), propositional counterparts of which are generally accepted in the belief up-
date community (Herzig and Rifi, 1999).

We first prove the following auxiliary statement:

Lemma 5.1. Let � be a first-order update operator that satisfies postulate (FO8.2). Then the
following holds for all first-order theories T , S , U , V :

If T � U |= V , then (T ∪ S) � U |= V .

Proof. The claim follows directly by applying (FO8.2): from T ∪ S |= T we obtain (T ∪
S) � U |= T � U and since by the assumption T � U |= V , it follows that (T ∪ S) � U |= V
by transitivity of entailment.

The impossibility result is now easy to establish.

Theorem 5.2. Let � be a first-order update operator that satisfies postulates (FO1), (FO3) and
(FO8.2) and T1, T2 and U be as in (5.2) and (5.1) for some concept names A, B1, B2, C. Then
condition (5.3) is violated.

Proof. We prove by contradiction. Suppose that condition (5.3) is satisfied. The following
then follows from Lemma 5.1:1

(κ(T1) ∪ κ(T2)) � κ(U) |= κ(T1) and (κ(T1) ∪ κ(T2)) � κ(U) |= κ(T2) .

It also follows by (FO1) that

(κ(T1) ∪ κ(T2)) � κ(U) |= κ(U) .

Using (FO8.2) and the basic properties of the translation function κ(·) we can summarise
these results as follows:

κ(T1 ∪ T2) � κ(U) |= κ(T1 ∪ T2 ∪ U) .

But this contradicts (FO3) because although both T1 ∪ T2 and U are consistent ontologies,
T1 ∪ T2 ∪ U is inconsistent.

1The function κ(·) is used to turn description logic axioms into their first-order representation. It was
introduced in Definition 2.6.
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An attentive reader might be worried about a small trick we used to establish this
result. Namely, though we talk about TBox updates, the third assertion in U seems to
“simulate” an ABox assertion. It may thus seem that undesirable behaviour of belief
update operators occurs only if we either allow for ABox assertions, or the underlying
DL is expressive enough to perform ABox assertions indirectly using TBox assertions, as
was done in U using nominals. But note that the sole reason for having an ABox-like
assertion in U is that in order for the proof to work, we need T1∪T2∪U to be inconsistent.
Without it, we would ultimately not be able to prove that (FO3) is violated. We would
nevertheless still conclude that T1 ∪ T2 ∪ U is incoherent, i.e. it contains an unsatisfiable
concept name C, despite the fact that both T1 ∪ T2 and U are coherent. Since coherence in
this sense is one of the desirable properties for ontologies, we can maintain our result by
eliminating the last assertion in U and replacing (FO3) with

(FO3’) If both T and U are coherent, then T � U is also coherent.

Ultimately, Theorem 5.2 can be viewed from at least two different points of view.
First, it is a warning for anyone considering to use a belief update operator for updating
ontologies. Though there may be scenarios where this does not pose a problem, such
as when the TBox is not present, in other scenarios this can be a major issue. This also
means that even if belief updates were practically feasible for updating ontologies, they
are by themselves insufficient. Note also that this essentially renders the hybrid update
semantics suggested in Chapters 3 and 4 unsuitable for performing TBox updates. This
is especially clear in case of the semantics from Chapters 3 because of the fact that the
underlying first-order update operator satisfies postulate (FO8.2), and the very same pos-
tulate seems to be at the heart of the difficulties of model-based update operators when
dealing with TBox updates.

From another viewpoint, Theorem 5.2 is a challenge. Where do things go wrong? And
how can we fix them?

5.2 Clash Between Belief and Rule Updates

Regardless of the issues that belief updates have with TBoxes, as described in the previ-
ous section, they are still the main basis for updating ABoxes and thus play an important
role in ontology updates. On the other hand, the rule update semantics presented in Sec-
tion 2.8 were introduced as better alternatives to approaches based on belief change. It
thus comes as no surprise that they differ fundamentally from belief change principles
and operators.

Therefore, in order to devise an update semantics for hybrid knowledge bases that
is faithful to both ontology and rule updates, it is necessary to somehow reconcile these
two seemingly incompatible update paradigms. In the following we informally argue
why such a reconciliation is difficult in the general case, i.e. when our goal is to define an
update semantics that can deal with an arbitrary pair (or sequence) of hybrid knowledge
bases.

The differences between belief and rule updates can be seen at multiple different lev-
els. The most obvious ones are probably in the way they are defined. While belief update
operators are characterised on the semantic level, by specifying the models of the result
of an update, rule updates typically rely on the syntactic structure of underlying rules to
determine the ones that need to be removed, rejected, or otherwise overridden by other
rules. In case of causal rejection-based semantics, this rejection happens in context of a
stable model candidate and a fixpoint condition is used to distinguish bad candidates
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from good ones. This means that the rejected rules and the resulting models are tightly
interwoven: the model determines the rejected rules which in turn determine whether
the model is any good.

The fixation of rule update semantics upon the syntactic structure of rules has two
important consequences. First, since ontological axioms do not have the same syntactic
structure as rules, i.e. there is no notion of a body and head of an ontological axiom, it is
difficult to imagine how the ideas underlying rule updates could be applied to take care
of updating ontologies. This essentially takes out the possibility of merely adapting a
rule update semantics to deal with hybrid knowledge bases since the required syntactic
structure is absent. The semantics that do not directly rely on bodies and heads of rules,
such as RVS or RVD, are based on methods from belief revision which are also hard to
combine with belief updates due to the different nature of these change operations and
the incompatible principles that underlie them.

The second, more subtle consequence is that since rule update semantics respect sup-
port (c.f. Theorem 2.70), the rules provide justifications for literals, i.e. their activation is
necessary to sustain the truth value of a literal. This is in stark contrast with belief up-
dates where the actual axioms that brought about the truth of a literal are irrelevant and
the literal then remains true by inertia regardless of whether the initial justification is still
in effect. An example illustrating this behaviour follows:

Example 5.3 (Justifications). Consider the programs

P : p← q.

q.
and U : ¬q.

Clearly, P has a single stable model in which p is true. However, for the DLP P = 〈P,U〉
we obtain

[[P ]]AS = [[P ]]JU = [[P ]]DS = [[P ]]RD = [[P ]]PRZ = [[P ]]PRXi = [[P ]]RVS = [[P ]]RVD = { { ¬q } } .

In other words, p ceases to be true because the update removes its justification. By con-
trast, Winslett’s operator would maintain the truth of p regardless of how the truth value
of q changes. Particularly,

((q ⊃ p) ∧ q) �W (¬q) |= p .

Similarly, while a rule that has once been rejected can be reactivated in further up-
dates, reinstating its head, this is not the case with belief updates.

Example 5.4 (Inertia). Consider the program P from Example 5.3 and two updates

U1 : ¬p← r.

r.
and U2 : ¬r.

For the DLP P = 〈P,U1,U2〉we obtain

[[P ]]AS = [[P ]]JU = [[P ]]DS = [[P ]]RD = [[P ]]PRXi = [[P ]]RVD = { { p, q,¬r } } .

By contrast,
((q ⊃ p) ∧ q) �W ((r ⊃ ¬p) ∧ r) �W (¬r) |= ¬p .

The essence of these differences is that while inertia is applied to rules in case of rule
updates, Winslett’s operator applies it to literals.
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The above examples also point towards another important difference between belief
and rule updates. The basic idea of all belief update operators, expressed in postulate
(B8), is that each model represents a possible world that can be updated independently of
other possible worlds. This would seem to roughly correspond with the fact that a logic
program can have multiple stable models, each of them representing a different possible
world. However, this parallel misses one important intuitive aspect of rule-based for-
malisms. Namely, while in belief updates the syntax of a belief base is used solely as a
way of describing the set of plausible possible worlds, the rules in a program not only de-
scribe the stable models, they also encode essential relationships between literals which
are not captured by any single stable model, nor by the set of all stable models. This is
reflected in all rule update semantics, for instance in the property of support which puts
syntactic conditions on the updated models. It should also be noted that this discussion
seems to be related to the distinction between coherence and foundational theories for belief
revision (Gärdenfors, 1990; Fuhrmann, 1991; Hansson, 1993b).

The following example demonstrates that the described differences between belief
and rule updates easily clash with one another when we consider updates of simple
hybrid knowledge bases.

Example 5.5 (Clash of Intuitions). Consider the hybrid knowledge bases K1 = (O1,P1)
and K2 = (O2,P2) where

O1 : q ⊃ p
P1 : q ← r.

and
O2 : r

P2 :

What atoms should be true after an update of K1 by K2? Certainly, r must be true since
it is directly asserted in O2. Following rule update semantics, we conclude that atom q
must also be true because the rule in P1 is triggered by r and there is no reason to discard
or override it. But it is unclear whether this should cause p to become true. On the one
hand, it somehow seems that q is now true in the initial state, so in conjunction with the
axiom in O1 we should conclude that p is true. On the other hand, q is justified by r
which is only true in the updated state. Maybe it would be more correct to say that q is
concluded in the updated state, so instead we should perform an update such as

(q ⊃ p) �W q

In this case, we would not be able to conclude that p is true after the update.

What this example shows is a basic dilemma that arises due to the different mecha-
nisms that bring about truth of literals under the distinct update paradigms. The tricky
issue is not so much this particular dilemma, but the consequences it has on the general
case where predicates can be defined in both the ontology and rules. How do we then
keep track of whether a particular literal should remain justified by an active rule, or
literal inertia should apply to it instead?

This fundamental question is supplemented by other confusing matters. For example,
belief updates never recover from an inconsistent state – if initially there is no model, then
this state is maintained regardless of the updates that we perform. Contrary to this, rule
update semantics allow conflicts to be resolved by suitable updates. For instance, for the
DLP

P = 〈{ p.,¬p. } , { p. }〉
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we obtain

[[P ]]AS = [[P ]]JU = [[P ]]DS = [[P ]]RD = [[P ]]PRXi = [[P ]]RVS = [[P ]]RVD = { { p } } .

In other words, all defined rule update semantics, except for PRZ,2 assign a model to an
inconsistent program after the conflict in it has been resolved in the update. This leads to
troubling situations in case of hybrid knowledge bases: What do we do when a conflict
occurs between a part of the ontology and some rules?

Overall, we believe that finding a universal hybrid update semantics poses many
interrelated questions that need to be addressed incrementally, focusing on one aspect
of the problem at a time. The essence of the described difficulties seems to stem from
the syntactic foundations of rule updates which, on the one hand, provide the necessary
expressivity to deal with literal dependencies stated in rules, but, on the other hand, pre-
vent us from viewing both belief and rule updates from a unifying perspective. Since
the syntactic structure and directionality of rules cannot be imposed on ontology axioms,
bringing these two areas of research closer together amounts to finding a semantic charac-
terisation of rule updates that retains their essential properties, such as support, and at the
same time enables a more direct comparison with belief updates.

5.3 Approaching the Problems

We have shown in the previous sections that when considering updates of hybrid knowl-
edge bases, one encounters a variety of problems. First, state-of-the-art ontology update
and rule update semantics are both subject of active research, with many problems wait-
ing to be collectively solved in appropriate ways. We have shown that TBox updates
are a particular topic that has not been addressed much in the literature and for which
model-based belief update operators are inappropriate. On the other hand, the TBox up-
date operator proposed in (Calvanese et al., 2010) is based on ideas from belief revision
and, in our opinion, lacks the flexibility to suitably capture the wide variety of use cases
and TBox updates that will occur in them.

The second group of problems arises from attempting to combine existing approaches
on ontology and rule updates in a common semantic framework. Due to the fundamental
differences between these two update paradigms, this introduces a number of difficult
questions regarding how the unified semantics should behave and how it can be defined.

In the following chapters we thus aim to clarify the relationship between belief and
rule updates by searching for semantic characterisations of rule updates. If successful, this
line of research can bring ontology and rule updates closer together and bring new in-
sights into both of these separate research areas.

2The PRZ-semantics assigns no model to P because the initial program has no stable model. However, a
consequence of this behaviour is that there are no PRZ-models even in situations when a model is typically
expected. For instance, when P ∪ U has a stable model, this stable model should intuitively be assigned to
the DLP 〈P,U〉. A particular example of this is when P = { p← ∼p. } and U = { p. }. Even though P ∪ U
has a stable model, there is no PRZ-model of 〈P,U〉 because P has no stable model.
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6
Belief Updates on SE-Models

MARTIN: Yes! I have it! I have the representation theorem!
JOÃO: I’m not sure what you are talking about but it sounds good!
MARTIN: The update operators on SE-models? They work! I have a

counterpart of KM postulates and a representation theorem!
JOÃO: And how are these operators? Behaving well?
MARTIN: I still haven’t come up with a particular operator. I’ll tell

you as soon as I have one.

JANUARY 2010, LISBON, PORTUGAL

In this chapter we initiate our efforts to define rule update operators that do not rely
on rule syntax and relate them to the traditional syntax-based rule update semantics. Our
ultimate goal in this respect is to find a unifying perspective that would embrace both
ontology and rule updates, enabling a deeper understanding of all involved methods
and principles, creating room for their cross-fertilisation and so facilitating the search for
a general update semantics for hybrid knowledge bases.

In Section 2.8 we showed that state-of-the-art rule update semantics are based on
fundamentally different principles and methods than belief updates. Particularly, modi-
fications on the level of individual stable models (Alferes and Pereira, 1996), akin to the
belief update framework of Katsuno and Mendelzon (1991), are unable to capture the
essential relationships between literals encoded in rules (Leite and Pereira, 1997).

Quite recently, AGM revision was successfully reformulated in the context of Logic
Programming and specific revision operators for programs were investigated by Del-
grande et al. (2008). Central to this novel approach are SE-models (Turner, 2003), a mono-
tonic characterisation of logic programs that is strictly more expressive than stable mod-
els. The results of (Delgrande et al., 2008) constitute an important breakthrough in the
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research of logic program evolution because they change the focus from the syntactic
representation of a program to its semantic content.

In this chapter we follow a similar path, but to tackle the problem of logic program
updates instead of revision as in (Delgrande et al., 2008).

Using SE-models, we adapt the belief update postulates to rule updates and prove
a representation theorem that provides a constructive characterisation of all rule update
operators satisfying the postulates. This essentially makes it possible to define and evalu-
ate any operator satisfying the postulates using an intuitive construction. We also define
a concrete rule update operator that can be seen as a counterpart of Winslett’s belief up-
date operator (Winslett, 1990, see Section 2.5 for its definition).

However, while investigating the operator’s properties, we uncover a serious draw-
back which, as it turns out, extends to all rule update operators based on SE-models and
Katsuno and Mendelzon’s approach to updates. In particular, it turns out that these op-
erators are incompatible with the properties of support and fact update which are at the
core of rule updates (c.f. Theorems 2.70 and 2.72). This is a very important finding as
it guides the research on rule updates away from the semantic approach materialised
in AGM and KM postulates or, alternatively, to the development of semantic character-
isations of programs, richer than SE-models, that are appropriate for describing their
dynamic behaviour.

The remainder of this chapter is structured as follows: In Section 6.1 we formally in-
troduce SE-models and other required concepts and notation. Section 6.2 contains the
reformulation of belief update postulates for rule updates together with a representation
theorem and definition of a specific rule operator that satisfies the postulates. In Sec-
tion 6.3 we analyse the previously defined operator and establish that all semantic rule
update operators based on SE-models exhibit an undesired behaviour. We then sum-
marise our findings in Section 6.4.

The relevant proofs are provided in Appendix D. A preliminary version of this work
has been published in (Slota and Leite, 2010c).

6.1 Preliminaries

In this and the following chapters we constrain ourselves to propositional logic programs
without explicit negation over a finite set of propositional atoms A. The definitions of
logic program syntax and semantics from Section 2.3 can be directly adapted to this con-
strained case. Unless stated otherwise, we do allow for disjunctive rules and for default
literals in heads of rules. When referring to logic programs we frequently drop the des-
ignation “logic” since we no longer consider other types of programs, such as MKNF
programs in Part II.

Without explicit negation, an ASP interpretation is simply a subset of A and coincides
with the concept of a propositional interpretation. In the following we simply refer to
both these concepts as interpretations and denote the set of all interpretations by I = 2A.

SE-models (Turner, 2003), based on the non-classical logic of Here-and-There (Heyt-
ing, 1930; Pearce, 1997), provide a monotonic characterisation of logic programs that is
expressive enough to capture both classical and stable models of a logic program. They
can be viewed as three-valued interpretations.

Definition 6.1 (Three-Valued Interpretation). A three-valued interpretation is a pair of in-
terpretations X = (I, J) such that I ⊆ J . Each atom p ∈ A is assigned one of three truth
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values in X :

X(p) =


T if p ∈ I;

U if p ∈ J \ I;

F if p ∈ A \ J.

The set of all three-valued interpretations is denoted by X.

SE-models themselves are defined by referring to the same program reduct that we
used to define stable models in Section 2.3.

Definition 6.2 (SE-Model). Let P be a program. A three-valued interpretation (I, J) is
an SE-model of P if J |= P and I |= PJ . The set of all SE-models of P is denoted by [[P ]]SE.

Note that J |= P if and only if (J, J) ∈ [[P ]]SE, so SE-models capture the classical
models of a program. And just like classical models, the set of SE-models of a program is
monotonic, i.e. larger programs have smaller sets of SE-models. This is one of the impor-
tant differences between SE-models and the non-monotonic stable models. Nevertheless,
stable models of a program can be extracted from its set of SE-models.

Proposition 6.3 (Stable Models from SE-Models (Turner, 2003)). An interpretation J is a
stable model of a program P if and only if (J, J) ∈ [[P ]]SE and for all I ( J , (I, J) /∈ [[P ]]SE.

This implies that programs with the same set of SE-models also have the same set
of stable models. Moreover, when such programs are augmented with the same set of
rules, the resulting programs still have the same set of stable models. In many situations
such a property is very desirable as it allows one program to be modularly replaced
by another one, even in the presence of additional rules, without affecting the resulting
stable models. It is typically referred to as strong equivalence (Lifschitz et al., 2001).

Proposition 6.4 (SE-Models and Strong Equivalence (Turner, 2003)). LetP,Q be programs.
Then [[P ]]SE = [[Q ]]SE if and only if for every programR, [[P ∪R ]]SM = [[Q∪R ]]SM.

This property also explains the origin of the name SE-models – SE stands for strong
equivalence. Therefore, we define strong equivalence and entailment as follows:

Definition 6.5 (Strong Equivalence and Strong Entailment). Let P, Q be programs. We
say that P strongly entails Q, denoted by P |=SE Q, if [[P ]]SE ⊆ [[Q ]]SE, and that P is strongly
equivalent to Q, denoted by P ≡SE Q, if [[P ]]SE = [[Q ]]SE.

One distinguishing property of SE-models that we will need to carefully consider
in the following sections is that whenever a program P has the SE-model (I, J), it also
has the SE-model (J, J). In other words, whenever I ( J , there is no program that has
the single SE-model (I, J). Delgrande et al. (2008) thus say that a set of SE-models of a
program is always well-defined. We introduce the following concepts in order to be able
to talk about this property:

Definition 6.6 (Well-Defined Set of Interpretations and Basic Program). A set of three-
valued interpretations M is well-defined if for every three-valued interpretation (I, J),
(I, J) ∈M implies (J, J) ∈M.

For every three-valued interpretation X = (I, J) we denote by X∗ the three-valued
interpretation (J, J). We say that a program P is basic if [[P ]]SE = {X,X∗ } for some
three-valued interpretation X .
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A program is basic if it either has a unique SE-model (J, J), or a pair of SE-models
(I, J) and (J, J). In the former case, the program exactly determines the truth values of
all literals – the atoms in J are true and the atoms in A \ J are false. In the latter case,
the program only forces the atoms in I to be true and the atoms in J \ I may either be
undefined or true, as long as they all have the same truth value.

The following proposition formally pinpoints the fact that the set of SE-models of any
program is well-defined and, vice versa, every well-defined set of three-valued interpre-
tations is the set of SE-models of some program.

Proposition 6.7 (Delgrande et al. (2008)). A set of three-valued interpretations M is well-
defined if and only ifM = [[P ]]SE for some program P.

6.2 Semantic Rule Update Operators Based on SE-Models

With the necessary concepts defined, we are ready to step forward and tailor the belief
update postulates and operators to the context of logic programs and SE-models. Sim-
ilarly as in the case of belief updates, we liberally define a rule update operator as any
function that takes two inputs, the original program and its update, and returns the up-
dated program.

Definition 6.8 (Rule Update Operator). A rule update operator is a binary function on the
set of all programs.

In order to reformulate postulates (B1) – (B8) for programs under the SE-models se-
mantics, we first need to specify what a conjunction and disjunction of logic programs
is. To this end, we introduce program conjunction and disjunction operators. These are
required to assign, to each pair of programs, a program whose set of SE-models is the
intersection and union, respectively, of the sets of SE-models of argument programs.

Definition 6.9 (Program Conjunction and Disjunction). A binary operator ∧̇ on the set of
all programs is a program conjunction operator if for all programs P, Q,

[[P ∧̇ Q ]]SE = [[P ]]SE ∩ [[Q ]]SE .

A binary operator ∨̇ on the set of all programs is a program disjunction operator if for all
programs P, Q,

[[P ∨̇ Q ]]SE = [[P ]]SE ∪ [[Q ]]SE .

In the following we assume that some program conjunction and disjunction operators
∧̇, ∨̇ are given. Note that the program conjunction operator may simply return the union
of argument programs; it is the same as the expansion operator defined in (Delgrande et al.,
2008). A program disjunction operator can be defined by translating the argument pro-
grams into the logic of Here-and-There (Heyting, 1930; Łukasiewicz, 1941; Pearce, 1997),
taking their disjunction and transforming the resulting formula back into a logic program
(using results from (Cabalar and Ferraris, 2007)).

The final obstacle before we can proceed with introducing the new postulates is the
following: We need to substitute the notion of a complete formula used in (B7) with a suit-
able class of logic programs. It turns out that the notion of a basic program, as introduced
in Definition 6.6, is a natural candidate for this purpose. While a complete formula is
defined as having a unique model, a program is basic if it has either a unique SE-model
(J, J), or a pair of SE-models (I, J) and (J, J). The latter case needs to be allowed in
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order to make the new postulate applicable to three-valued interpretations (I, J) with
I ( J because no program has the single SE-model (I, J).

The following are the reformulated postulates for a rule update operator ⊕ and pro-
grams P, Q, U , V :

(P1)SE P ⊕ U |=SE U .

(P2)SE If P |=SE U , then P ⊕ U ≡SE P.

(P3)SE If [[P ]]SE 6= ∅ and [[U ]]SE 6= ∅, then [[P ⊕ U ]]SE 6= ∅.
(P4)SE If P ≡SE Q and U ≡SE V , then P ⊕ U ≡SE Q⊕ V .

(P5)SE (P ⊕ U) ∧̇ V |=SE P ⊕ (U ∧̇ V).

(P6)SE If P ⊕ U |=SE V and P ⊕ V |=SE U , then P ⊕ U ≡SE P ⊕ V .

(P7)SE If P is basic, then (P ⊕ U) ∧̇ (P ⊕ V) |=SE P ⊕ (U ∨̇ V).

(P8)SE (P ∨̇ Q)⊕ U ≡SE (P ⊕ U) ∨̇ (Q⊕ U).

We can also formulate the weakened versions of postulates (P2)SE and (P4)SE, useful
when we need to pinpoint a particular part of a postulate that causes a certain behaviour.

(P2.>)SE P ⊕ ∅ ≡SE P.

(P2.1)SE P ∧̇ U |=SE P ⊕ U .

(P2.2)SE (P ∧̇ U)⊕ U |=SE P.

(P4.1)SE If P ≡SE Q, then P ⊕ U ≡SE Q⊕ U .

(P4.2)SE If U ≡SE V , then P ⊕ U ≡SE P ⊕ V .

We now turn to a constructive characterisation of rule update operators satisfying
conditions (P1)SE – (P8)SE. Analogically to belief updates, it is based on an order assign-
ment, but this time over the set of all three-valued interpretations X. Since the set of
SE-models of a program must be well-defined, not every order assignment characterises
a rule update operator. We thus additionally define well-defined order assignments as those
that do.

Definition 6.10 (Rule Update Operator Characterised by an Order Assignment). Let⊕ be
a rule update operator and ω a preorder assignment over X. We say that⊕ is characterised
by ω if for all programs P, U ,

[[P ⊕ U ]]SE =
⋃

X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω

)
.

We say that a preorder assignment over X is well-defined if some rule update operator is
characterised by it.

Similarly as with belief updates, we require the order assignment to be faithful, i.e. to
consider each three-valued interpretation the closest to itself.

Definition 6.11 (Faithful Order Assignment). A preorder assignment ω over X is faithful
if for every three-valued interpretation X the following condition is satisfied:

For every Y ∈ X with Y 6= X it holds that X <Xω Y .

Interestingly, faithful assignments characterise the same class of operators as the larger
class of semi-faithful assignments, defined as follows:
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Definition 6.12 (Semi-Faithful Order Assignment). A preorder assignment ω over X is
semi-faithful if for every three-valued interpretation X the following conditions are satis-
fied:

1. For every Y ∈ X with Y 6= X and Y 6= X∗, either X <Xω Y or X∗ <Xω Y .

2. If X∗ ≤Xω X , then X ≤Xω X∗.

Finally, we require the preorder assignment to satisfy one further condition, related
to the well-definedness of sets of SE-models of every program. It can naturally be seen
as the semantic counterpart of (P7)SE.

Definition 6.13 (Organised Preorder Assignment). A preorder assignment ω is organised
if for all three-valued interpretations X , Y and all well-defined sets of three-valued inter-
pretationsM, N the following condition is satisfied:

If Y ∈ min(M,≤Xω ) ∪min(M,≤X∗ω ) and Y ∈ min(N ,≤Xω ) ∪min(N ,≤X∗ω ),

then Y ∈ min(M∪N ,≤Xω ) ∪min(M∪N ,≤X∗ω ).

We are now ready to formulate the main result of this section:

Theorem 6.14 (Representation Theorem). Let ⊕ be a rule update operator. The following
conditions are equivalent:

a) The operator ⊕ satisfies conditions (P1)SE – (P8)SE.

b) The operator ⊕ is characterised by a semi-faithful and organised preorder assignment.

c) The operator ⊕ is characterised by a faithful and organised partial order assignment.

Proof. See Appendix D, page 236.

This theorem provides a constructive characterisation of rule update operators satis-
fying the defined postulates. It facilitates the analysis of their properties, both semantic
as well as computational. Note also that it implies that the larger class of semi-faithful
and organised preorder assignments is equivalent to the smaller class of faithful and or-
ganised partial order assignments. Furthermore, it offers a strategy for defining operators
satisfying the postulates that can be directly implemented. This strategy is also complete
in the sense that, up to strong equivalence, all operators satisfying the postulates can be
characterised and distinguished by applying this strategy.

In what follows, we define a specific update operator based on the ideas underly-
ing Winslett’s belief update operator (Winslett, 1990) defined in Section 2.5. Similarly
as was argued in (Delgrande et al., 2008), since we are working with well-defined sets
of three-valued interpretations, preference needs to be given to their second component.
We define the assignment W for all three-valued interpretationsX = (I, J), Y = (K1, L1),
Z = (K2, L2) as follows: Y ≤X

W
Z if and only if the following conditions are satisfied:

1. (L1 ÷ J) ⊆ (L2 ÷ J);

2. If (L1 ÷ J) = (L2 ÷ J), then (K1 ÷ I) \∆ ⊆ (K2 ÷ I) \∆ where ∆ = L1 ÷ J .

Intuitively, first we compare the differences between the second components of Y and Z
w.r.t. X . If they are equal, we compare the differences between the first components of Y
and Z w.r.t. X , but now ignoring the differences between the second components.

The following result shows that W indeed satisfies the necessary conditions to char-
acterise rule update operators satisfying the postulates.

Proposition 6.15. W is a well-defined, faithful and organised preorder assignment.
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Proof. See Appendix D, page 239.

Since W is well-defined, there exist rule update operators characterised by it. Further-
more, as a consequence of Theorem 6.14 and Proposition 6.15:

Corollary 6.16. Rule update operators characterised by W satisfy conditions (P1)SE – (P8)SE.

6.3 Syntactic Properties of Semantic Rule Updates

One of the benefits of dealing with rule updates on the semantic level is that semantic
properties that are rather difficult to show for syntax-based update operators are much
easier to analyse and prove. For example, one of the most widespread and counterintu-
itive side-effects of syntax-based rule update semantics is that they are sensitive to tau-
tological updates. In case of semantic update operators, such a behaviour is impossible
given that the operator satisfies (P2.>)SE and (P4.2)SE.

However, semantic update operators do not always behave the way we expect. Con-
sider first an example using some update operator ⊕W characterised by the order assign-
ment W defined in the previous section:

Example 6.17. Suppose that A = { p, q }, i.e. there are exactly two propositional atoms,
and let the programs P,Q and U be as follows:

P : p. Q : p← q. U : ∼q.
q. q.

It can be verified that:1

[[P ⊕W U ]]SE = [[Q⊕W U ]]SE = { (p, p) } .

Hence both P ⊕W U andQ⊕W U have the single stable model J = { p }. In case of P ⊕W U
this is indeed the expected result. But in case ofQ⊕WU we can see that p is true in J even
though there is no rule in Q ∪ U justifying it, i.e. there is no rule with p in its head and
its body satisfied in J . In other words, the rule update semantics induced by ⊕W does not
respect support.

We have seen in Section 2.8 that support is one of the fundamental properties of rule
update semantics – a wide range of semantics, from causal rejection-based ones, to ones
based on ideas from belief revision, respect support (c.f. Theorem 2.70). As the above
example shows, this is not the case with the rule update operator ⊕W.

Unfortunately, the violation of fundamental properties of existing rule update seman-
tics is not specific to the operator ⊕W. The following theorem shows that every rule up-
date operator satisfying (P4.1)SE violates either support or fact update, another basic prop-
erty satisfied by a range of different rule update semantics (c.f. Theorem 2.72).

Theorem 6.18. A rule update operator that satisfies (P4.1)SE either does not respect support or it
does not respect fact update.

Proof. Let ⊕ be a rule update operator that satisfies (P4.1)SE and consider again the pro-
grams P, Q and U from Example 6.17. Since P is strongly equivalent to Q, by (P4.1)SE we
obtain that P⊕U is strongly equivalent toQ⊕U . Consequently, P⊕U has the same stable

1For the sake of readability we omit the usual set notation when listing SE-interpretations. For example,
instead of ({ p } , { p, q }) we simply write (p, pq).
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models as Q ⊕ U . It only remains to observe that if ⊕ respects fact update, then P ⊕ U
has the unique stable model { p }. But then { p } is a stable model of Q ⊕ U in which p is
unsupported by Q∪ U . Hence ⊕ does not respect support.

This theorem shows that rule update operators based on SE-models and Katsuno and
Mendelzon’s belief update framework necessarily violate either support or fact update.
These two properties are based on fundamental and widely accepted intuitions. They
are by no means exhaustive or sufficient – it is not difficult to define rule update opera-
tors that respect both support and fact update but are sensitive to tautological updates or
quickly end up in an inconsistent state without a possibility of recovery. But both proper-
ties seem necessary, even elementary properties of a well-behaved rule update operator.

Moreover, the principle (P4)SE is also adopted for revision of logic programs based on
SE-models in (Delgrande et al., 2008).2 This means that Theorem 6.18 extends to semantic
program revision operators, such as those defined in (Delgrande et al., 2008).

6.4 Discussion

The previous sections have revealed how belief update postulates and operators can be
reformulated using SE-models to arrive at rule update operators with clear semantic
characterisations. We have shown a rule update analogue of the representation theorem
for belief updates and defined a specific rule update operator, akin to Winslett’s belief
update operator, that satisfies counterparts of belief update postulates. The semantic na-
ture of update operators that fit within the defined update framework not only facilitates
the investigation of their properties, both semantic as well as computational, but it also
provides an intuitive strategy for constructively defining these operators. This is the first
major contribution of this chapter since it brings, for the first time, updates of logic pro-
grams in line with belief update principles and methods.

The second important contribution is the uncovering of a serious drawback that ex-
tends to all rule update and revision operators based on SE-models and AGM-style ap-
proach to program revision and update. All such operators violate at least one of two fun-
damental albeit basic properties satisfied by a range of rule update semantics: respect for
support and for fact update. This might be mitigated if a richer semantic characterisation
of logic programs was used instead of SE-models. Such a characterisation would have
to be able to distinguish between programs such as P = { p., q. } and Q = { p← q., q. }
because they are expected to behave differently when subject to evolution.

Thus, our findings are very important as they guide further research on updates of
logic programs either

a) away from the semantic approach materialised in AGM-style postulates, or

b) to the development of semantic characterisations of logic programs that are richer
than SE-models and appropriately capture their dynamic behaviour, or even

c) back to the syntax-based rule update semantics.

2Note that the belief update postulate (B4), from which (P4)SE originates, is also one of the reformulated
AGM postulates for belief revision (Katsuno and Mendelzon, 1992). The original AGM framework (Alchour-
rón et al., 1985) assumes that the initial knowledge base B is closed w.r.t. logical consequence and the first
AGM postulate requires that the result of revision also be a closed set. Under these assumptions, different
knowledge bases cannot be equivalent and, as a consequence, the original AGM postulate corresponding to
(B4) is ?5: If Cn(µ) = Cn(ν), then B ? µ = B ? ν (where Cn is the logical consequence operator and ? the
revision operator).
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The following two chapters combine the latter two options. First, in Chapter 7, we study
the possibility of viewing a program as the set of sets of models of its rules. We consider
SE-models as well as a novel semantic characterisation of rules for this purpose and study
the associated notions of program equivalence and entailment. The obtained results are
vital in Chapter 8 where we propose to perform rule updates by introducing new models
– exceptions – to the sets of models of rules in the original program. This leads us towards
a semantic characterisation of the historically first rule update semantics, bridging the
original syntax-based approach to rule updates with a semantic one.
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7
Semantic Characterisations

of Rules and Programs

JOÃO: I’ve had this idea during the talks today, let me tell you be-
fore I forget. So we know that SE-models of a program are
insufficient to perform updates. How about if we keep more
information. . . like the sets of SE-models of all the rules?

MARTIN: I’m not sure I’m following.
JOÃO: I mean that we could look at a program as the set of sets of

SE-models of its rules. Could we then perform updates better?
MARTIN: I’m not sure. . . maybe. I’ll think about it.

MAY 2010, TORONTO, CANADA

We have established in the previous chapter that updating a logic program through
its set of SE-models is insufficient if we want to adhere to desirable properties of rule
updates, namely support and fact update. Since our main objective is the study of semantic
approaches to rule updates and their relationship with syntax-based ones, we need to
look for richer semantic characterisations of programs that allow for update operators
that are in line with properties such as support and fact update.

In the present chapter we focus on the possibility of viewing a logic program as the
set of sets of models of its rules. This way we acknowledge rules as the atomic pieces of
knowledge in a program and can distinguish many more programs than by considering
only the overall set of models of the program. As we shall see in Chapter 8, we can
then devise rule update operators that not only respect both support and fact update, but
provide a direct semantic characterisation of the historically first syntax-based approach
to rule updates: the JU-semantics (for a definition see Section 2.8, page 44).
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The apparent question that remains is: What kind of models do we choose for the
individual rules in a program? SE-models seem to be a natural choice because stable
models of a program can be inferred from its set of SE-models, which in turn can be
obtained by intersecting the sets of SE-models of its rules. This brings out the question of
the expressivity of SE-models w.r.t. a single rule: Which rules can be distinguished using
SE-models and which ones cannot?

We provide an answer to this question in Section 7.1 by summarising and extend-
ing the results about SE-models from the literature. Our main finding is that although
SE-models conveniently filter out many insignificant differences between rules, they are
also unable to distinguish some rules which are treated differently by many rule update
semantics. For example, rules such as (∼p ← q.) and (∼q ← p.) have the same SE-mod-
els, making it impossible to use SE-models to emulate rule update semantics that rely on
distinguishing the literals in rule heads.

In order to enable such rules to be distinguished semantically, in Section 7.2 we pro-
pose a novel characterisation of rules and programs which we dub RE-models. We show
that RE-models retain the essential properties of SE-models and so form a suitable basis
for characterising rule updates.

Subsequently, in Section 7.3, we review notions of program equivalence and entail-
ment known from the literature and compare them to those that naturally follow from
viewing a program as a set of sets of SE- or RE-models.

The relevant proofs can be found in Appendix E. Preliminary versions of some parts
of this chapter have appeared in (Slota and Leite, 2011, 2012a).

7.1 SE-Models vs. Individual Rules

The objective of this section is to understand the relationship between SE-models and
single rules. We continue to work under the assumptions introduced in Chapter 6: we
consider propositional logic programs without explicit negation over a finite set of propo-
sitional atoms A. For more details and a definition of SE-models of logic programs we
refer the reader to Section 6.1.

We start by introducing the non-standard notion of a canonical tautology, a unique
rule that represents the class of rules satisfied in any interpretation. It will be useful
throughout the remainder of this thesis.

Definition 7.1 (Canonical Tautology). Let pτ be a fixed atom from A. The canonical tau-
tology τ is the rule (pτ ← pτ .).

SE-models of a single rule are defined analogically to SE-models of logic programs,
using the notion of a rule reduct.

Definition 7.2 (Reduct and SE-Model of a Rule). Let π be a rule and J an interpretation.
The reduct of π relative to J is the rule

πJ =

{
τ if J |= (∼H(π)− ← ∼B(π)−.)

H(π)+ ← B(π)+. otherwise

A three-valued interpretation (I, J) is an SE-model of π if J |= π and I |= πJ . The set
of all SE-models of a rule π is denoted by [[π ]]SE.

We say that π is (SE-)tautological if [[π ]]SE = X. Rules π, σ are SE-equivalent if [[π ]]SE =
[[σ ]]SE. A set of three-valued interpretations M is SE-rule-expressible if M = [[π ]]SE for
some rule π.
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Note that the canonical tautology is SE-tautological. Also, given a program P, it is
not difficult to verify that [[P ]]SE =

⋂
π∈P[[π ]]SE.

In order to formally pinpoint the expressivity of SE-models w.r.t. individual rules, in
Section 7.1.1 we introduce a set of representatives of rule equivalence classes induced by
SE-models and show how the representative of a class can be constructed given one of
its members. Subsequently, Section 7.1.2 shows how to reconstruct a representative from
the set of its SE-models. In Section 7.1.3 we determine the conditions under which a set
of three-valued interpretations is SE-rule-expressible.

7.1.1 SE-Canonical Rules

We start by bringing out simple but powerful transformations that simplify a given rule
while preserving its SE-models. Although many of these results have already been for-
mulated in various ways before (Inoue and Sakama, 1998; Janhunen, 2001; Inoue and
Sakama, 2004; Cabalar et al., 2007), here we present the ones relevant to identify a set of
representatives of rule equivalence classes induced by SE-models.

For the rest of this section we assume that H and B are sets of literals, p is an atom
and L a literal. The following result summarises the conditions under which a rule is
tautological:

Lemma 7.3 (Consequence of Theorem 4.4 in (Inoue and Sakama, 2004); part i) of Lemma 2
in (Cabalar et al., 2007)). Rules of the following forms are SE-tautological:

p;H ← p,B. H;∼p← B,∼p. H ← B, p,∼p.

Proof. See Appendix E, page 242.

Lemma 7.3 shows that repeating an atom in different “components” of the rule fre-
quently causes the rule to be tautological. In particular, this happens if the same atom
occurs in the positive head and positive body, or in the negative head and negative body,
or in the positive and negative bodies of a rule. How about the cases when the head
contains the negation of a literal from the body? The following Lemma clarifies this situ-
ation:

Lemma 7.4 (Consequence of (3) and (4) in Lemma 1 in (Cabalar et al., 2007)). Rules of the
following forms are SE-equivalent:

H;∼L← L,B. H ← L,B.

Proof. See Appendix E, page 243.

So if a literal is present in the body of a rule, its negation can be removed from the
head without affecting the SE-models of the rule.

Until now we have seen that a rule π that has a common atom in at least two of the
sets H(π)+ ∪ H(π)−, B(π)+ and B(π)− is either tautological, or SE-equivalent to a rule
where the atom is omitted from the rule’s head. In other words, π is SE-equivalent either
to the canonical tautology τ , or to a rule without such repetitions.

Perhaps surprisingly, repetitions in the positive and negative heads cannot be simpli-
fied away. For example, over the alphabet Ap = { p }, the disjunctive rule (p;∼p← .) has
two SE-models, (∅, ∅) and ({ p } , { p }), so it is not SE-tautological, nor is it SE-equiva-
lent to any of the facts (p.) and (∼p.). Actually, it is not very difficult to see that it is not
SE-equivalent to any other rule, even over larger alphabets. So the fact that an atom is in
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bothH(π)+ andH(π)− cannot all by itself imply that some kind of SE-models preserving
rule simplification is possible.

The final result reveals a special case in which we can eliminate the whole negative
head of a rule and move it to its positive body. This occurs whenever the positive head is
empty.

Lemma 7.5 (Related to Corollary 4.10 in (Inoue and Sakama, 1998) and to Corollary 1 in
(Cabalar et al., 2007)). Rules of the following forms are SE-equivalent:

∼p;∼H− ← B. ∼H− ← p,B.

Proof. See Appendix E, page 243.

Armed with the above results, we can introduce the notion of an SE-canonical rule.
Each such rule represents a different rule equivalence class induced by the SE-models
semantics. In other words, every rule is SE-equivalent to exactly one SE-canonical rule.
After the definition, we provide constructive transformations which show that this is
indeed the case. Note that the definition can be derived directly from the lemmas above:

Definition 7.6 (SE-Canonical Rule). We say that a rule π is SE-canonical if either it is τ , or
the following conditions are satisfied:

1. The sets H(π)+ ∪H(π)−, B(π)+ and B(π)− are pairwise disjoint.

2. If H(π)+ is empty, then H(π)− is also empty.

This definition is closely related to the notion of a fundamental rule introduced in Def-
inition 1 of (Cabalar et al., 2007). There are two differences between SE-canonical and
fundamental rules:

(1) A fundamental rule need not satisfy condition 2. above;

(2) No SE-tautological rule is fundamental.

As a consequence, fundamental rules do not cover all SE-rule-expressible sets of three-
valued interpretations, and two distinct fundamental rules may still be SE-equivalent.
From the point of view of rule equivalence classes induced by the SE-models semantics,
there is one class that contains no fundamental rule (the class of SE-tautological rules),
and some classes contain more than one fundamental rule. In the following we show
that SE-canonical rules overcome both limitations of fundamental rules, i.e. every rule is
SE-equivalent to exactly one SE-canonical rule. To this end, we define constructive trans-
formations that directly show the mutual relations between rule syntax and semantics.

The following transformation provides a direct way of constructing an SE-canonical
rule that is SE-equivalent to a given rule π.

Definition 7.7 (Transformation into an SE-Canonical Rule). Given a rule π, we define the
SE-canonical rule canSE(π) as follows:

(i) If any of the sets H(π)+ ∩B(π)+, H(π)− ∩B(π)− and B(π)+ ∩B(π)− is non-empty,
then canSE(π) = τ .

(ii) If (i) does not apply and H(π)+ \B(π)− 6= ∅, then canSE(π) is the rule

(H(π)+ \B(π)−);∼(H(π)− \B(π)+)← B(π)+,∼B(π)−.

(iii) If (i) does not apply and H(π)+ \B(π)− = ∅, then canSE(π) is the constraint

← (B(π)+ ∪H(π)−),∼B(π)−.

112



7. SEMANTIC CHARACTERISATIONS OF RULES AND PROGRAMS 7.1. SE-Models vs. Individual Rules

Correctness of the transformation follows directly from Lemmas 7.3, 7.4 and 7.5.

Theorem 7.8. Every rule π is SE-equivalent to the SE-canonical rule canSE(π).

Proof. See Appendix E, page 244.

What remains to be proven is that no two different SE-canonical rules are SE-equiva-
lent. In the next section we show how every SE-canonical rule can be reconstructed from
the set of its SE-models. As a consequence, no two different SE-canonical rules can have
the same set of SE-models.

7.1.2 Reconstructing Rules from SE-Models

In order to reconstruct a rule π from the set of its SE-models, we need to understand how
exactly each literal in the rule influences its models. The following lemma provides a
useful characterisation of the set of countermodels of a rule in terms of its syntax:

Lemma 7.9 (Different formulation of Theorem 4 in (Cabalar et al., 2007)). Let (I, J) be
a three-valued interpretation and π a rule. Then (I, J) /∈ [[π ]]SE if and only if the following
conditions are satisfied:

1. Either B(π)+ ⊆ I ⊆ A \H(π)+ or J ∩H(π)+ = ∅ and

2. H(π)− ∪B(π)+ ⊆ J ⊆ A \B(π)−.

Proof. See Appendix E, page 244.

If we take a closer look at the conditions in Lemma 7.9, we find that the presence of
an atom from B(π)− in J guarantees that the second condition is falsified, so (I, J) is
an SE-model of π, regardless of the content of I . Somewhat similar is the situation with
positive head atoms – whenever an atom from H(π)+ is present in I , the first condition
is falsified and (I, J) is an SE-model of π. More formally, given a rule π, for every atom
p ∈ B(π)− it holds that

p ∈ J implies (I, J) ∈ [[π ]]SE (7.1)

and for every atom p ∈ H(π)+ it holds that

p ∈ I implies (I, J) ∈ [[π ]]SE . (7.2)

If we restrict ourselves to SE-canonical rules different from τ , we find that these condi-
tions are not only necessary, but, when combined properly, also sufficient to decide what
atoms belong to the negative body and positive head of π.

If not stated otherwise, we assume in the rest of this section that π is an SE-canonical
rule different from τ . Keeping in mind that every atom that satisfies condition (7.1) also
satisfies condition (7.2) (because I is a subset of J), and that B(π)− is by definition of an
SE-canonical rule disjoint with H(π)+, we arrive at the following results:

Lemma 7.10. Let p be an atom. Then:

• p ∈ B(π)− if and only if for all (I, J) ∈ X,

p ∈ J implies (I, J) ∈ [[π ]]SE ;

• p ∈ H(π)+ if and only if p /∈ B(π)− and for all (I, J) ∈ X,

p ∈ I implies (I, J) ∈ [[π ]]SE .
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Proof. See Appendix E, page 246.

As can be derived from Lemma 7.9, the role of atoms from H(π)− and B(π)+ is dual
to that of atoms from B(π)− and H(π)+. Intuitively, their absence in J , and sometimes
also in I , implies that (I, J) is an SE-model of π. It follows from the first condition of
Lemma E.23 that for every atom p ∈ B(π)+ it holds that

p /∈ I ∧ J ∩H(π)+ 6= ∅ implies (I, J) ∈ [[π ]]SE . (7.3)

Furthermore, the second condition in Lemma 7.9 implies that every p ∈ B(π)+ ∪H(π)−

satisfies the following condition:

p /∈ J implies (I, J) ∈ [[π ]]SE . (7.4)

These observations lead to the following results:

Lemma 7.11. Let p be an atom. Then:

• p ∈ B(π)+ if and only if for all (I, J) ∈ X,

(p /∈ I ∧ J ∩H(π)+ 6= ∅) ∨ p /∈ J implies (I, J) ∈ [[π ]]SE ;

• p ∈ H(π)− if and only if p /∈ B(π)+ and for all (I, J) ∈ X,

p /∈ J implies (I, J) ∈ [[π ]]SE .

Proof. See Appendix E, page 247.

Together, Lemmas 7.10 and 7.11 are sufficient to construct an SE-canonical rule from
its set of SE-models. The following definition sums up these results by introducing the
notion of SE-induced rules:

Definition 7.12 (Rule SE-Induced by a Set of Interpretations). Let M be a set of three-
valued interpretations. The rule SE-induced byM, denoted by ‖M‖SE, is defined as fol-
lows: IfM = X, then ‖M‖SE = τ ; otherwise, ‖M‖SE is of the form

HSE(M)+;∼HSE(M)− ← BSE(M)+,∼BSE(M)−.

where

BSE(M)− = { p ∈ A | ∀(I, J) ∈ X : p ∈ J =⇒ (I, J) ∈M } ,

HSE(M)+ = { p ∈ A | ∀(I, J) ∈ X : p ∈ I =⇒ (I, J) ∈M } \BSE(M)− ,

BSE(M)+ =
{
p ∈ A

∣∣ ∀(I, J) ∈ X : (p /∈ I ∧ J ∩HSE(M)+ 6= ∅) ∨ p /∈ J =⇒ (I, J) ∈M
}
,

HSE(M)− = { p ∈ A | ∀(I, J) ∈ X : p /∈ J =⇒ (I, J) ∈M } \BSE(M)+ .

The main property of SE-induced rules is that every SE-canonical rule is induced by
its own set of SE-models and can thus be “reconstructed” from it. This follows directly
from Definition 7.12 using Lemmas 7.10 and 7.11.

Theorem 7.13. For every SE-canonical rule π, ‖[[π ]]SE‖SE = π.

Proof. See Appendix E, page 247.

This result, together with Theorem 7.8, has a number of consequences. First, for any
rule π, the SE-canonical rule canSE(π) is SE-induced by the set of SE-models of π.
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Corollary 7.14. For every rule π, ‖[[π ]]SE‖SE = canSE(π).

Proof. Follows directly from Theorems 7.8 and 7.13.

Furthermore, Theorem 7.13 implies that for two different SE-canonical rules π1, π2 we
have ‖[[π1 ]]SE‖SE = π1 and ‖[[π2 ]]SE‖SE = π2, so [[π1 ]]SE and [[π2 ]]SE must differ.

Corollary 7.15. No two different SE-canonical rules are SE-equivalent.

Proof. Follows directly from Theorem 7.13.

Finally, the previous corollary together with Theorem 7.8 imply that for every rule
there not only exists an SE-equivalent SE-canonical rule, but this rule is also unique.

Corollary 7.16. Every rule is SE-equivalent to exactly one SE-canonical rule.

Proof. Follows directly from Theorem 7.8 and Corollary 7.15.

7.1.3 SE-Rule-Expressible Sets of Interpretations

Naturally, not all sets of three-valued interpretations correspond to a single rule, other-
wise any program could be reduced to a single rule. The conditions under which a set of
three-valued interpretations is SE-rule-expressible are worth examining.

The set of SE-models of any program is well-defined, i.e. whenever it contains (I, J),
it also contains (J, J). Also, every well-defined set of three-valued interpretations is the
set of SE-models of some program (c.f. Proposition 6.7). We offer two analogical char-
acterisations for the class of SE-rule-expressible sets of three-valued interpretations. The
first is based on SE-induced rules defined in the previous section, while the second is
formulated using lattice theory and is strongly related to Lemma 7.9.

The first characterisation follows from two properties of the ‖ · ‖SE transformation.
First, it can be applied to any set of three-valued interpretations, even those that are not
SE-rule-expressible. Second, if ‖M‖SE = π, then it holds that [[π ]]SE is a subset ofM.

Lemma 7.17. The set of all SE-models of an SE-canonical rule π is the least among all sets of
three-valued interpretationsM such that ‖M‖SE = π.

Proof. See Appendix E, page 247.

Thus, to verify that M is SE-rule-expressible, it suffices to check that all interpreta-
tions fromM are SE-models of the rule ‖M‖SE.

The second characterisation follows from Lemma 7.9 – if M is SE-rule-expressible,
then its complement consists of three-valued interpretations (I, J) following a certain
pattern. Their second component J always includes a fixed set of atoms and is itself
included in another fixed set of atoms. Their first component I satisfies a similar property,
but only if a certain further condition is satisfied by J . More formally, for the sets

I⊥ = B(π)+, I> = A \H(π)+, J⊥ = H(π)− ∪B(π)+, J> = A \B(π)−,

it holds that all three-valued interpretations from the complement ofM are of the form
(I, J) where J⊥ ⊆ J ⊆ J> and either J ⊆ I> or I⊥ ⊆ I ⊆ I>. It turns out that this
also holds vice versa: if the complement ofM satisfies this property, thenM is SE-rule-
expressible. Furthermore, to accentuate the particular structure that arises, we can sub-
stitute the condition J⊥ ⊆ J ⊆ J> with saying that J belongs to a convex sublattice of I.1

A similar substitution can be performed for I , yielding:
1A sublattice L of L′ is convex if u ∈ L whenever s, t ∈ L and s ≤ u ≤ t holds in L′. For more details see

e.g. (Davey and Priestley, 1990).
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Theorem 7.18. LetM be a set of three-valued interpretations. Then the following conditions are
equivalent:

1. M is SE-rule-expressible.

2. M⊆ [[‖M‖SE ]]SE.

3. There exist convex sublattices L1, L2 of (I,⊆) such that

X \M = { (I, J) ∈ X | I ∈ L1 ∧ J ∈ L2 } ∪ { (I, J) ∈ X | J ∈ L1 ∩ L2 } .2

Proof. See Appendix E, page 249.

7.2 Robust Equivalence Models

The results presented in Section 7.1 serve to facilitate the transitions back and forth be-
tween a rule and the set of its SE-models and make it possible to determine whether a
given set of three-valued interpretations is the set of SE-models of some rule.

The introduction of SE-canonical rules, which form a set of representatives of rule
equivalence classes induced by SE-models, also reveals the exact expressivity of SE-mod-
els semantics with respect to a single rule. On the one hand, SE-models strip away some
irrelevant syntactic details, facilitating the manipulation of rules and programs.

On the other hand, a rule with a default literal in its head is indistinguishable from an
integrity constraint under SE-models. For example, the rules

← p, q. ∼p← q. ∼q ← p. (7.5)

have the same set of SE-models. In a static setting, these rules indeed carry essentially
the same meaning: “it must not be the case that p and q are both true”. But in a dynamic
context, the latter two rules may, in addition, express that the truth of one atom gives
a reason for the other atom to cease being true. For example, an update of the program
{ p., q. } by {∼p← q. } leads to the stable model { q } while an update by {∼q ← p. } to
the stable model { p }. This convention is adopted by causal rejection-based rule update
semantics, such as the AS-, JU-, DS- and RD-semantics, which constitute one of the most
mature approaches to rule updates.

In order to be able to semantically characterise causal rejection-based rule update
semantics, we need to distinguish between constraints and rules with default literals in
their heads. These classes can be formally captured as follows:

Definition 7.19 (Constraint and Abolishing Rule). A rule π is a constraint ifH(π) = ∅ and
B(π)+ is disjoint with B(π)−.3

A rule π is abolishing if H(π)+ = ∅, H(π)− 6= ∅ and the sets H(π)−, B(π)+ and B(π)−

are pairwise disjoint.

So what we are looking for is a semantic characterisation of rules that

1) can distinguish constraints from related abolishing rules;

2) discards irrelevant syntactic details (akin to SE-models);

3) has a clear link to stable models (akin to SE-models).

In the following we introduce robust equivalence models, or RE-models for short, which
exactly meet these criteria. They are defined as follows:

2 Note that X is the set of all three-valued interpretations, as defined in Definition 6.1 on page 100.
3The latter condition guarantees that a constraint is not tautological.
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Definition 7.20 (RE-Model). Let π be a rule. A three-valued interpretation (I, J) is an
RE-model of π if I |= πJ . The set of all RE-models of a rule π is denoted by [[π ]]RE and for
any program P, [[P ]]RE =

⋂
π∈P[[π ]]RE.

We say that π is RE-tautological if [[π ]]RE = X. Rules π, σ are RE-equivalent if [[π ]]RE =
[[σ ]]RE.

Thus, unlike with SE-models, it is not required that J |= π in order for (I, J) to be
an RE-model of π. As a consequence, RE-models can distinguish between rules in (7.5):
while both ({ q } , { p, q }) and ({ p } , { p, q }) are RE-models of the constraint, the former
is not an RE-model of the first abolishing rule and the latter is not an RE-model of the
second abolishing rule. This property holds in general, establishing requirement 1):

Proposition 7.21. If π, σ are two different abolishing rules or an abolishing rule and a constraint,
then π, σ are not RE-equivalent.

Proof. See Appendix E, page 258.

As for requirement 2), we first note that RE-equivalence is a refinement of SE-equiv-
alence – there are no rules that are RE-equivalent but not SE-equivalent. The following
result also shows that it is only the ability to distinguish between constraints and abolish-
ing rules that is introduced by RE-models – rules that are not RE-equivalent to abolishing
rules are distinguishable by RE-models if and only if they are distinguishable by SE-mod-
els. Furthermore, the classes of SE-tautological and RE-tautological rules coincide, so we
can simply use the word tautological without ambiguity.

Proposition 7.22 (RE-Equivalence vs. SE-Equivalence).

• If two rules are RE-equivalent, then they are SE-equivalent.

• If two rules, neither of which is RE-equivalent to an abolishing rule, are SE-equivalent,
then they are RE-equivalent.

• A rule is RE-tautological if and only if it is SE-tautological.

Proof. See Appendix E, page 259.

The affinity between SE-models and stable models is fully retained by RE-models,
which establishes requirement 3).

Proposition 7.23 (RE-Models vs. Stable Models). An interpretation J is a stable model of a
program P if and only if (J, J) ∈ [[P ]]RE and for all I ( J , (I, J) /∈ [[P ]]RE.

Proof. See Appendix E, page 259.

Also worth noting is that any set of three-valued interpretations can be expressed by
a program using RE-models. This is not the case with SE-models since only well-defined
sets of three-valued interpretations have corresponding programs.

Proposition 7.24. LetM be a set of three-valued interpretations. Then there exists a program P
such that [[P ]]RE =M.

Proof. See Appendix E, page 259.

Further properties of RE-models, analogous to those established in Section 7.1 for
SE-models, can be found in Appendix E, starting on page 249. RE-models also seem
to be closely related to T-models (Wong, 2007) used in the context of forgetting in logic
programs.

In the following section we define new notions of program equivalence and entail-
ment based on viewing a program as the set of sets of SE- or RE-models of its rules.
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7.3 Program Equivalence and Entailment

While in Classical Logic equivalence under classical models is the equivalence, there is no
such single notion of program equivalence. Despite that, suitable equivalence relations
between logic programs are of great interest as they allow for the study of behaviour-
preserving transformations and of expressiveness of different classes of programs – they
open the doors towards deep semantic results about logic programs.

In the context of rule updates, a suitable notion of program equivalence would enable
the definition of rule update operators that do not rely on rule syntax, yet they respect
syntactic properties such as support and fact update.

In the following we review the relevant program equivalence relations that have
been identified throughout the years (c.f. (Lifschitz et al., 2001; Inoue and Sakama, 2004;
Woltran, 2008)) and define additional ones, based on the idea of viewing a logic program
as the set of sets of SE- or RE-models of its rules. We also introduce the corresponding
notions of program entailment and show a strength comparison of all equivalence and
entailment relations considered.

7.3.1 Existing Notions of Program Equivalence

When considering logic programs under the stable models semantics, the first choice
for an equivalence between two programs is stable equivalence (or SM-equivalence), i.e.
two programs are equivalent when they have the same stable models. In many cases,
however, SM-equivalence is not strong enough because programs with the same stable
models, when augmented with the same additional rules, may end up having completely
different stable models.

This motivates the use of strong equivalence (Lifschitz et al., 2001) which requires that
stable models stay the same even in the presence of additional rules. As mentioned in
Section 6.1, programs are strongly equivalent if and only if they have the same set of
SE-models. Hence we also refer to strong equivalence as SE-equivalence.

However, as shown in Chapter 6, SE-equivalence is not satisfactory when used as a
basis for rule updates: operators that satisfy the syntax-independence postulate (P4.1)SE

are out of line with elementary intuitions regarding rule updates (c.f. Theorem 6.18).
So, in order to arrive at plausible semantic rule update operators, we need to search

for a notion of program equivalence that is stronger than SE-equivalence. One candidate
for this is strong update equivalence (or SU-equivalence) (Inoue and Sakama, 2004), which
requires that under both additions and removals of rules, stable models of the two pro-
grams in question remain the same. It has been shown in (Inoue and Sakama, 2004)
that this notion of equivalence is very strong – programs are SU-equivalent only if they
contain exactly the same non-tautological rules and, in addition, each of them may con-
tain some tautological ones. Formally, programs P, Q are SU-equivalent if and only if
[[(P \ Q) ∪ (Q \ P)]]SE = X. Thus SU-equivalence seems perhaps too strong as it is not
difficult to find rules such as (∼p ← p.) and (← p.) that are syntactically different but
seem to carry the same meaning, even when subject to updates. In order to weaken
SU-equivalence, we can use SE- or RE-models to filter out irrelevant syntactic details in
such rules.

7.3.2 Rules as Sets of SE- and RE-Models

This line of thought brings us to the possibility of viewing a program P as the set of sets
of models of its rules. For this purpose we introduce the following notation:
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Definition 7.25 (Set of Sets of Models of a Program). Let P be a program. Then

〈〈P〉〉SE = { [[π ]]SE | π ∈ P } and 〈〈P〉〉RE = { [[π ]]RE | π ∈ P } .

We can now say that programs P, Q are equivalent when 〈〈P〉〉SE = 〈〈Q〉〉SE or 〈〈P〉〉RE =
〈〈Q〉〉RE. This amounts to saying that two programs are equivalent when they contain
the same rules modulo SE- and RE-models, respectively. Intuitively, the new notions of
equivalence should be stronger than SE-equivalence but weaker than SU-equivalence.

Nevertheless, such a definition would not be as intended because the programs P = ∅
andQ = { τ }would not be considered equivalent even though they bear the same mean-
ing and are both SE- and SU-equivalent. The solution is to add the canonical tautology
to both P and Q before comparing their sets of sets of models. Thus we arrive at the
following conditions for strong rule equivalence (SR-equivalence for short) and robust rule
equivalence (RR-equivalence for short):

〈〈P ∪ { τ }〉〉SE = 〈〈Q ∪ { τ }〉〉SE , 〈〈P ∪ { τ }〉〉RE = 〈〈Q ∪ { τ }〉〉RE .

An important question is whether these notions of equivalence could still be too
strong. As it turns out, in the context of updates, programs such as P0 = { p. } and
Q0 = { p., p← q. } are frequently treated the same way because the extra rule inQ0 is just
a weakened version of the rule in P0. For instance, the notion of update equivalence intro-
duced in (Leite, 2003), which is based on a particular approach to logic program updates,
considers programsP0 andQ0 as equivalent because the extra rule inQ0 cannot influence
the result of any subsequent updates. Since these programs are not SR- nor RR-equiva-
lent, we also introduce the notions of strong minimal rule equivalence (or SMR-equivalence)
and robust minimal rule equivalence (or RMR-equivalence) by considering only the subset-
minimal sets of models from the two programs. Formally, the conditions for SMR- and
RMR-equivalence between programs P, Q are:

min〈〈P ∪ { τ }〉〉SE = min〈〈Q ∪ { τ }〉〉SE , min〈〈P ∪ { τ }〉〉RE = min〈〈Q ∪ { τ }〉〉RE ,

where minS denotes the subset-minimal elements of a set of sets S. Note that the pro-
grams P0, Q0 discussed above are both SMR- and RMR-equivalent.

The following definition formally establishes all of the mentioned program equiva-
lences and, for completeness, defines RE-equivalence similarly to SE-equivalence.

Definition 7.26 (Program Equivalence). Let P,Q be programs, Pτ = P ∪ { τ }, Qτ =
Q∪ { τ } and let minS denote the subset-minimal elements of any set of sets S. We write

P ≡SM Q whenever [[P ]]SM = [[Q ]]SM;

P ≡SE Q whenever [[P ]]SE = [[Q ]]SE;

P ≡RE Q whenever [[P ]]RE = [[Q ]]RE;

P ≡SMR Q whenever min〈〈Pτ 〉〉SE = min〈〈Qτ 〉〉SE;

P ≡RMR Q whenever min〈〈Pτ 〉〉RE = min〈〈Qτ 〉〉RE;

P ≡SR Q whenever 〈〈Pτ 〉〉SE = 〈〈Qτ 〉〉SE;

P ≡RR Q whenever 〈〈Pτ 〉〉RE = 〈〈Qτ 〉〉RE.

P ≡SU Q whenever [[(P \ Q) ∪ (Q \ P)]]SE = X.

We say that P is X-equivalent to Q if P ≡X Q.
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7.3.3 Program Entailment

In order to consider belief update principles in the context of rule updates, we also need
to establish notions of program entailment which are in line with the above defined pro-
gram equivalence relations. This task is troublesome in case of SM-equivalence because
the usage of entailment in belief update postulates is clearly a monotonic one while sta-
ble models are non-monotonic. For instance, a reformulation of (B1) would require that
P ⊕ U |= U , though there is no reason for P ⊕ U to have less stable models than (or the
same as) U . Due to these issues, we refrain from defining SM-entailment. The remaining
entailment relations are defined as follows:

Definition 7.27 (Program Entailment). Let P,Q be programs, Pτ = P ∪ { τ } and Qτ =
Q∪ { τ }. We write

P |=SE Q whenever [[P ]]SE ⊆ [[Q ]]SE;

P |=RE Q whenever [[P ]]RE ⊆ [[Q ]]RE;

P |=SMR Q whenever ∀σ ∈ Qτ ∃π ∈ Pτ : [[π ]]SE ⊆ [[σ ]]SE;

P |=RMR Q whenever ∀σ ∈ Qτ ∃π ∈ Pτ : [[π ]]RE ⊆ [[σ ]]RE;

P |=SR Q whenever ∀σ ∈ Qτ ∃π ∈ Pτ : [[π ]]SE = [[σ ]]SE;

P |=RR Q whenever ∀σ ∈ Qτ ∃π ∈ Pτ : [[π ]]RE = [[σ ]]RE;

P |=SU Q whenever [[Q \ P ]]SE = X.

We say that P X-entails Q if P |=X Q.

As the following proposition shows, the defined entailment relations are fully in line
with the respective equivalence relations.

Proposition 7.28. Let X be one of SE, RE, SMR, RMR, SR, RR, SU and P, Q be programs.
Then,

P ≡X Q if and only if P |=X Q and Q |=X P.

Proof. See Appendix E, page 260.

7.3.4 Strength Comparison

Our previous considerations show that SM-equivalence is the weakest notion of program
equivalence, followed by SE- and RE-equivalence, then by SMR- and RMR-equivalence
and by SR- and RR-equivalence and finally SU-equivalence is the strongest program
equivalence relation. To formally capture these relationships, we introduce the follow-
ing concepts:

Definition 7.29 (Strength of Program Equivalence and Entailment). Let ≡X, ≡Y be equiv-
alence relations and |=X, |=Y preorders on the set of all programs. We write

• ≡X�≡Y if P ≡Y Q implies P ≡X Q for all programs P, Q;

• ≡X≺≡Y if ≡X�≡Y but not ≡Y�≡X;

• |=X� |=Y if P |=Y Q implies P |=X Q for all programs P, Q;

• |=X≺ |=Y if |=X� |=Y but not |=Y� |=X.

The strength comparison of the defined notions of equivalence and entailment is de-
picted in Figure 7.1 and formally stated in the following proposition:
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SM

SE

SMR

SR

RR

SU

RE
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Figure 7.1: Notions of program equivalence and entailment from the weakest in the
bottom to the strongest on top. A missing link between X and Y indicates that ≡X is
incomparable with ≡Y and |=X is incomparable with |=Y.

Proposition 7.30. The following holds:

(1) ≡SM≺≡SE≺≡RE≺≡RMR≺≡RR≺≡SU and |=SE≺ |=RE≺ |=RMR≺ |=RR≺ |=SU ;

(2) ≡SE≺≡SMR≺≡SR≺≡RR and |=SE≺ |=SMR≺ |=SR≺ |=RR ;

(3) ≡SMR≺≡RMR and |=SMR≺ |=RMR ;

(4) ≡RE�≡SMR and ≡SMR�≡RE and |=RE� |=SMR and |=SMR� |=RE ;

(5) ≡RE�≡SR and ≡SR�≡RE and |=RE� |=SR and |=SR� |=RE ;

(6) ≡RMR�≡SR and ≡SR�≡RMR and |=RMR� |=SR and |=SR� |=RMR .

Proof. See Appendix E, page 262.

7.4 Discussion

In this chapter we have continued our search for a suitable semantic approach to rule up-
dates. Due to the conclusions of Chapter 6 which revealed the limitations of SE-models
when used as a basis for rule updates, here we focused on richer semantic characterisa-
tions of logic programs.

First we pinpointed the expressivity of SE-models w.r.t. single rules and proposed
RE-models as an alternative monotonic characterisation of rules that is capable of dis-
tinguishing constraints from abolishing rules. Then we defined a number of program
equivalence and entailment relations based on the idea of viewing a program as the set
of sets of models of its rules, resulting in the notions of SR- and RR-equivalence as well
as their weaker versions, SMR- and RMR-equivalence. We also introduced corresponding
program entailment relations.

In terms of strength, the new notions of equivalence fall between SE-equivalence and
the very strong SU-equivalence. Thus they seem to be interesting candidates for a se-
mantic basis of rule updates, especially RR- and RMR-equivalence which, due to the
properties of RE-models, seem sufficiently expressive to capture causal rejection-based
rule update semantics.

The following chapter confirms this conjecture by describing a general semantic ap-
proach to rule updates based on RR-equivalence, and showing that its instances directly
correspond with the JU-semantics for rule updates.
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8
Exception-Based Updates

JOÃO: In the time you have left of your PhD, you should follow this
trail and see where it leads.

MARTIN: But what if I don’t get anywhere?
JOÃO: Then you report on the obstacles you encountered.

JUNE 2011, LISBON, PORTUGAL

Up until now we have seen, in Chapter 6, that even though SE-models can be used as
a basis for semantic rule update operators, they cannot be combined with fundamental
properties of traditional approaches to rule updates: support and fact update.

This led us to the study of richer semantic characterisations of rules and programs in
Chapter 7. We defined RE-models, a monotonic semantics that retains many important
properties of SE-models and is able to differentiate additional classes of rules. Since
these classes are handled differently in causal rejection-based approaches to rule updates,
the use of RE-models instead of SE-models is necessary if we want to characterise them
semantically.

Subsequently, we introduced the idea of viewing a program as the set of sets of models
of its rules, acknowledging rules as the atomic pieces of knowledge in a program and,
at the same time, abstracting away from irrelevant differences between their syntactic
forms, focusing on their semantic content. We defined notions of program equivalence
and entailment that follow from this approach. In particular, when using RE-models as
the semantics for individual rules, this naturally leads to the concept of RR-equivalence
and its weaker version, RMR-equivalence.

In this chapter we propose a generic method for defining semantic update operators:
a program, viewed as the set of sets of RE-models of its rules, is updated by introducing
additional interpretations – exceptions – to the original sets of RE-models. Using this
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approach we are able to capture a traditional approach to rule updates, combining syntax-
independence with a range of desirable properties. Moreover, the same ideas can be used
to capture a range of belief update operators. We thus bridge the two different update
paradigms in a single framework.

More specifically, our main contributions are as follows:

• we show that particular exception-based rule update operators satisfy fundamental
syntactic properties of rule updates such as support, fact update and causal rejection;

• we define exception-based operators that offer a direct semantic counterpart of the
JU-semantics for rule updates and shed new light on the problem of state condensing;

• we provide an exhaustive analysis of semantic properties of exception-based rule up-
dates, showing that they naturally satisfy a range of desirable properties such as
immunity to tautological updates, syntax-independence, and counterparts of many belief
update postulates w.r.t. RR-equivalence;

• we generalise these ideas and show that exception-based operators can capture
many model-based and formula-based belief update operators.

The remainder of this chapter is structured as follows: In Section 8.1 we introduce
exception-based rule update operators and examine their syntactic as well as semantic
properties. In Section 8.2 we define an abstract framework for exception-based operators
and show that it can capture a range of belief update operators. We discuss our findings
and future research directions in Section 8.4.

The relevant proofs are provided in Appendix F. Parts of this chapter have been pub-
lished in (Slota and Leite, 2012a,b).

8.1 Exception-Based Rule Update Operators

In this section we propose a generic framework for defining semantic rule update op-
erators. We define instances of the framework and show that they enjoy a number of
plausible properties, ranging from the respect for support and fact update to syntax-
independence and other semantic properties.

As suggested above, a program is semantically characterised by the set of sets of
RE-models of its rules. Our update framework is based on a simple yet novel idea of in-
troducing additional interpretations – exceptions – to the sets of RE-models of rules in the
original program. The formalisation of this idea is straight-forward: an exception-based
update operator is characterised by an exception function ε that takes three inputs: the set
of RE-models [[π ]]RE of a rule π ∈ P and the semantic characterisations 〈〈P〉〉RE, 〈〈U〉〉RE of
the original and updating programs. It then returns the three-valued interpretations that
are to be introduced as exceptions to π, so the characterisation of the updated program
contains the augmented set of RE-models

[[π ]]RE ∪ ε ([[π ]]RE, 〈〈P〉〉RE, 〈〈U〉〉RE) . (8.1)

Hence the semantic characterisation of P updated by U is

{ [[π ]]RE ∪ ε ([[π ]]RE, 〈〈P〉〉RE, 〈〈U〉〉RE) | π ∈ P } ∪ 〈〈U〉〉RE . (8.2)

In other words, the set of RE-models of each rule π from P is augmented with the respec-
tive exceptions while the sets of RE-models of rules from U are kept untouched.

From the syntactic viewpoint, we want a rule update operator ⊕ to return a program
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P⊕U with the semantic characterisation (8.2). This brings us to the following issue: What
if no rule exists whose set of RE-models is equal to (8.1)? In that case, no rule corresponds
to the augmented set of RE-models of a rule π ∈ P, so the program P ⊕ U cannot be
constructed. Moreover, such situations may occur quite frequently since a single rule has
very limited expressivity. For instance, updating the fact (p.) by the rule (∼p← q, r.) may
easily result in a set of RE-models expressible by the program { p← ∼q., p← ∼r. } but
not expressible by any single rule. To keep a firm link to operations on syntactic objects,
we henceforth deal with this problem by allowing the inputs and output of rule update
operators to be sets of rules and programs, which we dub rule bases.1 In other words, the
result of updating a rule, i.e. introducing exceptions to it, may be a set of rules, so the
result of updating a program may be a rule base. Technically, a rule base can capture any
possible result of an exception-based update due to Proposition 7.24).

Definition 8.1 (Rule Base). A rule base is any set of rules and programs. For every rule
baseRwe define the following:

• an interpretation J is a model ofR, denoted by J |= R, if J |= Π for all Π ∈ R;

• RJ =
{

ΠJ
∣∣ Π ∈ R

}
for every interpretation J ;

• an interpretation J is a stable model ofR if J is a subset-minimal model ofRJ ;

• the set of stable models ofR is denoted by [[R ]]SM;

• 〈〈R〉〉SE = { [[Π]]SE | Π ∈ R } and [[R ]]SE =
⋂
〈〈R〉〉SE;

• 〈〈R〉〉RE = { [[Π]]RE | Π ∈ R } and [[R ]]RE =
⋂
〈〈R〉〉RE.

All notions of program equivalence and entailment are extended to rule bases by using
the same definition.

Note that a program is a special case of a rule base. Each element Π of a rule base, be
it a rule or a program, represents an atomic piece of information. Exception-based update
operators view and manipulate Π only through its set of RE-models [[Π]]RE. Due to this,
we refer to all such elements Π as rules, even if formally they may actually be programs.

Having resolved this issue, we can proceed to the definition of an exception-based
rule update operator.

Definition 8.2 (Exception-Based Rule Update Operator). A rule update operator ⊕ is
exception-based if for some exception function ε, 〈〈R⊕U〉〉 is equal to (8.2) for all rule bases
R, U . In that case we also say that ⊕ is ε-based.

Note that for each exception function ε there is a whole class of ε-based rule update
operators that differ in the syntactic representations of the sets of RE-models in (8.2). For
instance, when working over the set of propositional symbols A = { p, q } and consider-
ing some ε-based operator⊕, the exception function may specify that for some programs
P, U , the programP⊕U contains some rule or program representing the set of RE-models

M = { (∅, ∅), (∅, p), (p, p), (∅, q), (∅, pq), (p, pq), (pq, pq) } .2

This set can be represented by the rule π = (p ← q.) or, alternatively, by the rule σ =
(p;∼q ← q.), and the exception function does not specify which syntactic representation
of the set should be used in P ⊕ U .

1We allow for individual rules in a rule base out of convenience only. A single rule π in a rule base R is
treated exactly the same way as ifR contained the singleton program {π }.

2We sometimes omit the usual set notation when we write interpretations. For example, instead of { p, q }
we may simply write pq.
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8.1.1 Simple Exception Functions and Syntactic Properties

Of particular interest to us is a constrained class of exception functions that requires less
information to determine the resulting exceptions. Not only does it lead to simpler defi-
nitions and to modular, more efficient implementations, but the study of restricted classes
of exception functions is also essential in order to understand their expressivity, i.e. the
types of update operators they are able to capture. We focus on exception functions that
produce exceptions based on conflicts between pairs of rules, one from the original and
one from the updating program, while ignoring the context in which these rules are situ-
ated. More formally:

Definition 8.3 (Simple Exception Function). An exception function ε is simple if for all
M⊆ X and S, T ⊆ 2X,

ε(M,S, T ) =
⋃
N∈T δ(M,N )

where δ : 2X×2X → 2X is a local exception function. If⊕ is an ε-based rule update operator,
then we also say that ⊕ is δ-based, that δ generates ⊕ and that ⊕ is simple.

As we shall see, in spite of their local nature, particular simple exception functions
generate rule update operators that satisfy the syntactic properties of rule update seman-
tics that have been defined in Section 2.8.4 and are closely related to the JU-semantics for
DLPs.

The inspiration for defining concrete local exception functions δ comes from rule up-
date semantics based on causal rejection. But since the relevant concepts, such as that of
a conflict or rule rejection, rely on rule syntax to which an exception function has no direct
access, our first objective is to find similar concepts on the semantic level. In particular,
we need to define conditions under which two sets of RE-models are in conflict. We de-
fine these conflicts w.r.t. a two-valued interpretation. We first introduce two preparatory
concepts.

We define a truth value substitution as follows: Given an interpretation J , an atom p
and a truth value V ∈ {T,U,F }, by J [V/p] we denote the three-valued interpretation X
such that X(p) = V and X(q) = J(q) for all atoms q 6= p.

This enables us to introduce the main concept needed for defining a conflict between
two sets of three-valued interpretations. Given a set of three-valued interpretationsM,
an atom p, a truth value V0 and a two-valued interpretation J , we say thatM forces p to
have the truth value V0 w.r.t. J , denoted byMJ(p) = V0, if

J [V/p] ∈M if and only if V = V0 .

In other words, the three-valued interpretation J [V0/p] must be the unique member of
M that either coincides with J or differs from it only in the truth value of p. Note that
MJ(p) stays undefined in case no V0 with the above property exists.

Two sets of three-valued interpretationsM,N are in conflict on atom pw.r.t. J , denoted
byM 1Jp N , if bothMJ(p) and N J(p) are defined andMJ(p) 6= N J(p). The following
example illustrates all these concepts.

Example 8.4. Consider rules π0 = (p.), π1 = (∼p ← ∼q.) with the respective sets of
RE-models

M0 = { (p, p), (p, pq), (pq, pq) } ,

M1 = { (∅, ∅), (∅, q), (q, q), (∅, pq), (p, pq), (q, pq), (pq, pq) } .
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Intuitively,M0 forces p to T w.r.t. all interpretations and π1 forces p to F w.r.t. interpreta-
tions in which q is false. Formally it follows thatM∅0(p) = T because (p, p) belongs toM0

and neither (∅, p) nor (∅, ∅) belongs toM0. Similarly, it follows thatM∅1(p) = F. Hence
M0 1∅p M1. Using similar arguments we can conclude that M0 1

p
p M1. However, it

does not hold thatM0 1
pq
p M1 becauseMpq

1 (p) is undefined.

We are now ready to introduce the local exception function δa.

Definition 8.5 (Local Exception Function δa). The local exception function δa is for all
M,N ⊆ X defined as

δa(M,N ) =
{

(I, J) ∈ X
∣∣ ∃p :M 1Jp N

}
.

Thus if there is a conflict on some atom w.r.t. J , the exceptions introduced by δa are
of the form (I, J) where I can be an arbitrary subset of J . This means that δa introduces
as exceptions all three-valued interpretations that preserve false atoms from J while the
atoms that are true in J may be either true or undefined. This is somewhat related to the
definition of a stable model where the default assumptions (false atoms) are fixed while
the necessary truth of the remaining atoms is checked against the rules of the program.
The syntactic properties of δa-based operators are as follows.

Theorem 8.6 (Syntactic Properties of δa). Every δa-based rule update operator respects support
and fact update. Furthermore, it also respects causal rejection and acyclic justified update w.r.t.
DLPs of length at most two.

Proof. See Appendix F.1, page 275.

This means that δa-based rule update operators enjoy a combination of desirable syn-
tactic properties that operators based on SE-models cannot (c.f. Theorem 6.18). However,
these operators diverge from causal rejection, even on acyclic DLPs, when more than one
update is performed.

Example 8.7. Consider again the rules π0, π1 and their sets of RE-modelsM0,M1 from
Example 8.4 and some δa-based rule update operator ⊕. Then 〈〈{π0 } ⊕ {π1 }〉〉RE will
contain two elements:M′0 andM1, where

M′0 =M0 ∪ δa(M0,M1) =M0 ∪ { (∅, ∅), (∅, p) } .

An additional update by the fact { q. } then leads to the characterisation〈〈⊕
〈{π0 } , {π1 } , { q. }〉

〉〉
RE

which contains three elements:M′′0 ,M1 andM2 where

M′′0 =M′0 ∪ { (∅, q), (q, q) }

andM2 is the set of RE-models of (q.).
Furthermore, due to Proposition 7.23, the interpretation J = { q } is a stable model of

the program
⊕
〈{π0 } , {π1 } , { q. }〉 because (q, q) belongs to all sets of models in the set

of sets of models 〈〈
⊕
〈{π0 } , {π1 } , { q. }〉〉〉RE and (∅, q) does not belong toM2. However,

J does not respect causal rejection and it is not a JU-model of ({π0 } , {π1 } , { q. }).

This shortcoming of δa can be overcome as follows:
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Definition 8.8 (Local Exception Functions δb, δc). The local exception functions δb, δc are
for allM,N ⊆ X defined as

δb(M,N ) =
{

(I,K) ∈ X | ∃J ∃p :M 1Jp N ∧ I ⊆ J ⊆ K ∧ (p ∈ K \ I =⇒ K = J)
}
,

δc(M,N ) =

{
X ifM = N ;

δb(M,N ) otherwise .

The functions δb and δc introduce more exceptions than δa. A conflict on p w.r.t. J
leads to the introduction of interpretations in which atoms either maintain the truth value
they had in J , or they become undefined. They must also satisfy an extra condition: when
p becomes undefined, no other atom may pass from false to undefined. Interestingly, this
leads to operators that satisfy all syntactic properties.

Theorem 8.9 (Syntactic Properties of δb and δc). Let ⊕ be a δb- or δc-based rule update opera-
tor. Then ⊕ respects support, fact update, causal rejection and acyclic justified update.

Proof. See Appendix F.1, page 281.

The difference between δb and δc is in that δc additionally “wipes out” rules from the
original program that are repeated in the update by introducing all interpretations as ex-
ceptions to them, rendering them tautological. This will become more pronounced later
when we examine semantic properties of simple exception-based rule update operators.

Before that, however, it is worth noting that δb- and δc-based operators are very closely
related to the JU-semantics, even on programs with cycles. They diverge from it only on
rules with an appearance of the same atom in both the head and body. Formally, we say
that a rule is a local cycle if (H(π)+ ∪H(π)−) ∩ (B(π)+ ∪B(π)−) 6= ∅.

Theorem 8.10. Let P be a DLP, J an interpretation and⊕ a δb- or δc-based rule update operator.
Then,

• [[
⊕

P ]]SM ⊆ [[P ]]JU and

• if all(P ) contains no local cycles, then [[P ]]JU ⊆ [[
⊕

P ]]SM.

Proof. See Appendix F.1, page 281.

This means that up to the marginal case of local cycles, δb and δc can be seen as se-
mantic characterisations of the JU-semantics: they lead to stable models that, typically,
coincide with JU-models. This tight relationship also sheds new light on the problem
of state condensing where the goal is to transform a DLP into a single program over the
same alphabet that would behave just as the original DLP when further updates are per-
formed. While this cannot be done if the result must be a non-disjunctive program (Leite,
2003), it follows from Theorem 8.10 that a rule base is sufficiently expressive. It stays an
open question whether a disjunctive program would suffice instead of a rule base or not.

Corollary 8.11 (State Condensing into a Rule Base). Let P = 〈Pi〉i<n be a DLP such that
all(P ) contains no local cycles, ⊕ be a δb- or δc-based rule update operator and j < n. Then there
exists a rule baseR such that [[P ]]JU = [[

⊕
P ′ ]]SM where P ′ = 〈R,Pj+1, . . . ,Pn−1〉.

Proof. See Appendix F.1, page 281.
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8.1.2 Semantic Properties

We proceed by examining further properties of rule update operators – of those gener-
ated by simple exception functions in general, and of the δa-, δb- and δc-based ones in
particular. The properties we consider in this section are semantic in that they put con-
ditions on the models of a result of an update and do not need to refer to the syntax of
the original and updating programs. Our results are summarised in Table 8.1 and in the
following we explain and discuss them. The interested reader may find all the proofs in
Appendix F.1.5 starting on page 281.
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Table 8.1: Semantic properties of simple rule update operators

Type of ≡, |= and [[ · ]]
Property Formalisation SU RR SR RMR SMR RE SE SM

(Initialisation) ∅ ⊕ U ≡ U . 3 3 3 3 3 3 3

(Disjointness) IfR, S are over disjoint alphabets, then (R∪S)⊕U ≡ (R⊕U)∪(S⊕U). 3 3 3 3 3 3 3

(Non-interference)† If U , V are over disjoint alphabets, then (R⊕ U)⊕ V ≡ (R⊕ V)⊕ U . 3abc
3abc 3abc 3abc 3abc 3abc 3abc

(Tautology) If U is tautological, thenR⊕ U ≡ R. 3?
3? 3? 3? 3? 3? 3?

(Immunity to Tautologies) If S and V are tautological, then (R∪ S)⊕ (U ∪ V) ≡ R⊕ U . 3?
3? 3? 3? 3? 3? 3?

(Idempotence) R⊕R ≡ R. 3c
3c 3 3 3 3 3

(Absorption) (R⊕ U)⊕ U ≡ R⊕ U . 3c
3c 3bc

3bc 3bc 3bc 3bc

(Augmentation)† If U ⊆ V , then (R⊕ U)⊕ V ≡ R⊕ V . 3c
3c 3bc

3bc 3bc 3bc 3bc

(Associativity) R⊕ (U ⊕ V) ≡ (R⊕ U)⊕ V .

(P1) R⊕ U |= U 3 3 3 3 3 3 n/a

(P2.>) R⊕ ∅ ≡ R 3 3 3 3 3 3 3

(P2.1) R∪ U |= R⊕ U 3 3 3 3 n/a

(P2.2) (R∪ U)⊕ U |= R n/a

(P3) If [[R ]] 6= ∅ and [[U ]] 6= ∅, then [[R⊕ U ]] 6= ∅ n/a n/a n/a n/a n/a

(P4) IfR ≡ S and U ≡ V , thenR⊕ U ≡ S ⊕ V 3?

(P5) (R⊕ U) ∪ V |= R⊕ (U ∪ V) 3 3 3 3 n/a

(P6) IfR⊕ U |= V andR⊕ V |= U , thenR⊕ U ≡ R⊕ V n/a

a Holds if ⊕ is generated by δa.
b Holds if ⊕ is generated by δb.
c Holds if ⊕ is generated by δc.
? Holds if ⊕ is generated by a local exception function δ such that δ(M,X) ⊆M for allM⊆ X. This is satisfied by δa, δb and δc.
† Results on this line hold only ifR,U ,V are non-disjunctive programs.
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Semantic Properties of Rule Updates

The properties in the upper part of Table 8.1 were introduced in (Eiter et al., 2002; Alferes
et al., 2005; Delgrande et al., 2007). All of them are formalised for rule bases R, S, U , V
and a rule update operator ⊕. Each of them can actually be seen as a meta-property that is
instantiated once we adopt a particular notion of program equivalence. Therefore, each
row of Table 8.1 has eight cells that stand for particular instantiations of the property.
This provides a more complete picture of how simple rule update operators, properties
and program equivalence are interrelated.

Unless stated otherwise (in a footnote), each tick (3) signifies that the property in
question holds for all simple rule update operators. A missing tick signifies that the
property does not generally hold for simple rule update operators, and in particular there
are δa-, δb- and δc-based operators for which it is violated. A tick is smaller if it is a direct
consequence of a preceding larger tick in the same row and of the interrelations between
the program equivalence notions (c.f. Figure 7.1).

At a first glance, it is obvious that none of the semantic properties is satisfied under
SU-equivalence. This is because the conditions placed on a rule update operator by an
exception function are at the semantic level, while SU-equivalence effectively compares
programs syntactically. For instance, an exception-based operator ⊕, for any exception
function ε, may behave as follows: ∅ ⊕ {∼p← p. } = {← p. }. This is because the rules
before and after update are RE-equivalent. However, due to the fact that the programs
{∼p← p. } and {← p. } are considered to be different under SU-equivalence, ⊕ cannot
satisfy (Initialisation) w.r.t. SU-equivalence. The situation with all other properties is analo-
gous.

In the following we discuss the properties in the upper part of Table 8.1 w.r.t. the
remaining notions of equivalence.

(Initialisation) and (Disjointness): These properties are satisfied “by construction”, regard-
less of which simple rule update operator we consider and of which notion of
equivalence we pick.

(Tautology) and (Immunity to Tautologies): These are naturally satisfied by all simple up-
date operators that do not introduce exceptions merely due to the presence of a
tautological rule in the updating program. In particular, both properties are sat-
isfied by δa-, δb- and δc-based operators. Note that these properties are generally
acknowledged as very desirable although most existing rule update semantics fail
to comply with them.

(Non-interference): This property is not guaranteed for arbitrary simple update operators,
but it is satisfied if we constrain ourselves to δa-, δb- or δc-based ones. However,
this is only the case when non-disjunctive programs are considered. This points
towards one of the important open problems faced by state-of-the-art research on
rule updates: examples, desirable properties and methods for updating disjunctive
programs. Insights in this direction should shed light on whether (Non-interference)
is desirable in the disjunctive case.

(Idempotence), (Absorption) and (Augmentation): These are the only properties that reveal
differences amongst δa, δb and δc. They are not satisfied by δa- and δb-based opera-
tors under SR- and RR-equivalence. The reason for this is that when a program is
updated by its subset, exceptions may still be introduced to some rules, resulting
in weakened versions of the original rules. Since such rules are not part of the orig-
inal program, the programs before and after update are considered to be different
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under SR- and RR-equivalence. This problem is dodged in δc by completely elim-
inating original rules that appear in the update. This also seems to indicate that
SR- and RR-equivalence are slightly too strong for characterising updates because
programs such as { p. } and { p., p← q. } are not considered equivalent even though
we expect the same behaviour from them when they are updated. We speculated in
Chapter 7 that this could be solved by adopting the weaker SMR- and RMR-equiv-
alence. However, it turns out these equivalence relations are too weak: programs
such as {∼p. } and {∼p., q ← p. } are SMR- and RMR-equivalent although, when
updated by { p. }, different results are expected for each of them.

Moreover, δa-based operators fail to satisfy (Absorption) and (Augmentation). Along
with Theorem 8.6, this seems to indicate that δa does not correctly handle iterated
updates.

(Associativity): This is one of the few properties that is not satisfied by any of the defined
classes of operators. This is closely related to the question of whether rejected rules
are allowed to reject. (Associativity) can be seen as postulating that an update operator
must behave the same way regardless of whether rejected rules are allowed to reject
or not. As witnessed by the AS- and JU-semantics (c.f. equation 2.2), rule update
semantics tend to generate unwanted models when rejected rules are not allowed
to reject.

Reformulation of Belief Update Postulates

The lower part of Table 8.1 contains a straightforward reformulation of the first six belief
update postulates for rule bases. We omit the last two postulates as they require pro-
gram disjunction and it is not clear how to obtain it appropriately. Note also that (B7)
has been heavily criticised in the literature as being mainly a means to achieve formal
results instead of an intuitive principle (Herzig and Rifi, 1999) and though (B8) reflects
the basic intuition behind belief update – that of updating each model independently of
the others – such a point of view is hardly transferable to knowledge represented using
rules because a single model, be it a classical, stable, SE- or RE-model, fails to encode the
interdependencies between literals expressed in rules that are necessary for properties
such as support.

Since we did not define SM-entailment, postulates that refer to it have the SM column
marked as “n/a”.

We now turn to the individual postulates.

(P1) and (P2.>): Similarly as (Initialisation) and (Disjointness), these postulates are satisfied
by any simple rule update operator and under all notions of equivalence.

(P2.1) and (P5): Postulate (P2.1) is not satisfied under SR- and RR-equivalence for the
same reasons, described above, that prevent δa- and δb-based operators from sat-
isfying (Idempotence). The situation with (P5) is the same since it implies (P2.1) in the
presence of (P2.>).

(P2.2) and (P6): Postulate (P2.2) requires that { p.,∼p. } ⊕ {∼p. } |= p which, in the pres-
ence of (P1), amounts to postulating that one can never recover from an inconsistent
state, contrary to most rule update semantics which do allow for recovery from such
states. The case of (P6) is the same since it implies (P2.2) in the presence of (P1) and
(P2.>).
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(P3): This postulate relies on a function that returns the set of models of a rule base. Thus,
[[ · ]]SM, [[ · ]]SE and [[ · ]]RE can be used for this purpose and the other columns in the
corresponding row in Table 8.1 make little sense, so they are marked as “n/a”. Fur-
thermore, this postulate is not satisfied by any of the defined classes of exception-
based operators. It is also one of the principles that most existing approaches to
rule update chronically fail to satisfy. In order to satisfy it, a context-aware excep-
tion function would have to be used because conflicts may arise in a set of more
than two rules that are pairwise consistent. For instance, when updating { p. } by
{ q ← p.,∼q ← p. }, one would somehow need to detect and resolve the joint con-
flict between these three rules. This is however impossible with a simple exception
function because it only considers conflicts between pairs of rules, one from the
original program and one from the update.

(P4): This postulate requires update operators to be syntax-independent. In this context
it is useful to also consider the following related principles, derived from (B4.1),
(B4.2) and (B8.2):

(P4.1) If P ≡ Q, then P � U ≡ Q � U .

(P4.2) If U ≡ V , then P � U ≡ P � V .

(P8.2) If P |= Q, then P � U |= Q � U .

Following the arguments from Chapter 6, the failure to satisfy (P4.1) under SM-,
SE- and RE-equivalence is inevitable if properties such as support and fact up-
date are to be respected. Furthermore, programs such as P1 = {∼p. } and P2 =
{∼p., q ← p. } are SMR- and RMR-equivalent even though an update by U = { p. } is
expected to produce different results when applied to them. Indeed, the JU-seman-
tics assigns the stable model { p } to the DLP 〈P1,U〉 and the stable model { p, q } to
the DLP 〈P2,U〉. It thus follows from Theorems 8.6 and 8.9 that (P4.1) is not satisfied
under RMR- and SMR-equivalence (nor any other weaker notion of equivalence) by
operators generated by exception functions δa, δb and δc. Under SR-equivalence,
(P4.1) is also violated due to the fact that a constraint such as (← p.) cannot be
weakened by the introduced exception functions while the fact (∼p.) can, although
it is strongly equivalent to the constraint. Moreover, since (P8.2) is a stronger prin-
ciple than (P4.1), these counterexamples apply to it as well.

Similar arguments can also be used to show that the principle (P4.2) is not satisfied
under SM-, SE-, RE, SMR- and RMR-equivalence. We only need to observe that any
δa-, δb- or δc-based operator ⊕ satisfies ∅ ⊕ P1 ≡RR P1 and ∅ ⊕ P2 ≡RR P2, and thus
by the previous reasoning, ∅ ⊕ P1 ⊕ U has different stable models than ∅ ⊕ P2 ⊕ U .
This contradicts (P4.2) under RMR-equivalence and any other weaker equivalence
as well. Additionally (P4.2) is not satisfied under SR-equivalence due to the fact
that updates such as {∼p← q. }, {∼q ← p. } and {← p, q. } have different effects
on the program { p., q. }.

These observations seem to indicate that (P4.1), (P4.2), (P8.2), and thus also (P4), are
too strong under SM-, SE-, RE-, SMR- and RMR-equivalence. Under SR-equiva-
lence, they are incompatible with operators that solve conflicts based on heads of
rules. On the other hand, due to the semantic underpinning of simple rule update
operators, (P4) is satisfied by most of them, including all δa-, δb- and δc-based ones,
under RR-equivalence. It might be interesting to look for constrained classes of
exception functions that satisfy syntax-independence w.r.t. SR-equivalence. Such
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functions, however, will not be able to respect causal rejection because SE-models
cannot distinguish abolishing rules.

8.2 General-Purpose Exception-Based Operators

The ideas behind exception-based operators are not limited to dealing with rule updates.
In the present section we formulate them abstractly, for any knowledge representation
formalism with a monotonic model-theoretic semantics. Subsequently, we show that
the abstract framework can be instantiated to the case of first-order logic and is able to
capture a range of model-based as well as formula-based update operators.

Throughout this section we assume to be using some knowledge representation for-
malism in which a knowledge base is a subset of the set of all knowledge atoms Ω and Z
denotes the set of all semantic structures among which the models of knowledge atoms
are chosen. The set of models of a knowledge atom α is denoted by [[α ]]. The seman-
tic characterisation of a knowledge base K is the set of sets of models of its knowledge
atoms: 〈〈K〉〉 = { [[α ]] | α ∈ K }. The models of K are the models of all its elements, i.e.
[[K ]] =

⋂
〈〈K〉〉.

As in the case of rule updates, an exception-based operator views a knowledge base
K through its semantic characterisation 〈〈K〉〉 and introduces exceptions to its knowledge
atoms by adding new semantic structures to their original sets of models. The formalisa-
tion of this idea is straight-forward: an exception-based update operator is characterised
by an exception function that, given the set of models of a knowledge atom α and the se-
mantic characterisations of the original and updating knowledge base, returns the set of
semantic structures that are to be introduced as exceptions to α.

Definition 8.12 (Exception Function). An exception function is any function

ε : 2Z × 22Z × 22Z → 2Z .

Given such an exception function and knowledge bases K, U , it naturally follows
that the semantic characterisation resulting from updating K by U should consist of sets
of models of each knowledge atom α from K, each augmented with the respective ex-
ceptions, and also the unmodified sets of models of knowledge atoms from U . In other
words, we obtain the set of sets of models

{ [[α ]] ∪ ε([[α ]], 〈〈K〉〉, 〈〈U〉〉) | α ∈ K } ∪ 〈〈U〉〉 . (8.3)

Turning to the syntactic side, an update operator is binary function over 2Ω that takes
the original knowledge base and its update as inputs and returns the updated knowledge
base. An exception-based update operator is then formalised as follows:

Definition 8.13 (Exception-Based Update Operator). We say that an update operator⊕ is
exception-based if for some exception function ε, 〈〈K ⊕ U〉〉 is equal to (8.3) for all K,U ⊆ Ω.
In that case we also say that ⊕ is ε-based.

8.3 Belief Updates Using Exception-Based Operators

The introduced abstract framework can be instantiated for various formalisms. Previ-
ously we considered exception-based rule update operators which correspond to the case
when Ω is the set of all rules, Z is the set of all three-valued interpretations X and the se-
mantic function [[ · ]] returns the RE-models of its argument.
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Concrete exception-based operators for first-order theories are obtained from the ab-
stract framework by identifying the set of knowledge atoms Ω with the set of first-order
sentences and the set of semantic structures Z with first-order interpretations under the
standard names assumption I. The semantic function [[ · ]] returns the models of the argu-
ment sentence or theory.

As shown in Section 2.6, model-based update operators, such as Winslett’s, satisfy
principles (FO1) – (FO6) and (FO8.2). The following result shows that all operators that
satisfy (FO1), (FO2.1) and (FO4), including all model-based update operators, can be faith-
fully modelled by an exception function.

Theorem 8.14 (Model-Based Updates Using Exception-Based Operators). If � is an update
operator that satisfies (FO1), (FO2.1) and (FO4), then there exists an exception function ε such
that for every ε-based update operator ⊕ and all finite sequences of theories T , [[3T ]] = [[

⊕
T ]].

Proof. See Appendix F, page 289.

This essentially means that any operator that satisfies primacy of new information, for-
malised in (FO1), retains models of the initial theory that are also models of the update,
expressed in (FO2.1), and is syntax-independent, as captured by (FO4), can be equivalently
cast into the framework of exception-based updates.

Similar results can be achieved for formula-based update operators. First we intro-
duce the following principles, counterparts of the respective belief update postulates,
which are satisfied by many formula-based operators. We denote by 〈〈T 〉〉I the set 〈〈T 〉〉 ∪
{ I } for any theory T .3 The principles are as follows:

(F1) 〈〈T ◦ U〉〉 ⊇ 〈〈U〉〉.
(F2.1) 〈〈T ∪ U〉〉 ⊇ 〈〈T ◦ U〉〉.
(F4) If 〈〈T 〉〉I = 〈〈S〉〉I and 〈〈U〉〉I = 〈〈V〉〉I, then 〈〈T ◦ U〉〉I = 〈〈S ◦ V〉〉I.

We can see that (F1) and (F2.1) are stronger versions of (FO1), and (FO2.1), respectively.
While (F1) requires that the sets of models of formulae in U be retained in the semantic
characterisation of T ◦ U , (F2.1) states that every formula in T ◦ U be equivalent to some
formula in T ∪ U . Intuitively, this means that T ◦ U is obtained from T ∪ U by deleting
some of its elements, modulo equivalence. Finally, (F4) is a reformulation of (FO4) – it
can be seen as syntax-independence w.r.t. the set of sets of models of a first-order theory,
modulo the presence of tautologies, instead of the overall set of models as in (FO4). In
some ways it is weaker than (FO4) as its antecedent is much stronger.

The WIDTIO, Cross-Product and Bold operators, introduced in Definitions 2.32, 2.33
and 2.48, respectively, can be straight-forwardly generalised to deal with first-order the-
ories.4 The WIDTIO operator satisfies principles (F1), (F2.1) and (F4), and so does the
Bold operator if it is based on a remainder selection function that selects remainders with
the same semantic characterisation when given sets of remainders with the same sets of
semantic characterisations. More formally:

Definition 8.15 (Regular Bold Operator). LetR be a set of remainders. We denote the set
{ 〈〈T ′〉〉I | T ′ ∈ R} by ((R))I.

We say that the Bold operator ◦s
BOLD

is regular if for all sets of remainders R1, R2 such
that ((R1))I = ((R2))I it holds that 〈〈s(R1)〉〉I = 〈〈s(R2)〉〉I.

3Recall that I denotes the set of all two-valued interpretations.
4In case of the Cross-Product operator this generalisation requires that theories be finite.
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The regularity condition guarantees a certain degree of independence of syntax, e.g.
given the sets of remaindersR1 = { { p } , { q } } andR2 = { { p ∧ p } , { q ∨ q } }, a regular
Bold operator either selects { p } from R1 and { p ∧ p } from R2, or it selects { q } from
R1 and { q ∨ q } from R2. A non-regular one might select, say, { p } from R1 and { q ∨ q }
from R2. Thus the regularity condition ensures that the operator is independent of the
syntax of individual sentences in the first-order theory.

The Cross-Product operator satisfies (F1), (FO2.1) and (F4), but not (F2.1).

Proposition 8.16 (Properties of Formula-Based Updates). The WIDTIO and regular Bold
operators satisfy (F1), (F2.1) and (F4). The Cross-Product operator satisfies (F1), (FO2.1) and (F4)
but does not satisfy (F2.1).

Proof. See Appendix F, page 294.

The following result establishes that formula-based operators such as WIDTIO and
regular Bold can be fully captured by exception-based operators. In addition, operators
such as Cross-Product can be captured for the case of a single update.

Theorem 8.17 (Formula-Based Updates Using Exception-Based Operators). If ◦ is an up-
date operator that satisfies (F1), (F2.1) and (F4), then there exists an exception function ε such that
for every ε-based update operator ⊕ and all finite sequences of theories T , [[©T ]] = [[

⊕
T ]].

If ◦ is an update operator that satisfies (F1), (FO2.1) and (F4), then there exists an exception
function ε such that for every ε-based update operator⊕ and all theories T , U , [[T ◦U ]] = [[T ⊕U ]].

Proof. See Appendix F, page 296.

An interesting point regarding the obtained results is that the principles (FO1), (FO2.1)
and (FO4) are not specific to update operators, they are also satisfied by AGM revision
operators. These operators are developed for the case of revising a belief set which is a
set of formulae closed w.r.t. a logical consequence operator Cn . A revision operator ?
takes an original belief set T and a formula µ, representing its revision, and produces
the revised belief set T ? µ. The properties satisfied by AGM revision operators include
success, inclusion and extensionality (Hansson, 1993a), formalised, respectively, as

µ ∈ T ? µ , T ? µ ⊆ Cn(T ∪ {µ }) , If µ ≡ ν, then T ? µ = T ? ν.

These three properties directly imply that (FO1), (FO2.1) and (FO4) are satisfied by AGM
revision operators if the initial knowledge base is a belief set and each of its updates a
single formula. This essentially means that Theorem 8.14 directly applies to AGM revi-
sion operators as well. Note that the operator adopted for ABox updates in (Lenzerini
and Savo, 2011), inspired by WIDTIO, performs a deductive closure of the ABox before
updating it, so it corresponds to the standard full meet AGM revision operator.

Similarly, principles (F1), (F2.1) and (F4) are closely related to the properties of base
revision operators (Hansson, 1993a), of which direct instances are the WIDTIO and Bold
operators. In particular, two types of base revision are identified in (Hansson, 1993a),
the internal and external base revision. Both of them satisfy base revision counterparts of
success and inclusion and, in addition, internal revision operators satisfy a property called
uniformity:

(Uniformity) If, for all B′ ⊆ B, B′ ∪ U is inconsistent iff B′ ∪ V is inconsistent,
then B ∩ (B ? U) = B ∩ (B ? V).

136



8. EXCEPTION-BASED UPDATES 8.4. Discussion

These three principles together entail that internal revision operators satisfy (F1), (F2.1)
and one half of (F4); the other half can be achieved by putting additional constraints on
the two-place selection function that generates the revision operator, similar to the regu-
larity condition we imposed on the Bold operator above. Such regular internal revision
operators are thus directly subject to Theorem 8.17. The same however does not hold
for regular external revision operators as they need not satisfy uniformity. Note also that
the WIDTIO and Bold operators coincide with internal full meet base revision and internal
maxichoice base revision operators, respectively.

8.4 Discussion

We have introduced exception-based operators which view a theory or program as the set
of sets of models of its elements, and perform updates by adding new interpretations –
exceptions – to the sets of models of elements in the original theory or program.

The most important feature of this approach is that it provides a common basis for
a wide range of update semantics. On the one hand, we have shown that it can charac-
terise the JU-semantics, a traditional syntax-based approach to rule updates. On the other
hand, it can fully capture update operators that form the basis of ontology updates (Liu
et al., 2006; De Giacomo et al., 2009; Calvanese et al., 2010; Lenzerini and Savo, 2011), such
as the model-based Winslett’s operator, or the formula-based WIDTIO and Bold opera-
tors. In addition, the Cross-Product operator can be captured for the case of performing a
single update and the same can be said about the Set-Of-Theories approach (Fagin et al.,
1983) since for a single update it is equivalent to the Cross-Product operator (Winslett,
1990). However, these two operators do not offer a viable alternative for updating ontolo-
gies. Cross-Product requires that disjunctions of ontology axioms be performed, which
is typically not supported in DLs, and Set-Of-Theories produces a disjunctive ontology
which is impractical and deviates from mainstream DL research.

The newly found bindings between belief and rule updates can already be observed
by looking at our investigation of semantic properties of simple exception-based rule up-
date operators. Previously, the reformulation of belief update postulates and their study
in the context of rule updates was problematic because many mature rule update seman-
tics define only the stable models of a DLP and do not construct the updated program.
By finding an actual exception-based operator that produces the new program, we are
able to look at belief update postulates from various perspectives and analyse different
notions of program equivalence and entailment w.r.t. particular operators and postulates
(c.f. Table 8.1).

Overall, exception functions and exception-based operators offer a uniform frame-
work that bridges two very distinct approaches to updates, previously considered irrec-
oncilable. The relationship between exception-based operators and revision operators,
on both belief sets and belief bases, may bring new insights into the approaches to ontol-
ogy revision (Qi and Yang, 2008; Qi et al., 2008; Halaschek-Wiener and Katz, 2006; Ribeiro
and Wassermann, 2007). This also seems relevant even in the context of ontology updates
since it has been argued in the literature that the strict distinction between revision and
update is not suitable in the context of ontologies (Calvanese et al., 2010).
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9
Conclusions and Future Directions

I may not have gone where I intended to go, but I think I have ended
up where I needed to be.

Douglas Adams
English humorist & science fiction novelist

This final chapter contains a summary of our main contributions, viewing them from
a broader perspective, and discusses interesting lines of future research.

In the previous parts of the thesis we presented a number of results that bring new
insights regarding state-of-the-art approaches to knowledge updates. Part II introduces
and examines the first update semantics for hybrid knowledge bases and pinpoints the ob-
stacles in defining a universal hybrid update semantics. Part III seeks to find semantic
characterisations of rule updates in order to bring them closer to ontology updates. Both
research directions have previously been largely unexplored and our investigation illus-
trates the extent to which ontology and rule updates can be naturally integrated with one
another, points out their distinguishing properties, and introduces a unified perspective
that can capture both these distinct update paradigms.

In the following sections we take a closer look at the conclusions drawn from our
results. Then we point at desirable future developments.

9.1 Updates of Hybrid Knowledge Bases

In Chapters 3 and 4 we defined two update semantics for MKNF knowledge bases, a
mature framework for representing and reasoning with tightly integrated hybrid knowl-
edge. The first semantics uses a first-order update operator � to perform ontology up-
dates in the presence of static rules. It encompasses applications of hybrid knowledge

141



9. CONCLUSIONS AND FUTURE DIRECTIONS 9.1. Updates of Hybrid Knowledge Bases

bases in which the ontology contains highly dynamic information while rules represent
defaults, preferences or behaviour that does not undergo changes and can be overridden
by ontology updates when necessary.

The second semantics modularly combines a first-order update operator �with a rule
update semantics S in order to update MKNF knowledge bases consisting of ontology
and rule layers that share information through a rule-based interface. We demonstrated
that it is useful in a realistic scenario as it is capable of performing non-trivial updates, au-
tomatically resolving conflicts in the expected manner, and propagating new information
across the knowledge base.

The two hybrid update semantics are complementary in the sense that each can han-
dle inputs that the other one cannot. Moreover, they are fully compatible with one an-
other, meaning that they assign the same semantics to inputs accepted by both (c.f. Theo-
rem 4.34). By combining them one can thus obtain an integrated hybrid update semantics
that can safely handle inputs treated by either of the two semantics.

In addition, we make only minimal assumptions about the properties of � and S that
guarantee the correctness of our definitions. In other words, we abstract away from par-
ticular instantiations of � and S and allow for any approach to ontology and rule updates,
be it an existing one or one that is yet to be discovered, as long as it satisfies those assump-
tions. The introduced semantics thus concentrate on the interplay between ontology and
rules and can serve as points of comparison for other hybrid update semantics that might
be developed in the future.

We also examined the basic theoretical properties of our hybrid update semantics. We
showed that they are faithful to � and S, i.e. they preserve their behaviour if the hybrid
knowledge base contains only ontology axioms or only rules. Similarly, the semantics are
faithful to the static semantics of MKNF knowledge bases, so when no updates are per-
formed, the assigned models are simply MKNF models of the initial MKNF knowledge
base. Furthermore, they respect the principle of primacy of new information.

The practical usefulness of the introduced semantics is underlined by the fact that the
full expressivity of MKNF knowledge bases does not seem to be necessary in a number
of use cases of hybrid knowledge. Especially, the separation of a hybrid knowledge base
into distinct ontology and rule layers, as required by the semantics from Chapter 4, seems
to be a natural way of controlling, from the perspective of a knowledge engineer, how the
different types of knowledge interact.

Having established these positive results, in Chapter 5 we investigated the possibility
of defining a universal hybrid update semantics. However, this led to the identification
of a number of serious obstacles. First, we showed that the traditional model-based ap-
proach to updates leads to counterintuitive results when used for updating TBoxes and
we formally pinpointed this observation. Its main consequence in the context of hybrid
knowledge bases is that one can hardly propose a plausible hybrid update semantics
when it is not clear how the intuitions regarding TBox updates can be reconciled with
model-based update operators that underlie ABox updates.

Even more importantly, we demonstrated the clash of intuitions due to the incom-
patibilities between principles underlying belief and rule updates. These observations
lead to the conclusion that without a deeper understanding of the distinct approaches
to updates and of their mutual relation, a plausible universal hybrid update semantics
can hardly be defined. Furthermore, since rule update semantics rely on the syntactic
structure of rules, which is absent in ontologies, this motivated us to look for semantic
characterisations of rule updates that would bridge ontology updates with rule updates,
which we tackled in Part III.
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9.2 Semantic Characterisations of Rule Updates

We commenced our investigation of semantic rule update operators in Chapter 6 by cast-
ing Katsuno and Mendelzon’s belief update framework to logic program updates, with
each program characterised by the set of its SE-models. We proved a representation
theorem that shows a one-to-one relationship between operators that satisfy the refor-
mulated belief update postulates and operators constructively defined using preorder
assignments, similarly as in the case of belief update operators. We also defined a coun-
terpart of Winslett’s update operator for performing program updates which satisfies the
reformulated postulates.

However, after a closer investigation we found out that all operators that satisfy the
syntax-independence postulate (P4)SE violate either support or fact update, both of which
are basic and desirable properties that are generally satisfied by existing rule update se-
mantics. In other words, program updates based on SE-models and belief update pos-
tulates are incompatible with traditional syntax-based approaches to rule updates. The
main reason for this is that the set of SE-models of a program does not capture the literal
dependencies expressed by its rules.

This led us to the search for more expressive semantic characterisations of logic pro-
grams. In Chapter 7 we proposed to view a program as the set of sets of models of its rules.
We examined the rule equivalence classes induced by SE-models and learned that even
though SE-models are capable of distinguishing most rules that are treated differently
by traditional rule update semantics, they fail to differentiate between rules with default
literals in their heads and constraints, which carry different meaning in the context of
causal rejection-based rule update semantics. To overcome this limitation, we introduced
RE-models and proved that they are able to distinguish the desired classes of rules while
retaining the essential properties of SE-models. We also introduced notions of program
equivalence and entailment based on viewing the program as the set of sets of SE- and
RE-models of its rules, and compared them in terms of strength.

Subsequently, in Chapter 8, we proposed a generic method for defining semantic rule
update operators: a program, viewed as the set of sets of RE-models of its rules, is updated
by introducing additional interpretations – exceptions – to the original sets of RE-models.
Using this approach we were able to arrive at a class of semantic rule update operators
that are tightly related to the JU-semantics for rule updates. This constitutes an important
advancement since it bridges, for the first time, a semantic approach to rule updates with
a syntactic one.

Furthermore, the introduced exception-based operators do not only assign a set of
stable models to a sequence of programs, as is the case with the JU-semantics and other
traditional rule update semantics, but produce an actual syntactic object that represents
the updated program. In other words, they compile any sequence of programs to a single
rule base. This brought about a new insight into the problem of state condensing from rule
update literature. In addition, it allowed us to extensively examine the semantic proper-
ties of rule updates under different notions of equivalence and entailment, providing a
much broader picture of properties of rule updates than the one attainable previously. In
particular, the operators naturally satisfy the syntax-independence postulate (P4) under
RR-equivalence, which views a program through the set of sets of RE-models of its rules,
and enjoy a range of other desirable properties as well.

Moreover, we showed that exception-based operators can also capture a range of belief
update operators. This means that they provide a unified framework under which the two
different update paradigms can be further investigated.
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9.3 Future Directions

The results of this thesis encourage a further investigation in a number of different direc-
tions, summarised as follows:

Further development of proposed hybrid update semantics: The update semantics for
MKNF knowledge bases from Chapters 3 and 4 can be further generalised by lift-
ing some the constraints under which they are developed. In case of the former
semantics, it would be interesting to consider adding support for disjunctive rules
and for updates of the rule component, even if only to a limited extent.

As for the latter semantics, one of the issues to study are the splitting properties that
it is based on. The main limitation is that the splitting sets contain predicate symbols
while in some cases it would be desirable to allow for a more fine-grained splitting,
on the level of ground atoms. A related and seemingly more demanding problem is
the treatment of the equality predicate ≈: How can the semantics be extended to
account for the presence of equality assertions and TBox axioms whose translation
to first-order logic requires equality, such as number restrictions?

Furthermore, we have shown that the splitting properties are not satisfied by all
ontology and rule update semantics, raising questions as to whether they are per-
haps too strong. At the first glance it would seem that the splitting properties are not
strong at all since their only requirement is that syntactically independent parts of a
knowledge base also be semantically independent. However, this only seems to be
a reasonable requirement if we are interested in finding a domain-independent update
semantics, as we typically are in the context of the Semantic Web. But if we are also
interested in domain-dependent semantics, syntactic independence need not imply
semantic independence. This also explains why many first-order update operators
characterised by order assignments do not satisfy the splitting properties (c.f. Ex-
ample 4.17) – if the order assignment encodes domain-dependent knowledge about
how propositions ought to be updated, then despite the syntactic independence of
two parts of a knowledge base, an update of one of them may trigger changes in
the other one. Hence, a more general formulation of the splitting properties that
accounts for these cases would be worth examining.

There is also an interesting relationship between the defined class of layered DMKBs
and multi-context systems of Brewka and Eiter (2007). Each layer of a DMKB w.r.t.
a particular layering splitting sequence can be viewed as a context that includes its
own bridge rules. At the same time, the constraints we impose guarantee that each
such context either contains only rules, so the context logic can be the stable mod-
els semantics, or it contains only DL axioms so that first-order logic can be used as
its underlying logic. Though different splitting sequences induce different multi-
context systems, their overall semantics remains the same (c.f. Proposition 4.27). A
further study of this close relationship may bring about interesting new insights.

Finally, the development of similar update semantics under other existing frame-
works for hybrid knowledge bases constitutes another topic of investigation.

Further development of semantic characterisations of rule updates: The developments
of Chapters 6, 7 and 8 encourage further investigation along the following direc-
tions:

• Adding support for strong negation.
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• Finding constructive syntactic definition of the introduced exception-based
operators that would reveal more about the inner workings of the JU-seman-
tics.

• Developing exception-based characterisations of other rule update semantics.
This poses a number of challenges due to the need to detect non-tautological
irrelevant updates (Alferes et al., 2005; Šefránek, 2006, 2011). For instance,
simple exception functions examined in this thesis cannot distinguish an up-
date of { p. } by U = {∼p← ∼q.,∼q ← ∼p. }, where it is plausible to introduce
the exception (∅, ∅), from an update of { p., q. } by U , where such an exception
should not be introduced due to the cyclic dependency of justifications to reject
facts (p.) and (q.). In such situations, context-aware exception functions need
to be used. On the other hand, such functions have the potential for satisfying
properties such as (Associativity) and (P3).

• Using the insights gained by exception-based characterisations of various rule
update semantics to also shed light on the problem of updating disjunctive pro-
grams which has been given very little attention up until now.

• Looking for a notion of program equivalence that is stronger than RMR-equiv-
alence and weaker than RR-equivalence and forms a suitable basis for rule
updates, so that properties such as (P4) and (P2.1) can be achieved under a
single notion of program equivalence. In particular, the results presented in
Table 8.1 suggest that while RR-equivalence is too strong for properties such
as (P2.1), RMR-equivalence is too weak for (P4).

• The possibility of characterising both belief and rule updates using exception
functions has great potential in the context of updates of hybrid knowledge
bases.
The clash of intuitions regarding ABox, TBox and rule updates, presented in
Chapter 5, can be seen in new light by studying the exception functions that
lead to it. When coupled with a counterpart of SE- and RE-models in the
context of MKNF knowledge bases, this can lead to universal hybrid update
semantics which in turn improve our understanding of the relation between
the distinct update paradigms.

Postulates for rule updates and hybrid updates: To this date, there is no generally ac-
cepted rule update semantics or a definitive set of properties, akin to KM postu-
lates for belief update, that would reliably distinguish good rule update semantics
from bad ones (c.f. (Eiter et al., 2002)). The search for formally formulated desirable
properties of rule update and hybrid update semantics is a challenging and impor-
tant future research area. Within this context, the properties for iterated revision
(c.f. (Darwiche and Pearl, 1997)) should be further investigated in the context of
updates.

TBox updates: TBox updates stand out as a particular area where novel ideas and so-
lutions are necessary. As shown in Chapter 5, model-based update operators are
not appropriate for updating TBoxes and the solution proposed by Calvanese et al.
(2010) is based on ideas from belief revision. The main question that arises is whether
and how the distinction between revision and updates applies to the evolution of
TBoxes. Advances in this respect would also shed light on the general relationship
between revision and updates and possibly also on ways of integrating them.
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Computational properties: Computational complexity and algorithms for implement-
ing the suggested hybrid update semantics and exception-based operators have
not been addressed in this work and should be investigated in future research.

In this context, it would also be interesting to consider tractable approximations of
the proposed semantics. The well-founded semantics for logic programs (Gelder
et al., 1991) and its version for MKNF knowledge bases (Knorr et al., 2011) consti-
tute crucial starting points in this direction.

Other change operations: Other change operations, such as forgetting, erasure, revision
and contraction, also need to be studied and related to updates in the context of
hybrid knowledge bases.

Overall, our results show how updates within interesting use cases of hybrid knowl-
edge can be performed by using a modular or loosely coupled combination of existing
results on ontology and rule updates. On the other hand, the general problem of hybrid
updates is very complex as it requires the reconciliation and convergence of a number
of fundamentally different approaches to knowledge dynamics. We have made the first
steps in this respect, by identifying a unifying perspective that embraces model-based
belief change operators as well as the historically first rule update semantics. Neverthe-
less, many exciting and challenging questions persist and need to be confronted by future
research.
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A
Proofs: Background

It is at this point that normal language gives up, and goes and has a
drink.

Terry Pratchett
The Color of Magic

This appendix contains proofs of propositions and theorems found in Chapter 2.
In addition, in Section A.2 we define and examine the properties of some additional

concepts that are useful for manipulating MKNF knowledge bases in Chapters 2, 3 and
4. The statements and proofs in Sections A.2.4, A.2.5 and A.2.6 assume that the use of the
equality predicate ≈ is not allowed.

A.1 First-Order Logic

Proposition 2.5. Let T , S be first-order theories. Then T |=FO S implies T |= S but the converse
implication does not in general hold.

Proof. Take some I ∈ I such that I |= T , we need to show that I |= S. For every constant
symbol a we will denote the equivalence class induced by ≈I to which a belongs by [a],
i.e.

[a] =
{
b ∈ C

∣∣ a ≈I b } .

Now define a first-order interpretation I ′ over the universe ∆ = { [a] | a ∈ C } as follows:

• for every a ∈ C, aI
′

= [a];

• for every predicate symbol P ∈ P of arity n and all d1, d2, . . . , dn ∈ ∆ such that
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di = [ai] for some ai ∈ C,

(d1, d2, . . . , dn) ∈ P I′ if and only if (a1, a2, . . . , an) ∈ P I .

Note that this definition is unambiguous because I allows for replacement of equals by
equals. It can be straightforwardly verified by induction on the structure of first-order
sentences that for every first-order theory T ′,

I |= T ′ if and only if I ′ |= T ′ . (A.1)

Thus, it follows from I |= T that I ′ |= T . By our assumption that T |=FO S we now obtain
that I ′ |= S and using (A.1) we can conclude that I |= S, which is the desired result.

To see that the converse implication does not hold, consider the theories

T = { P (a) | a ∈ C } and S = { ∀x : P (x) } .

It is not difficult to verify that T ≡ S . We will construct a first-order interpretation I that
satisfies T though it does not satisfy S. Put ∆ = C ∪ { d } where d /∈ C is a fresh object,
aI = a for all a ∈ C and P I = C. Clearly, I |= T although I 6|= S .

A.2 MKNF Knowledge Bases

A.2.1 First-Order Sentences in MKNF Structures

Proposition A.1. Let φ be a first-order sentence andM, N be MKNF interpretations such that
M⊆ N . Then

N |= Kφ implies M |= Kφ .

Proof. This follows by the definition of MKNF entailment as follows:

N |= Kφ =⇒ ∀I ∈ N : (I,N ,N ) |= φ =⇒ ∀I ∈ N : I |= φ

=⇒ ∀I ∈M : I |= φ =⇒ ∀I ∈M : (I,M,M) |= φ =⇒M |= Kφ .

Proposition A.2. Let φ be a first-order sentence, S a set of MKNF interpretations andM =
⋃
S.

Then

∀N ∈ S : N |= Kφ implies M |= Kφ .

Proof. Suppose that N |= Kφ for all N ∈ S. In order to prove thatM |= Kφ, take some
I ∈M and someN ∈ S such that I ∈ N . SinceN |= Kφ, we obtain (I,N ,N ) |= φ and it
follows that I |= φ because φ is a first-order sentence. Consequently, (I,M,M) |= φ. As
I was chosen arbitrarily, this holds for all I ∈M. Consequently,M |= Kφ.

A.2.2 Subjective MKNF Sentences and Theories

Definition A.3 (Subjective, K-free and not-free MKNF Formula and Theory). An MKNF
formula φ is subjective if all first-order atoms in φ occur within the scope of a modal
operator; K-free if it does not contain any occurrence of K; not-free if it does not contain
any occurrence of not.

An MKNF theory is subjective, K-free and not-free if all its members are subjective,
K-free and not-free, respectively.
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Lemma A.4. Let φ be a subjective MKNF sentence and T a subjective MKNF theory. For all
I1, I2 ∈ I andM,N ∈M it holds that

(I1,M,N ) |= φ if and only if (I2,M,N ) |= φ ,

(I1,M,N ) |= T if and only if (I2,M,N ) |= T .

Proof. We prove the first claim by induction on the structure of φ:

1◦ If φ = Kψ for some MKNF sentence ψ, then it follows that

(I1,M,N ) |= φ⇐⇒ ∀J ∈M : (J,M,N ) |= ψ ⇐⇒ (I2,M,N ) |= φ .

2◦ If φ = notψ for some MKNF sentence ψ, then it follows that

(I1,M,N ) |= φ⇐⇒ ∃J ∈ N : (J,M,N ) 6|= ψ ⇐⇒ (I2,M,N ) |= φ .

3◦ If φ = ¬ψ, then using the inductive hypothesis for ψ we obtain

(I1,M,N ) |= φ⇐⇒ (I1,M,N ) 6|= ψ ⇐⇒ (I2,M,N ) 6|= ψ ⇐⇒ (I2,M,N ) |= φ .

4◦ If φ = ψ1 ∧ ψ2, then using the inductive hypothesis for ψ1 and ψ2 we obtain

(I1,M,N ) |= φ⇐⇒ (I1,M,N ) |= ψ1 ∧ (I1,M,N ) |= ψ2

⇐⇒ (I2,M,N ) |= ψ1 ∧ (I2,M,N ) |= ψ2 ⇐⇒ (I2,M,N ) |= φ .

5◦ If φ = ∃x : ψ, then using the inductive hypothesis for ψ[a/x] we obtain

(I1,M,N ) |= φ⇐⇒ ∃a ∈ C : (I1,M,N ) |= ψ[a/x]

⇐⇒ ∃a ∈ C : (I2,M,N ) |= ψ[a/x]⇐⇒ (I2,M,N ) |= φ .

The second claim can be proved using the first one as follows:

(I1,M,N ) |= T ⇐⇒ ∀φ ∈ T : (I1,M,N ) |= φ

⇐⇒ ∀φ ∈ T : (I2,M,N ) |= φ⇐⇒ (I2,M,N ) |= T .

Lemma A.5. Let φ be a not-free MKNF sentence and T a not-free MKNF theory. For all I ∈ I

andM,N1,N2 ∈M it holds that

(I,M,N1) |= φ if and only if (I,M,N2) |= φ ,

(I,M,N1) |= T if and only if (I,M,N2) |= T .

Proof. We prove the first claim by induction on the structure of φ:

1◦ If φ = p for some ground first-order atom p, then it follows that

(I,M,N1) |= φ⇐⇒ I |= p⇐⇒ (I,M,N2) |= φ .

2◦ If φ = ¬ψ, then using the inductive hypothesis for ψ we obtain

(I,M,N1) |= φ⇐⇒ (I,M,N1) 6|= ψ ⇐⇒ (I,M,N2) 6|= ψ ⇐⇒ (I,M,N2) |= φ .
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3◦ If φ = ψ1 ∧ ψ2, then using the inductive hypothesis for ψ1 and ψ2 we obtain

(I,M,N1) |= φ⇐⇒ (I,M,N1) |= ψ1 ∧ (I,M,N1) |= ψ2

⇐⇒ (I,M,N2) |= ψ1 ∧ (I,M,N2) |= ψ2 ⇐⇒ (I,M,N2) |= φ .

4◦ If φ = ∃x : ψ, then using the inductive hypothesis for ψ[a/x] we obtain

(I,M,N1) |= φ⇐⇒ ∃a ∈ C : (I,M,N1) |= ψ[a/x]

⇐⇒ ∃a ∈ C : (I,M,N2) |= ψ[a/x]⇐⇒ (I,M,N2) |= φ .

5◦ If φ = Kψ, then using the inductive hypothesis for ψ we obtain

(I,M,N1) |= φ⇐⇒ ∀J ∈M : (J,M,N1) |= ψ

⇐⇒ ∀J ∈M : (J,M,N2) |= ψ ⇐⇒ (I,M,N2) |= φ .

The second claim can be proved using the first one as follows:

(I,M,N1) |= T ⇐⇒ ∀φ ∈ T : (I,M,N1) |= φ

⇐⇒ ∀φ ∈ T : (I,M,N2) |= φ⇐⇒ (I,M,N2) |= T .

Lemma A.6. Let φ be a K-free MKNF sentence and T a K-free MKNF theory. For all I ∈ I and
M1,M2,N ∈M it holds that

(I,M1,N ) |= φ if and only if (I,M2,N ) |= φ ,

(I,M1,N ) |= T if and only if (I,M2,N ) |= T .

Proof. We prove the first claim by induction on the structure of φ:

1◦ If φ = p for some ground first-order atom p, then it follows that

(I,M1,N ) |= φ⇐⇒ I |= p⇐⇒ (I,M2,N ) |= φ .

2◦ If φ = ¬ψ, then using the inductive hypothesis for ψ we obtain

(I,M1,N ) |= φ⇐⇒ (I,M1,N ) 6|= ψ ⇐⇒ (I,M2,N ) 6|= ψ ⇐⇒ (I,M2,N ) |= φ .

3◦ If φ = ψ1 ∧ ψ2, then using the inductive hypothesis for ψ1 and ψ2 we obtain

(I,M1,N ) |= φ⇐⇒ (I,M1,N ) |= ψ1 ∧ (I,M1,N ) |= ψ2

⇐⇒ (I,M2,N ) |= ψ1 ∧ (I,M2,N ) |= ψ2 ⇐⇒ (I,M2,N ) |= φ .

4◦ If φ = ∃x : ψ, then using the inductive hypothesis for ψ[a/x] we obtain

(I,M1,N ) |= φ⇐⇒ ∃a ∈ C : (I,M1,N ) |= ψ[a/x]

⇐⇒ ∃a ∈ C : (I,M2,N ) |= ψ[a/x]⇐⇒ (I,M2,N ) |= φ .

5◦ If φ = notψ, then using the inductive hypothesis for ψ we obtain

(I,M1,N ) |= φ⇐⇒ ∃J ∈ N : (J,M1,N ) 6|= ψ

⇐⇒ ∃J ∈ N : (J,M2,N ) 6|= ψ ⇐⇒ (I,M2,N ) |= φ .
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The second claim can be proved using the first one as follows:

(I,M1,N ) |= T ⇐⇒ ∀φ ∈ T : (I,M1,N ) |= φ

⇐⇒ ∀φ ∈ T : (I,M2,N ) |= φ⇐⇒ (I,M2,N ) |= T .

Definition A.7 (Subjective Entailment). Let φ be a subjective MKNF sentence and T a set
of subjective MKNF sentences. For anyM,N ∈M we write

(M,N ) |= φ if and only if ∃I ∈ I : (I,M,N ) |= φ ,

(M,N ) |= T if and only if ∃I ∈ I : (I,M,N ) |= T .

Proposition A.8 (Properties of Subjective Entailment). Let φ be a subjective MKNF sentence
and T a set of subjective MKNF sentences. For all I1, I2 ∈ I andM,N ∈M it holds that

(1) For all I ∈ I,

(M,N ) |= φ⇐⇒ (I,M,N ) |= φ and (M,N ) |= T ⇐⇒ (I,M,N ) |= T .

(2) IfM 6= ∅, then

(M,M) |= φ⇐⇒M |= φ and (M,M) |= T ⇐⇒M |= T .

(3) IfM 6= ∅ and both φ and T are not-free, then

(M,N ) |= φ⇐⇒M |= φ and (M,N ) |= T ⇐⇒M |= T .

(4) If N 6= ∅ and both φ and T are K-free, then

(M,N ) |= φ⇐⇒ N |= φ and (M,N ) |= T ⇐⇒ N |= T .

(5) (M,N ) |= T if and only if (M,N ) |= ψ for all ψ ∈ T .

Proof. We consider each statement separately:

(1) This is a consequence of Lemma A.4.

(2) This is a consequence of claim (1).

(3) This is a consequence of claim (1) and Lemma A.5.

(4) This is a consequence of claim (1) and Lemma A.6.

(5) This is a consequence of claim (1).

Corollary A.9. Letψ, ψ1, ψ2 be subjective MKNF sentences andM,N ∈M. Then the following
holds:

(M,N ) |= ¬ψ if and only if (M,N ) 6|= ψ

(M,N ) |= ψ1 ∧ ψ2 if and only if (M,N ) |= ψ1 and (M,N ) |= ψ2

(M,N ) |= ψ1 ⊃ ψ2 if and only if (M,N ) |= ψ1 implies (M,N ) |= ψ2 .

Proof. These are consequences of Proposition A.8(1).

Corollary A.10. Let π be a ground MKNF rule and M, N be MKNF interpretations. Then
M |= κ(π) if and only if

M |=
∧
κ(B(π)) implies M |=

∨
κ(H(π)) .
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If H(π) consists of a single generalised atom, then (M,N ) |= κ(π) if and only if

M |= κ(B(π)+) and N |= κ(∼B(π)−) implies M |= κ(H(π)) .

If H(π) consists of a single generalised default literal, then (M,N ) |= κ(π) if and only if

M |= κ(B(π)+) and N |= κ(∼B(π)−) implies N |= κ(H(π)) .

Proof. The first claim follows from Proposition A.8(2) and Corollary A.9. The other two
claims follow from Proposition A.8(2, 3, 4) and from Corollary A.9.

Corollary A.11. Let K be an MKNF knowledge base. An MKNF interpretationM is an MKNF
model of K if and only ifM |= κ(K) and for allM′ )M, (M′,M) 6|= κ(K).

Proof. This follows from the fact that κ(K) is a subjective theory and by applying Propo-
sition A.8(1, 2).

Proposition 2.21. LetK be an MKNF knowledge base without default negation in heads of rules.
IfM is an MKNF model of K, thenM is a subset-maximal S5 model of K.

Proof. Suppose that M and M′ are MKNF models of an MKNF knowledge base K =
(O,P) andM ⊆ M′. We will show that (M′,M) |= κ(K), which, together with Corol-
lary A.11, implies that M′ = M. Take some formula φ ∈ κ(K). Since M′ is an MKNF
model of K, it must be the case that

(M′,M′) |= φ . (A.2)

If φ = Kκ(ψ) for some ψ ∈ O, then φ is not-free and it follows from (A.2) by Propo-
sition A.8(3) that (M′,M) |= φ.

The other case occurs when φ =
∧
κ(B(π)) ⊃

∨
κ(H(π)) for some π ∈ P. By Corol-

lary A.10, assuming that (M′,M) |=
∧
κ(B(π)), we need to prove that (M′,M) |=∨

κ(H(π)). First we are going to show that

(M′,M′) |=
∧
κ(B(π)) . (A.3)

Take some L ∈ B(π). If L is a generalised atom ξ, then it follows that κ(ξ) = K ξ is not-
free and it follows that (M′,M′) |= K ξ. On the other hand, if L is a generalised literal
∼ξ, then κ(L) = not ξ and we obtain thatM 6|= ξ. But sinceM ⊆ M′, we immediately
obtain thatM′ 6|= ξ and it follows that (M′,M′) |= not ξ. This establishes (A.3).

From (A.3) and (A.2) we can infer that

(M′,M′) |=
∨
κ(H(π)) .

By assumption, H(π) contains no default generalised literals, so (M′,M′) |= K ξ for
some generalised atom ξ ∈ H(π). And since K ξ is not-free, we conclude that (M′,M) |=∨
κ(H(π)), as we wanted to show.

Proposition 2.22. Let K be an MKNF knowledge base and K′ the MKNF knowledge base ob-
tained from K by replacing every non-disjunctive rule with default negation in the head

∼ξ ← B+,∼B−. with the rule ← ξ,B+,∼B−.

Then the MKNF models of K coincide with the MKNF models of K′.
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Proof. Take an MKNF modelM of K = (O,P). We will show thatM is an MKNF model
of K′. We first need to show that M is an S5 model of K′ = (O,P′). Take some φ ∈
κ(K′). If φ belongs to κ(K), then certainlyM |= φ. So suppose that φ = κ(π′) for some
replacement π′ ∈ P′ of a rule π ∈ P. Then eitherM 6|=

∧
κ(B(π)) orM |= not ξ. In either

case,M 6|=
∧
κ(B(π′)), soM |= κ(π′) as desired.

Now suppose that M′ ) M. Since M is an MKNF model of K, there is a formula
φ ∈ κ(K) such that,

(M′,M) 6|= φ (A.4)

We will prove by contradiction that φ also belongs to κ(K′) which establishes thatM is
an MKNF model of K′. So suppose that φ does not belong to κ(K′). Then,

φ =
(∧

κ(B(π)) ⊃ not ξ
)

and it follows from (A.4) that (M′,M) |=
∧
κ(B(π)) and (M′,M) 6|= not ξ. The former

implies that (M,M) |=
∧
κ(B(π)) and since M is an MKNF model of K, we conclude

that (M,M) |= not ξ. But then it follows that (M′,M) |= not ξ, contrary to our previous
conclusion.

For the other direction, suppose thatM is an MKNF model of K′. To verify thatM
is an S5 model of K, take some φ ∈ κ(K). If φ belongs to κ(K′), then certainlyM |= φ.
So suppose that φ = κ(π) for some rule π replaced in K′ by π′. It follows that M 6|=∧
κ(B(π′)), which implies that eitherM 6|=

∧
κ(B(π)) orM 6|= ξ. In either case we can

conclude thatM |= κ(π) as desired.
Finally, assume thatM′ )M. SinceM is an MKNF model of K′, there is a formula

φ′ ∈ κ(K′) such that
(M′,M) 6|= φ′ (A.5)

If φ′ belongs to κ(K), then it follows that M is an MKNF model of K and the proof is
finished. Otherwise we obtain

φ′ =
(∧

κ(B(π) ∪ { ξ }) ⊃ ⊥
)

(A.6)

and κ(K) contains the formula φ = (
∧
κ(B(π)) ⊃ not ξ). It is not difficult to verify that

(A.5) and (A.6) imply that (M′,M) |=
∧
κ(B(π)) andM′ |= ξ, so it follows fromM′ ⊇M

thatM |= ξ, implying that (M′,M) 6|= not ξ and thus (M′,M) 6|= φ, which proves that
M is indeed an MKNF model of K.

A.2.3 Restricted MKNF Interpretations

This section contains proofs of the essential properties of interpretation restrictions. This
concept is formally defined in Definition 2.39 on page 38.

Definition A.12 (Interpretation Coincidence). Let A be a set of predicate symbols. For
any I, J ∈ I we say that I coincides with J on A if I [A] = J [A].

Similarly, for anyM,N ∈M,M coincides with N on A ifM[A] = N [A].

Proposition A.13. Let φ be an MKNF sentence,A a set of predicate symbols such thatA ⊇ pr(φ)
and (I,M,N ) an MKNF structure. Then:

(I,M,N ) |= φ⇐⇒
(
I [A],M[A],N [A]

)
|= φ .

Proof. We prove by structural induction on φ:
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1◦ If φ is a ground atom p, then the following chain of equivalences proves the claim:

(I,M,N ) |= φ⇐⇒ I |= p⇐⇒ I [A] |= p⇐⇒
(
I [A],M[A],N [A]

)
|= φ ;

2◦ If φ is of the form ¬ψ, then pr(φ) = pr(ψ), so A ⊇ pr(ψ). Hence, we can use the
inductive hypothesis for ψ as follows:

(I,M,N ) |= φ⇐⇒ (I,M,N ) 6|= ψ ⇐⇒
(
I [A],M[A],N [A]

)
6|= ψ

⇐⇒
(
I [A],M[A],N [A]

)
|= φ ;

3◦ If φ is of the form φ1∧φ2, then pr(φ) = pr(φ1)∪pr(φ2), so we obtain both A ⊇ pr(φ1)
and A ⊇ pr(φ2). Applying the inductive hypothesis to φ1 and φ2 now yields the
claim:

(I,M,N ) |= φ⇐⇒ (I,M,N ) |= φ1 ∧ (I,M,N ) |= φ2

⇐⇒
(
I [A],M[A],N [A]

)
|= φ1 ∧

(
I [A],M[A],N [A]

)
|= φ2

⇐⇒
(
I [A],M[A],N [A]

)
|= φ ;

4◦ If φ is of the form ∃x : ψ, then for all a ∈ C, pr(φ) = pr(ψ) = pr(ψ[a/x]), so A ⊇
pr(ψ[a/x]). Consequently, we can use the inductive hypothesis for the formulae
ψ[a/x] as follows:

(I,M,N ) |= φ⇐⇒ ∃a ∈ C : (I,M,N ) |= ψ[a/x]

⇐⇒ ∃a ∈ C :
(
I [A],M[A],N [A]

)
|= ψ[a/x]

⇐⇒
(
I [A],M[A],N [A]

)
|= φ ;

5◦ If φ is of the form Kψ, then pr(φ) = pr(ψ), so A ⊇ pr(ψ). The claim now follows
from the inductive hypothesis for ψ:

(I,M,N ) |= φ⇐⇒ ∀J ∈M : (J,M,N ) |= ψ

⇐⇒ ∀J ∈M :
(
J [A],M[A],N [A]

)
|= ψ

⇐⇒ ∀J ∈M[A] : (J,M[A],N [A]) |= ψ

⇐⇒
(
I [A],M[A],N [A]

)
|= φ ;

6◦ If φ is of the form notψ, then pr(φ) = pr(ψ), so A ⊇ pr(ψ). The claim follows
similarly as in the previous case:

(I,M,N ) |= φ⇐⇒ ∃J ∈ N : (J,M,N ) 6|= ψ

⇐⇒ ∃J ∈ N :
(
J [A],M[A],N [A]

)
6|= ψ

⇐⇒ ∃J ∈ N [A] : (J,M[A],N [A]) 6|= ψ

⇐⇒
(
I [A],M[A],N [A]

)
|= φ .
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Corollary A.14. Let T be an MKNF theory, A a set of predicate symbols such that A ⊇ pr(T )
andM,N ∈M be such that they coincide on A. Then,

M |= T if and only if N |= T .

Proof. We prove only the direct implication, the proof of the converse direction follows
from the symmetry of the claim. Suppose thatM |= T . Then for every φ ∈ T and all I ∈
M we have (I,M,M) |= φ. We want to show that N |= T . Pick some ψ ∈ T and some
J ∈ N . SinceM[A] = N [A], there must be some I ∈ M such that I [A] = J [A]. By assump-
tion, A ⊇ pr(ψ) and (I,M,M) |= ψ, so Proposition A.13 yields

(
I [A],M[A],M[A]

)
|= ψ.

From I [A] = J [A] andM[A] = N [A] it thus follows that
(
J [A],N [A],N [A]

)
|= ψ. By apply-

ing Proposition A.13 once again we obtain (J,N ,N ) |= ψ and, thus, N |= T .

Proposition A.15. Let A be a set of predicate symbols and M,N ∈ M. Then the following
holds:

(1) IfM⊆ N , thenM[A] ⊆ N [A].

(2) IfM = N , thenM[A] = N [A].

(3) IfM⊆ N andM[A] ( N [A], thenM ( N .

Proof.

(1) Follows by definition ofM[A] and N [A].

(2) This is a direct consequence of (1).

(3) Suppose that M ⊆ N and M[A] ( N [A]. Then there is some J ∈ N such that
J [A] /∈ M[A]. Consequently, J /∈ M and it follows that M is a proper subset of
N .

Proposition A.16. Let φ be a subjective MKNF sentence, A a set of predicate symbols such that
A ⊇ pr(φ) andM,N ∈M. Then,

(M,N ) |= φ if and only if
(
M[A],N [A]

)
|= φ .

Proof. By Definition A.7 we have

(M,N ) |= φ if and only if ∃I ∈ I : (I,M,N ) |= φ .

By Proposition A.13 we can equivalently rewrite the right hand side into

∃I ∈ I :
(
I [A],M[A],N [A]

)
|= φ .

Furthermore, since φ is subjective, we can use Lemma A.4 to further rewrite the previous
statement into

∃I ∈ I :
(
I,M[A],N [A]

)
|= φ ,

which is by Definition A.7 equivalent to(
M[A],N [A]

)
|= φ .

Corollary A.17. Let φ be a subjective MKNF sentence, A a set of predicate symbols such that
A ⊇ pr(φ) andM,M′,N ,N ′ ∈ M be such thatM coincides withM′ on A and N coincides
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with N ′ on A. Then,
(M,N ) |= φ⇐⇒ (M′,N ′) |= φ .

Proof. By assumptions we know thatM[A] = M′[A] and N [A] = N ′[A]. Proposition A.16
now yields:

(M,N ) |= φ⇐⇒
(
M[A],N [A]

)
|= φ⇐⇒

(
M′[A],N ′[A]

)
|= φ⇐⇒ (M′,N ′) |= φ .

A.2.4 Saturated MKNF Interpretations

The statements and proofs in the present as well as the next two sections assume that the
use of the equality predicate ≈ is not allowed.

For a definition of a saturated MKNF interpretation, please refer to Definition 2.40 on
page 38.

We start by showing that every MKNF model of an MKNF theory T is saturated
relative to the set of predicate symbols relevant to T :

Proposition A.18. Let A be a set of predicate symbols and T an MKNF theory such that A ⊇
pr(T ). IfM is an MKNF model of T , thenM is saturated relative to A.

Proof. Suppose thatM is not saturated relative to A. Then there is some I ∈ I such that
I [A] ∈M[A] and I /∈M. LetM′ =M∪{ I }. SinceM is an MKNF model of T , it follows
that (I ′,M′,M) 6|= T for some I ′ ∈ M′. But I ′[A] ∈ M′[A] =M[A], so there must be some
I ′′ ∈M such that I ′′[A] = I ′[A]. By two applications of Proposition A.13 we obtain

(I ′,M′,M) 6|= T =⇒ (I ′[A],M′[A],M[A]) 6|= T =⇒ (I ′′,M,M) 6|= T .

This is in conflict with the assumption thatM is an MKNF model of T .

Similarly, the set of models of a first-order theory T is saturated relative to the set of
predicate symbols relevant to T .
Proposition 2.41. Let A be a set of predicate symbols and T a first-order theory such that
pr(T ) ⊆ A. Then [[T ]] is saturated relative to A.

Proof. If [[T ]] = ∅, then this follows from the fact that ∅ is trivially saturated relative to
any set of predicate symbols. Otherwise, [[T ]] is the MKNF model of T and it suffices to
use Proposition A.18.

Two strengthened versions of Proposition A.15 can be shown for saturated MKNF
interpretations, as introduced in Definition 2.40, with implications replaced by equiva-
lences.

Proposition A.19. Let A be a set of predicate symbols andM,N ∈M such thatM is saturated
relative to A. Then the following holds:

(1) M = N if and only ifM⊆ N andM[A] ⊇ N [A].

(2) M ( N if and only ifM⊆ N andM[A] ( N [A].

Proof.

(1) The direct implication follows from Proposition A.15. To prove the converse impli-
cation, suppose thatM[A] ⊇ N [A] and I ∈ N . We immediately obtain I [A] ∈ M[A]

and sinceM is saturated relative to A, we can conclude that I ∈M.
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(2) For the direct implication suppose that M ( N . Then there is some I ∈ N such
that I /∈ M. SinceM is saturated relative to A, we obtain that I [A] /∈ M[A]. Conse-
quently,M[A] is a proper subset ofN [A]. The converse implication is a consequence
of Proposition A.15(3).

Proposition A.20. Let A be a set of predicate symbols andM,N ∈M such that N is saturated
relative to A. Then the following holds:

(1) M⊆ N if and only ifM[A] ⊆ N [A].

(2) M = N if and only ifM[A] = N [A].

(3) M ( N if and only ifM[A] ( N [A].

Proof.

(1) The direct implication follows from Proposition A.15(1). To prove the converse
implication, suppose thatM[A] ⊆ N [A] and I ∈ M. We immediately obtain I [A] ∈
M[A], hence also I [A] ∈ N [A]. Since N is saturated relative to A, we can conclude
that I ∈ N . Consequently,M⊆ N .

(2) This is a consequence of (1).

(3) This is a consequence of (1) and (2).

The following concept and its properties, strongly related to saturated interpretations,
will be essential for proving all our results in Chapter 4.

Definition A.21. Let A be a set of predicate symbols and M ∈ M. We introduce the
following notation:

σ(M, A) =
{
I ∈ I

∣∣∣ I [A] ∈M[A]
}

Proposition A.22. Let A be a set of predicate symbols and M,N ∈ M. Then the following
conditions are equivalent:

1. N = σ(M, A);

2. N coincides withM on A and is saturated relative to A.

3. N is the greatest among all N ′ ∈M coinciding withM on A;

Furthermore, if N satisfies one of the conditions above, thenM⊆ N .

Proof. We will prove that 1. implies 2., 2. implies 3. and finally that 3. implies 1.
Suppose that N = σ(M, A). Then,

N [A] = { I [A] | I ∈ I ∧ I [A] ∈M[A] } =M[A] ,

so N coincides withM on A. Furthermore, any I ∈ I with I [A] ∈ N [A] must also satisfy
I [A] ∈ M[A] and by the definition of σ(M, A) we obtain I ∈ N , so N is saturated relative
to A. This shows that 1. implies 2.

To prove that 2. implies 3., suppose that N coincides withM on A and is saturated
relative to A. Take some N ′ ∈M that coincides withM on A and I ∈ N ′. Then,

I [A] ∈ N ′[A] =M[A] = N [A] .

Since N is saturated relative to A, we can conclude that I belongs to N . Consequently,
N ′ is included in N , so N is the greatest among all N ′ ∈M coinciding withM on A.

Finally, suppose that N is the greatest among all N ′ ∈ M coinciding withM on A. It
follows that since σ(M, A) coincides withM on A, it must be a subset of N . It remains

177



A. PROOFS: BACKGROUND

to show that N is a subset of σ(M, A). But that is a consequence of the fact that for any
I ∈ N , I [A] belongs toM[A] and, thus, I belongs to σ(M, A).

It remains to show thatM is a subset of N if N satisfies one of the above conditions.
We already know that the conditions are equivalent, so we only need to consider one of
them. So suppose thatN = σ(M, A). It follows from the definition of σ(M, A) that every
I ∈M belongs to N as well. Hence,M is a subset of N .

Proposition A.23. Let A1, A2 be sets of predicate symbols andM∈M. Then,

σ(σ(M, A1), A2) = σ(M, A1 ∩A2) .

Proof. Consider the following sequence of equivalences:

I ∈ σ(σ(M, A1), A2)⇐⇒ I [A2] ∈ σ(M, A1)[A2]

⇐⇒ ∃J ∈ σ(M, A1) : J [A2] = I [A2]

⇐⇒ ∃J ∈ I ∃K ∈M : K [A1] = J [A1] ∧ J [A2] = I [A2]

⇐⇒ ∃K ∈M ∃J ∈ I : J [A1] = K [A1] ∧ J [A2] = I [A2] .

Moreover, we also obtain the following:

I ∈ σ(M, A1 ∩A2)⇐⇒ ∃K ∈M : K [A1∩A2] = I [A1∩A2] .

So it remains to show that

∃J ∈ I : J [A1] = K [A1] ∧ J [A2] = I [A2] if and only if K [A1∩A2] = I [A1∩A2] .

Indeed, if such a J exists, then for every ground atom p the following holds:

K [A1∩A2] |= p⇐⇒ K |= p ∧ pr(p) ⊆ A1 ∩A2

⇐⇒ (K |= p ∧ pr(p) ⊆ A1) ∧ pr(p) ⊆ A2

⇐⇒ K [A1] |= p ∧ pr(p) ⊆ A2

⇐⇒ J [A1] |= p ∧ pr(p) ⊆ A2

⇐⇒ (J |= p ∧ pr(p) ⊆ A2) ∧ pr(p) ⊆ A1

⇐⇒ J [A2] |= p ∧ pr(p) ⊆ A1

⇐⇒ I [A2] |= p ∧ pr(p) ⊆ A1

⇐⇒ I |= p ∧ pr(p) ⊆ A1 ∩A2

⇐⇒ I [A1∩A2] |= p

On the other hand, if the other condition holds, then let J be an interpretation such that
for every ground atom p,

J |= p if and only if (K |= p ∧ pr(p) ⊆ A1) ∨ (I |= p ∧ pr(p) ⊆ A2)

For any ground atom p we obtain:

J [A1] |= p⇐⇒ J |= p ∧ pr(p) ⊆ A1

⇐⇒ (K |= p ∧ pr(p) ⊆ A1) ∨ (I |= p ∧ pr(p) ⊆ A1 ∩A2)

⇐⇒ (K |= p ∧ pr(p) ⊆ A1) ∨ I [A1∩A2] |= p
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⇐⇒ (K |= p ∧ pr(p) ⊆ A1) ∨K [A1∩A2] |= p

⇐⇒ (K |= p ∧ pr(p) ⊆ A1) ∨ (K |= p ∧ pr(p) ⊆ A1 ∩A2)

⇐⇒ K |= p ∧ pr(p) ⊆ A1

⇐⇒ K [A1] |= p

and also

J [A2] |= p⇐⇒ J |= p ∧ pr(p) ⊆ A2

⇐⇒ (K |= p ∧ pr(p) ⊆ A1 ∩A2) ∨ (I |= p ∧ pr(p) ⊆ A2)

⇐⇒ K [A1∩A2] |= p ∨ (I |= p ∧ pr(p) ⊆ A2)

⇐⇒ I [A1∩A2] |= p ∨ (I |= p ∧ pr(p) ⊆ A2)

⇐⇒ (I |= p ∧ pr(p) ⊆ A1 ∩A2) ∨ (I |= p ∧ pr(p) ⊆ A2)

⇐⇒ I |= p ∧ pr(p) ⊆ A2

⇐⇒ I [A2] |= p .

Proposition A.24. Let A1, A2 be sets of predicate symbols such that A1 ⊆ A2 and M ∈ M.
Then,

σ(M, A2)[A1] =M[A1] .

Proof. First suppose that I ∈ σ(M, A2)[A1]. Then for some J ∈ σ(M, A2) we have I =
J [A1], so for every ground atom p,

I |= p if and only if J |= p ∧ pr(p) ⊆ A1 . (A.7)

Also, since J belongs to σ(M, A2), there must be some K ∈ M such that K [A2] = J [A2],
which means that for any ground atom p with pr(p) ⊆ A2 we have J |= p ⇐⇒ K |= p.
This, together with (A.7) and the assumption that A1 is a subset of A2, implies that for
every ground atom p,

I |= p if and only if K |= p ∧ pr(p) ⊆ A1 .

Thus, I ∈M[A1].
The converse inclusion follows from the fact that M is a subset of σ(M, A2) (see

Proposition A.22).

Lemma A.25. Let A1, A2 be sets of predicate symbols such that A1 ⊆ A2 andM ∈M. IfM is
saturated relative to A1, then it is also saturated relative to A2.

Proof. Suppose thatM is saturated relative to A1 and I ∈ I is such that I [A2] ∈M[A2]. We
need to prove that I ∈ M. We know that for some J ∈ M it holds that I [A2] = J [A2]. In
other words, for every ground atom p with pr(p) ⊆ A2 it holds that:

I |= p if and only if J |= p .

Since A1 is a subset of A2, every ground atom p with pr(p) ⊆ A1 also satisfies the above
equivalence. Thus, I [A1] = J [A1] and we conclude that I [A1] ∈M[A1]. SinceM is saturated
relative to A1, it follows that I ∈M.
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Lemma A.26. Let A,B be disjoint sets of predicate symbols and M an MKNF interpretation.
Then,

σ(M, A)[B] = I[B] .

Proof. Since σ(M, A) is a subset of I, the left to right inclusion holds trivially. Suppose
that I ∈ I[B], i.e. I |= p only if pr(p) ⊆ B. Furthermore, take some I ′ ∈M and let I ′′ be an
interpretation such that I ′′ |= p if and only if I ′[A] |= p or I |= p. Since A is disjoint from
B, it follows that I ′′[A] = I ′[A] and I ′′[B] = I . This implies that I ′′ belongs to σ(M, A), so
I belongs to σ(M, A)[B].

A.2.5 Semi-saturated MKNF Interpretations

There is also another class of MKNF interpretations for which a slightly modified version
of Proposition A.15 holds. We introduce it here and look at some of its properties. These
are useful in the proofs of the splitting set theorems in Appendix C.

Definition A.27 (Semi-saturated MKNF Interpretation). Let A be a set of predicate sym-
bols andM ∈ M. We say thatM is semi-saturated relative to A if for every interpretation
I ∈ I,

I [A] ∈M[A] ∧ I [P\A] ∈M[P\A] implies I ∈M .

Proposition A.28. Let A be a set of predicate symbols andM,N be MKNF interpretations such
thatM is saturated relative to A andN is saturated relative to P \A. ThenM∩N is an MKNF
interpretation that is semi-saturated relative to A and coincides with M on A and with N on
P \A.

Proof. We first prove the following claim: For every I ∈ M and every J ∈ N there exists
some K ∈M∩N such that K [A] = I [A] and K [P\A] = J [P\A]. The reason this holds is that
the sets A and (P \ A) are disjoint. Let’s take some I ∈ M and some J ∈ N and let K be
an interpretation such that for every ground atom p,

K |= p if and only if I [A] |= p ∨ J [P\A] |= p .

The following can now be derived:

K [A] |= p⇐⇒ K |= p ∧ pr(p) ⊆ A
⇐⇒ I |= p ∧ pr(p) ⊆ A ∨ J |= p ∧ pr(p) ⊆ A ∩ (P \A)

⇐⇒ I |= p ∧ pr(p) ⊆ A
⇐⇒ I [A] |= p ,

K [P\A] |= p⇐⇒ K |= p ∧ pr(p) ⊆ P \A
⇐⇒ I |= p ∧ pr(p) ⊆ A ∩ (P \A) ∨ J |= p ∧ pr(p) ⊆ P \A
⇐⇒ J |= p ∧ pr(p) ⊆ P \A
⇐⇒ J [P\A] |= p .

Consequently, K belongs to M and also to N (because they are saturated relative to A
and P \A, respectively), so K belongs toM∩N as well.

It follows from the above thatM∩N is non-empty and that (M∩N )[A] = M[A] as
well as (M∩N )[P\A] = N [P\A].
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It remains to show thatM∩N is semi-saturated relative to A. Let I ∈ I be such that
I [A] ∈ (M∩N )[A] and I [P\A] ∈ (M∩N )[P\A]. We need to prove that I ∈M∩N . We know
that (M∩N )[A] is a subset ofM[A] and sinceM is saturated relative to A, we conclude
that I ∈M. Similarly, (M∩N )[P\A] is a subset ofN [P\A] and sinceN is saturated relative
to P \A, we conclude that I ∈ N . Consequently, I ∈M∩N .

Proposition A.29. Let A be a set of predicate symbols and M,N ∈ M be such that M is
semi-saturated relative to A. Then the following equivalences hold:

(1) M = N if and only ifM⊆ N andM[A] ⊇ N [A] andM[P\A] ⊇ N [P\A].

(2) M ( N if and only ifM⊆ N and eitherM[A] ( N [A] orM[P\A] ( N [P\A].

Proof.

(1) The direct implication follows from Proposition A.15(1). To prove the converse im-
plication, suppose thatM[A] ⊇ N [A],M[P\A] ⊇ N [P\A] and I ∈ N . We immediately
obtain I [A] ∈M[A] and I [P\A] ∈M[P\A] and sinceM is semi-saturated relative to A,
we can conclude that I ∈M.

(2) For the direct implication suppose that M ( N . Then there is some I ∈ N such
that I /∈ M. Since M is semi-saturated relative to A, we obtain that I [A] /∈ M[A]

or I [P\A] /∈ M[P\A]. Consequently, either M[A] ( N [A] or M[P\A] ( N [P\A]. The
converse implication is a consequence of Proposition A.15(3).

Proposition A.30. Let A be a set of predicate symbols and M,N ∈ M such that N is semi-
saturated relative to A. Then the following holds:

(1) M⊆ N if and only ifM[A] ⊆ N [A] andM[P\A] ⊆ N [P\A].

(2) M = N if and only ifM[A] = N [A] andM[P\A] = N [P\A].

(3) M ( N if and only if M[A] ⊆ N [A] and M[P\A] ⊆ N [P\A] and at least one of the
inclusions is proper.

Proof.

(1) The direct implication follows from Proposition A.15(1). To prove the converse im-
plication, suppose thatM[A] ⊆ N [A],M[P\A] ⊆ N [P\A] and I ∈M. We immediately
obtain I [A] ∈ M[A], hence also I [A] ∈ N [A]. Similarly, I [P\A] ∈ M[P\A] and, conse-
quently, I [P\A] ∈ N [P\A]. Since N is semi-saturated relative to A, we can conclude
that I ∈ N . Consequently,M⊆ N .

(2) This is a consequence of (1).

(3) This is a consequence of (1) and (2).

Proposition A.31. Let A be a set of predicate symbols andM1,M2 be MKNF interpretations.
Then there exists the greatest MKNF interpretation N that coincides with M1 on A and with
M2 on P \A. Furthermore, N is semi-saturated relative to A andM1 ∩M2 ⊆ N .

Proof. Let N1 = σ(M1, A), N2 = σ(M2,P \A) and N = N1 ∩N2. The claim now follows
by Propositions A.22 and A.28.

A.2.6 Sequence-saturated MKNF Interpretations

The property satisfied by semi-saturated interpretations can be naturally extended to
sequences of mutually disjoint sets of predicate symbols. This serves as a means to prove
the splitting sequence theorems in Appendix C.
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Definition A.32 (Saturation Sequence, Difference Sequence). A saturation sequence is a
sequence 〈Aα〉α<µ of pairwise disjoint sets of predicate symbols such that

⋃
α<µAα = P.

Definition A.33 (Sequence-saturated MKNF Interpretation). Let A = 〈Aα〉α<µ be a satu-
ration sequence andM∈M. We say thatM is sequence-saturated relative to A if for every
interpretation I ∈ I,

∀α < µ : I [Aα] ∈M[Aα] implies I ∈M .

Proposition A.34. Let A = 〈Aα〉α<µ be a saturation sequence andM∈M. Then the following
conditions are equivalent:

1. M is sequence-saturated relative to A;

2. M =
⋂
α<µ σ(M, Aα).

3. M =
⋂
α<µMα and for any α < µ,Mα is saturated relative to Aα.

Proof. We first prove that 1. implies 2. Suppose that M is sequence-saturated relative
to A. It follows from Proposition A.22 that M is a subset of σ(M, Aα) for any α < µ.
Thus, M is a subset of

⋂
α<µ σ(M, Aα). To show that the converse inclusion holds as

well, take some interpretation I ∈
⋂
α<µ σ(M, Aα) and some α < µ. Proposition A.22

implies that σ(M, Aα) coincides withM on Aα. Thus, from I ∈ σ(M, Aα) it follows that
I [Aα] ∈ M[Aα]. Furthermore, since M is sequence-saturated relative to A, this implies
that I ∈M.

The implication from 2. to 3. follows by puttingMα = σ(M, Aα) and observing that,
by Proposition A.22,Mα is saturated relative to Aα.

Finally, suppose that 3. holds and I is an interpretation such that for any α < µ, I [Aα]

belongs to

M[Aα] =
(⋂

β<µMβ

)[Aα]
⊆M[Aα]

α

SinceMα is saturated relative to Aα, we conclude that I belongs toMα. The choice of
α < µ was arbitrary, so we have proven that I belongs toM.

Proposition A.35. Let A = 〈Aα〉α<µ be a saturation sequence, 〈Mα〉α<µ be a sequence of
members of M such that for all α < µ, Mα is saturated relative to Aα, andM =

⋂
α<µMα.

The following holds:

(1) M = ∅ if and only if for some α < µ,Mα = ∅.
(2) IfM 6= ∅, then for all α < µ,Mα = σ(M, Aα).

Proof.

(1) Suppose first thatM 6= ∅. SinceM =
⋂
α<µMα, it follows immediately that for all

α < µ,Mα 6= ∅.
For the other direction suppose that for all α < µ,Mα 6= ∅, pick some Iα ∈ Mα for
every α and let I be an interpretation such that for every ground atom p,

I |= p if and only if ∃α < µ : I [Aα]
α |= p

It follows that for every α < µ, I [Aα] = I
[Aα]
α ∈ M[Aα]

α , so since Mα is saturated
relative to Aα, it follows that I ∈Mα. Consequently, I ∈M 6= ∅.

(2) Suppose that M 6= ∅. It follows from (1) that for all α < µ, Mα 6= ∅. Pick some
α < µ and some I ∈ Mα. We will prove that I belongs to σ(M, Aα). Let Iα = I
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and for all β < µ such that β 6= α, let Iβ be any member of Mβ . Let J be an
interpretation such that for every ground atom p,

J |= p if and only if ∃β < µ : I
[Aβ]
β |= p .

To see that J belongs to M, take some β < µ and observe that J [Aβ] = I
[Aβ]
β ∈

M[Aβ]
β . Since Mβ is saturated relative to Aβ , this implies that J belongs to Mβ .

Hence, J belongs toM. Moreover, I [Aα] = J [Aα], so I [Aα] belongs toM[Aα]. Thus, I
belongs to σ(M, Aα).
For the converse inclusion, suppose that I ∈ σ(M, Aα) for some α < µ. It follows
that I [Aα] ∈M[Aα]. Also,

M[Aα] =
(⋂

β<µMβ

)[Aα]
⊆M[Aα]

α ,

so I [Aα] ∈M[Aα]
α . SinceMα is saturated relative to Aα, we obtain I ∈Mα.

A.3 Belief Updates

Proposition 2.24. Let � be a belief update operator that satisfies (B4.1). Then � satisfies (B8) if
and only if it satisfies both (B8.1) and (B8.2).

Proof. Suppose that � satisfies (B8). It immediately follows that � satisfies (B8.1) because it
is a direct weakening of (B8). To see that � satisfies (B8.2), suppose that φ |= ψ. It follows
by basic properties of propositional logic that φ � µ |= (φ � µ) ∨ (ψ � µ) and by (B8) we
conclude that φ � µ |= (φ ∨ ψ) � µ. Furthermore, from φ |= ψ we obtain φ ∨ ψ ≡ ψ and, by
(B4.1), (φ ∨ ψ) � µ ≡ ψ � µ. Consequently, φ � µ |= ψ � µ.

For the other direction, suppose that � satisfies both (B8.1) and (B8.2). One direction
of (B8) follows directly from (B8.1), so we only need to verify that for all propositional
formulae φ, ψ, µ,

(φ � µ) ∨ (ψ � µ) |= (φ ∨ ψ) � µ .

Note that φ |= φ ∨ ψ and ψ |= φ ∨ ψ, so it follows from (B8.2) that φ � µ |= (φ ∨ ψ) � µ and
ψ � µ |= (φ ∨ ψ) � µ, which establishes our claim.

A.4 Updates of First-Order Theories

Definition A.36 (Winslett’s Operator on Models). Let I be an interpretation andM,N ∈
M. We define the operator �W as follows:

I �W N = min
(
N ,≤I

W

)
,

M �W N =
⋃
I∈M

I �W N =
⋃
I∈M

min
(
N ,≤I

W

)
.

Remark A.37. Note that the above definition is compatible with the definition of Winslett’s
operator �W defined in Section 2.6, which operates on first-order theories, in the following
sense: for all first-order theories T , U it holds that [[T �W U ]] = [[T ]] �W [[U ]].
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Lemma A.38. Suppose that we do not allow for the equality predicate ≈. Let A be a set of
predicate symbols andM,N ∈M be both saturated relative toA. ThenM�WN is also saturated
relative to A.

Proof. Suppose that J is such that J [A] ∈ (M �W N )[A] but J /∈ (M �W N ). Then there
exists some interpretation J ′ ∈ (M �W N ) such that J ′[A] = J [A]. This also implies that
J ′ ∈ N and since N is saturated relative to A, we obtain that J ∈ N . Furthermore, there
exists some interpretation I ∈M such that J ′ ∈ (I �WN ). Let I ′ be an interpretation such
that for every ground atom p,

I ′ |= p if and only if I [A] |= p ∨ J [P\A] |= p .

Then I ′[A] = I [A] and I ′[P\A] = J [P\A] and since M is saturated relative to A, I ′ ∈ M.
Since J /∈ (M �W N ), there must exist some interpretation J ′′ ∈ N such that J ′′ <I′ J .
This means that for every predicate symbol P ∈ A,

P J
′′ ÷ P I′ ⊆ P J ÷ P I′ . (A.8)

and for every predicate symbol P ∈ P \A,

P J
′′ ÷ P I′ ⊆ P J ÷ P I′ = ∅

because I ′ coincides with J on P \A. Also, for some predicate symbol P0,

P J
′′

0 ÷ P I′0 ( P J0 ÷ P I
′

0 .

Since this is impossible if P0 belongs to P \ A, P0 must belong to A. Let J ′′′ be an inter-
pretation such that for every ground atom p,

J ′′′ |= p if and only if J ′′[A] |= p ∨ J ′[P\A] |= p .

By (A.8), for predicate symbols P ∈ A it holds that

P J
′′′ ÷ P I = P J

′′ ÷ P I′ ⊆ P J ÷ P I′ = P J
′ ÷ P I

and for predicate symbols P ∈ P \A we obtain

P J
′′′ ÷ P I = P J

′ ÷ P I .

Also, for P0 it holds that P J
′′′

0 ÷P I0 = P J
′′

0 ÷P I
′

0 ( P J0 ÷P I
′

0 = P J
′

0 ÷P I0 . As a consequence,
J ′′′ <I

W
J ′. Furthermore, since J ′′′[A] = J ′′[A] ∈ N [A], it follows that J ′′′ ∈ N , so we arrived

at a conflict with the assumption that J ′ ∈ (I �W N ).

Theorem 2.43. If we do not allow for the equality predicate ≈, then Winslett’s first-order update
operator �W conserves the language.

Proof. Follows by induction on i from Proposition 2.41 and Lemma A.38.

Theorem 2.45. Winslett’s first-order update operator �W respects fact update.

Proof. Let T = 〈Ti〉i<n be a finite sequence of consistent sets of ground objective literals.
We prove by induction on n:

1◦ If n = 1, then [[3W T ]] = [[T0 ]] = [[{ l ∈ LG | l ∈ T0 } ]], which establishes the claim.
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2◦ Let T = 〈Ti〉i<n, M = [[3W T ]] and T ′ = 〈Ti〉i<n+1. It follows that (3W T ′) =
(3W T ) �W Tn and by the definition of �W,

M′ = [[3W T ′ ]] =
⋃
I∈M

min
(
[[Tn ]],≤I

W

)
. (A.9)

By the inductive assumption for T we obtain that I ∈M if and only if

I |=
{
l ∈ LG

∣∣ ∃j < n : l ∈ Tj ∧ (∀i : j < i < n =⇒ l /∈ Ti)
}
. (A.10)

Our goal is to prove that I ′ ∈M′ if and only if

I ′ |=
{
l ∈ LG

∣∣ ∃j < n+ 1 : l ∈ Tj ∧ (∀i : j < i < n+ 1 =⇒ l /∈ Ti)
}
. (A.11)

Take some I ′ ∈ M′. Then it follows from (A.9) that there is some I ∈ M such that
I ′ ∈ min

(
[[Tn ]],≤I

W

)
. Hence, I ′ |= { l ∈ LG | l ∈ Tn } and by the definition of ≤I

W

we can conclude that I ′ and I can differ only in the interpretation of ground atoms
p such that either p ∈ Tn or ¬p ∈ Tn. Consequently, since I satisfies (A.10), we
conclude that I ′ satisfies (A.11).
For the converse inclusion, suppose that I ′ satisfies (A.11) and let I be an interpre-
tation that satisfies (A.10) and intereprets a minimal set of ground atoms differently
from I ′. By (A.11) we obtain that I ′ |= Tn and I can differ from I ′ only in the in-
terpretation of ground atoms p such that either p ∈ Tn or ¬p ∈ Tn. Thus, we can
conclude that I ′ ∈ min

(
[[Tn ]],≤I

W

)
. Furthermore, since I satisfies (A.10), it follows

that I ∈M. This implies that I ′ ∈M′.

Proposition 2.46. Every first-order update operator that is characterised by a faithful preorder
assignment satisfies postulates (FO1) – (FO6) and (FO8.2).

Proof. Let � be a first-order update operator characterised by a faithful preorder assign-
ment ω. Then, for all first-order theories T , U ,

[[T � U ]] =
⋃

I∈[[T ]]

min
(
[[U ]],≤Iω

)
. (A.12)

We consider each main postulate separately; postulates (FO2.>), (FO2.1), (FO2.2), (FO4.1)
and (FO4.2) are their direct consequences:

(FO1) It follows from (A.12) that all interpretations from [[T � U ]] are members of [[U ]]. In
other words, T � U |= U .

(FO2) Suppose that T |= U and take some I ∈ [[T ]] ⊆ [[U ]]. Since the preorder assign-
ment is faithful, for all J ∈ [[U ]] with J 6= I we have I <Iω J . Consequently,
min([[U ]],≤Iω) = { I } and from (A.12) it follows that T � U ≡ T .

(FO3) Suppose that both T and U are satisfiable. Then there is some I0 ∈ [[T ]] and also
some J0 ∈ min([[U ]],≤I0ω ), so we obtain J0 ∈ [[T � U ]]. Hence T � U is satisfiable.

(FO4) If T ≡ S and U ≡ V , then

[[T � U ]] =
⋃

I∈[[T ]]

min
(
[[U ]],≤Iω

)
=

⋃
I∈[[S ]]

min
(
[[V ]],≤Iω

)
= [[S � V ]] .

Therefore, T � U ≡ S � V .
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(FO5) Suppose that J is a model of (T �U)∪V . Then J ∈ [[V ]] and there is some model I of
T such that J belongs to min([[U ]],≤Iω). Consequently, J also belongs to min([[U ]] ∩
[[V ]],≤Iω), so J is a model of T � (U ∪ V).

(FO6) Assume that T � U |= V and T � V |= U . We will prove by contradiction that
T � U |= T � V . The other half can be proved similarly.
So suppose that J is a model of T � U but not of T � V . Then there is some model I
of T such that

J ∈ min
(
[[U ]],≤Iω

)
. (A.13)

At the same time, there must be some model K of V such that K <Iω J . Let K0

be minimal w.r.t. ≤Iω among all such K. Then by transitivity of <Iω we obtain that
K0 ∈ min

(
[[V ]],≤Iω

)
and, consequently, K0 is a model of T � V . By the assumption

we now obtain that K0 is a model of U . But since K0 <
I
ω J , this is in conflict with

(A.13).

(FO8.2) Suppose that T |= S. It immediately follows from (A.12) that [[T � U ]] is a subset
of [[S � U ]]. Thus T � U |= S � U .

A.5 Rule Updates

Theorem 2.70 (Respect for Support and Language Conservation). Let X be one of D, W,
B and i ∈ { 0, 1, 2 }. The rule update semantics AS, JU, DS, RD, PRZ, PRXi, RVS and RVD re-
spect support and conserve the language.

Proof (sketch). Note that language conservation is a direct consequence of support, so it
suffices to prove support. The arguments presented in what follows frequently rely on
the following three facts:

1. All stable models of a logic program P are supported by P.

2. If an interpretation is supported by a program P, then it is also supported by every
superset of P.

3. If an interpretation is supported by the expansion Pe of P, then it is also supported
by P (because the additional rules in the expansion have default literals in their
heads).

The claim for the AS- and JU-semantics follows directly from the fact that AS- and
JU-models are stable models of a subset of all(P e), so they must be supported by all(P ).

The case of the DS- and RD-semantics is only slightly more involved than the previous
one. Any DS- or RD-model J of a DLP P satisfies

J ′ = least(Q∪ def(P e, J)) ,

for some subset Q of all(P e). The definition of least(·) and J ′ allows us to conclude that
every objective literal from J must be supported byQ∪def(P , J). Furthermore, def(P , J)
contains only rules with default literals in their heads, so every objective literal from J is
supported Q, and thus also by all(P ).

In case of the PRZ-semantics, the claim follows from the fact that every result of an
update of a program P by a program U is a reduct of the form P′ ∪U where P′ is a subset
of P. So every PRZ-model of 〈P,U〉 is a stable model of P′ ∪ U , thus it is supported by
P ∪ U = all(〈P,U〉). Essentially the same argument works for the RVS-semantics as well.

Suppose that X is one of D, W, B and i ∈ { 0, 1, 2 }. It follows that every PRXi-model J
of a DLP P is also a stable model of some subset of all(P ) ∪ all(P )d. Thus it is supported
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by all(P ) ∪ all(P )d. Moreover, whenever a literal is supported by a rule πd, it is also
supported by the original rule π. Consequently, J is supported by all(P ).

Finally, given a DLP P = 〈Pi〉i<n, the construction of an RVD-model ensures that ev-
ery objective literal added to it at a stage i is supported by some rule from the program
Pn−i. Furthermore, both objective and default components of RVD-models monotoni-
cally grow during their construction, so support for a literal can never be retracted in
further stages (for details please consult (Delgrande, 2010)).

Theorem 2.72 (Respect for Fact Update). Let X be one of D, W, B and i ∈ { 0, 1, 2 }. The rule
update semantics AS, JU, DS, RD, PRZ, PRXi, RVS and RVD respect fact update.

Proof (sketch). Let P = 〈Pi〉i<n be a sequence of consistent sets of facts.
First consider the JU-semantics. When sets of facts are considered, the set of rejected

rules is independent of the model candidate J . Furthermore, the following set of unre-
jected rules remains:

{ l. | ∃j < n : (l.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼l.) /∈ Pe
i ) }

∪
{
∼l.

∣∣ ∃j < n : (∼l.) ∈ Pe
j ∧ (∀i : j < i < n =⇒ (l.) /∈ Pi)

}
(A.14)

Since Pj is consistent for all j < n, this set must also be consistent (all inconsistencies
across different components of P have been resolved). Thus P has the desired JU-model{

l
∣∣ ∃j < n : (l.) ∈ Pj ∧ (∀i : j < i < n =⇒

{
l.,∼l.

}
∩ Pi = ∅)

}
.

Virtually the same arguments apply to the DS- and RD-semantics and according to (Ho-
mola, 2004), the AS-semantics coincides with the JU-semantics on P because all(P ) is
acyclic.

Now consider the PRZ-semantics and a DLP 〈P,U〉 where P, U are consistent sets of
facts. Following the process of updating P by U , we first take the unique stable model JP
of P and update it by U , obtaining the new interpretation

J〈P,U〉 =
{
l ∈ LG

∣∣ (l.) ∈ U ∨ ((l.) ∈ P ∧
{
l.,∼l.

}
∩ U = ∅)

}
It follows that P′ ∪ U , where P′ is a maximal subset of P coherent with J〈P,U〉, has the
desired stable model.

Turning to the PRXi-semantics, a case-by-case analysis of the preference relations D,
W and B reveals that regardless of the particular operator ∗0, ∗1 or ∗2, they only allow
for a single preferred stable model which coincides with the desired one. We leave the
verification to the reader; the precise definitions of the preference strategies can be found
in (Schaub and Wang, 2003; Delgrande et al., 2007).

In case of the RVS-semantics, the facts from P that are inconsistent with U must be
eliminated and, by the maximality condition, no other facts can be eliminated. Thus the
desired model is the model of P′ ∪ U where P′ is the greatest subset of P that is coherent
with U .

Finally, given sequence of consistent sets of facts P = 〈Pi〉i<n, the RVD-models are
constructed in stages from Pn−1 backwards towards P0, always keeping the greatest set
of facts that is consistent with previously adopted ones. This directly leads to the desired
model. For more details the reader can refer to (Delgrande, 2010).

Theorem 2.74 (Respect for Causal Rejection). The rule update semantics AS, JU, DS and
RD respect causal rejection.
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Proof (sketch). Take some AS-, JU-, DS- or RD-model J of a DLP P = 〈Pi〉i<n. If J 6|= π for
some π ∈ Pi, then it follows from the definition of these semantics that π must be a re-
jected rule. In case of the AS-, JU- and DS-semantics, the claim then follows immediately
by the definition of the set of rejected rules.

As for the RD-semantics, the same argument applies except when π is rejected by
some σ ∈ Pi and no more preferred rule rejects π. But in this case it follows that all
rules from all(P e) with the head H(π) or H(σ) = ∼H(π) are also rejected. As a conse-
quence, the fixpoint condition of the RD-semantics cannot be satisfied, so J cannot be an
RD-model of P – a contradiction with the assumption.

Theorem 2.76 (Respect for Acyclic Justified Update). The rule update semantics AS, JU,
DS and RD respect acyclic justified update.

Proof (sketch). The case of the JU-semantics is obvious and proofs for AS- and DS-seman-
tics can be found in (Homola, 2004). Analogous arguments apply to the RD-semantics as
well.
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B
Proofs: ABox Updates for Hybrid

MKNF Knowledge Bases

In the following we present proofs of results from Chapter 3, implicitly working un-
der the same assumptions as those imposed in that chapter. That is, we assume that all
MKNF rules are ground and non-disjunctive and do not allow for rules with empty heads
and for rules with default negation in their heads. In the proofs we also implicitly use
Propositions A.1 and A.2 as well as Corollaries A.10 and A.11.

B.1 Static Consequence Operator

Lemma B.1 (Monotonicity of TP). Let P be a positive MKNF program and M,N ∈ M. If
M⊆ N , then TP(M) ⊇ TP(N ).

Proof. Suppose that the generalised atom ξ belongs to TP(N ). Then there is a rule π ∈ P
such that N |= κ(B(π)) and H(π) = { ξ }. It follows from Proposition A.1 that M |=
κ(B(π)) and, thus, ξ ∈ TP(M).

Proposition 3.4 (Monotonicity of TK). Let K be a positive MKNF knowledge base. Then TK is
a monotonic function on the complete lattice (M,⊆).

Proof. Let K = (O,P) and take someM,N ∈ M such thatM ⊆ N . Our goal is to show
that TK(M) ⊆ TK(N ).

It follows from Lemma B.1 that TP(M) ⊇ TP(N ) and, consequently,

TK(M) = [[TP(M) ∪ κ(O)]] ⊆ [[TP(N ) ∪ κ(O)]] = TK(N ) .

Lemma B.2. Let K be a positive MKNF knowledge base. An MKNF interpretationM is an S5
model of K if and only ifM⊆ TK(M).

Proof. First suppose thatM is an S5 model of K = (O,P). Then clearlyM |= κ(O) and
for every rule π ∈ P such thatM |= κ(B(π)) it holds thatM |= H(π). In other words,M
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is an S5 model of TP(M) ∪ κ(O) and since TK(M) is its greatest S5 model, it follows that
M⊆ TK(M).

On the other hand, ifM ⊆ TK(M), thenM |= TP(M) ∪ κ(O). It follows thatM |=
Kκ(φ) for every φ ∈ O and whenever M |= κ(B(π)), it holds that M |= κ(H(π)).
Consequently,M is an S5 model of K.

Lemma B.3. Every positive MKNF knowledge base either has no S5 model, or it has a unique
MKNF model which coincides with its greatest S5 model.

Proof. Suppose that the MKNF knowledge base K = (O,P) has some S5 model and let
M be the union of all S5 models of K. First we show thatM is an S5 model of K, i.e. it is
the greatest S5 model ofM.

Take some MKNF sentence φ from κ(K). If φ = Kκ(φ) for some φ ∈ O, then since
κ(φ) is a first-order sentence, it follows from Proposition A.2 thatM |= Kκ(φ).

The other possibility is that φ is a sentence of the form
∧
κ(B(π)) ⊃

∨
κ(H(π)) for

some π ∈ P. Suppose thatM |= κ(B(π)). As π is positive, it follows from Proposition A.1
that N |= κ(B(π)) for every S5 model N of K and, thus, N |= κ(H(π)). Hence, by
Proposition A.2,M |= κ(H(π)).

It remains to show thatM is the unique MKNF model of K. Since κ(K) is subjective
not-free, it follows by the definitions of MKNF satisfaction and of an MKNF model that
the MKNF models of K are exactly its subset-maximal S5 models. SinceM is the greatest
S5 model ofM, it follows that it is also its unique MKNF model.

Proposition 3.5 (MKNF Model of a Positive MKNF Knowledge Base). Let K be a positive
MKNF knowledge base. An MKNF interpretation is an MKNF model of K if and only if it is the
greatest fixed point of TK.

Proof. Let S = {M | M ⊆ TK(M) } and M∗ =
⋃
S. It follows that for every M ∈ S ,

M⊆M∗ and, by Proposition 3.4, we obtain thatM⊆ TK(M) ⊆ TK(M∗). Hence,

M∗ =
⋃
M∈S

M⊆ TK(M∗)

and we conclude thatM∗ belongs to S. Then it follows by the monotonicity of TK that
TK(M∗) belongs to S and thus TK(M∗) ⊆ M∗. Consequently,M∗ is a fixed point of TK.
Furthermore, every fixed point of TK belongs to S, soM∗ is its greatest fixed point.

Now it suffices to observe that, by Lemma B.2, S consists of all S5 models ofK and the
empty set. IfM∗ = ∅, then K has no S5 model, and thus no MKNF model. On the other
hand, ifM∗ 6= ∅, thenM∗ is the greatest S5 model of K and, by Lemma B.3, it coincides
with the unique MKNF model of K.

Lemma B.4. Let K be an MKNF knowledge base. An MKNF interpretationM is an S5 model
of K if and only ifM is an S5 model of KM.

Proof. Suppose that M is an S5 model of K. Obviously, M |= Kκ(φ) for every φ ∈ O.
Take some π′ = (H(π) ← B(π)+.) from PM for some π ∈ P with M |= κ(∼B(π)−).
Then κ(KM) contains the sentence κ(π′) of the form

∧
κ(B(π)+) ⊃

∨
κ(H(π)). IfM |=

κ(B(π)+), then it it follows that M |= κ(B(π)) and since M |= κ(π), it follows that
M |= κ(H(π)). Therefore,M |= κ(π′).

For the converse implication, assume thatM is an S5 model of KM. Obviously,M |=
Kκ(φ) for every φ ∈ O, so consider some rule π ∈ P. IfM |= κ(B(π)), then PM contains
the rule π′ = (H(π) ← B(π)+.) and since M |= κ(π′), it follows that M |= κ(H(π)).
Hence,M |= κ(π).
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Proposition 3.8 (MKNF Model of an MKNF Knowledge Base). Let K be an MKNF knowl-
edge base. An MKNF interpretationM is an MKNF model of K if and only if it is the MKNF
model of KM.

Proof. Suppose thatM is an MKNF model of K. Then it is also an S5 model of K, so it
follows that it is an S5 model of KM from Lemma B.4.

Since M is an S5 model of KM, it must hold that M is a subset of the greatest S5
modelM′ of KM. We show by contradiction thatM = M′, i.e.M is the MKNF model
of KM (c.f. Lemma B.3).

Assume thatM (M′. SinceM is an MKNF model ofK, there must be some sentence
φ ∈ κ(K) such that (M′,M) 6|= φ. ButM′ |= Kκ(ψ) for every ψ ∈ O, so φ must be of the
form κ(B(π)) ⊃ κ(H(π)) for some rule π ∈ P and the following must hold:

(M′,M) |= κ(∼B(π)−) ∧ (M′,M) |= κ(B(π)+) ∧ (M′,M) 6|= κ(H(π))

which is equivalent to

M |= κ(∼B(π)−) ∧M′ |= κ(B(π)+) ∧M′ 6|= κ(H(π)) .

However, this is in conflict withM′ being an S5 model of KM since the sentence∧
κ(B(π)+) ⊃

∨
κ(H(π))

belongs to κ(KM).
For the converse implication, assume that M is the MKNF model of KM. Then it

follows from Lemma B.4 thatM is an S5 model of K.
Take some M′ ) M. Since M is the greatest S5 model of KM, there is some rule

π′ = (H(π)← B(π)+.) ∈ PM such thatM′ 6|= κ(π′), i.e.

M |= κ(∼B(π)−) ∧M′ |= κ(B(π)+) ∧M′ 6|= H(π) .

This is equivalent to

(M′,M) |= κ(∼B(π)−) ∧ (M′,M) |= κ(B(π)+) ∧ (M′,M) 6|= κ(H(π))

which in turn is equivalent to (M′,M) 6|= κ(π). This proves thatM is indeed an MKNF
model of K.

B.2 Updating Consequence Operator

Proposition 3.12 (Monotonicity of T �K). Let � be a first-order update operator and K a positive
DMKB with static rules. If � satisfies (FO8.2), then T �K is a monotonic function on the complete
lattice (M,⊆).

Proof. Let K = 〈(Oi,Pi)〉i<n and take someM,N ∈M such thatM⊆ N . Our goal is to
show that T �K(M) ⊆ T �K(N ).

By Lemma B.1 we conclude that TP0(M) ⊇ TP0(N ). Consequently,

TP0(M) ∪ κ(O0) |= TP0(N ) ∪ κ(O0) .
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By repeatedly using (FO8.2) for all Oi with 0 < i < n we obtain that

((TP0(M) ∪ κ(O0)) � O1 � · · · � On−1) |= ((TP0(N ) ∪ κ(O0)) � O1 � · · · � On−1) .

Consequently, T �K(M) ⊆ T �K(N ).

B.3 Properties and Relations

Theorem 3.19 (Faithfulness w.r.t. MKNF Knowledge Bases). Let K = (O,P) be an MKNF
knowledge base. An MKNF interpretation M is an MKNF model of K if and only if M is a
�-dynamic MKNF model of 〈K〉.

Proof. This follows from Propositions 3.5 and 3.8, and the fact that for every first-order
theory T , 3〈T 〉 = T , so the static consequence operator TK coincides with the updating
consequence operator T �〈K〉.

Theorem 3.20 (Faithfulness w.r.t. First-Order Update Operator). Let K = 〈(Oi, ∅)〉i<n
be a DMKB. An MKNF interpretation M is a �-dynamic MKNF model of K if and only if
M = [[3〈Oi〉i<n ]].

Proof. Since the K contains no rules, KM = K for anyM∈M. Furthermore,

T �K(M) = [[3〈Oi〉i<n ]] .

It follows that the only fixed point of T �K is the set of models [[3〈Oi〉i<n ]].

Theorem 3.21 (Primacy of New Information). Suppose that � satisfies (FO1) and let K =
〈Ki〉i<n be a DMKB with static rules such that n > 0. IfM is a �-dynamic MKNF model of K,
thenM |= κ(Kn−1).

Proof. Suppose thatM is a �-dynamic MKNF model of K. ThenM is a fixed point of the
operator T �

KM
, i.e.

M = T �
KM

(M) =
[[(

TPM0
(M) ∪ κ(O0)

)
� O1 � · · · � On−1

]]
.

Let
T =

(
TPM0

(M) ∪ κ(O0)
)
� O1 � · · · � On−2 .

It follows that
M = [[T � On−1 ]]

and by (FO1) we can conclude thatM |= κ(On−1). Consequently,M |= κ(Kn−1).

Theorem 3.22 (Immunity to Tautological Updates). Suppose that � satisfies (FO2.>) and
(FO4) and let K = 〈(Oi,Pi)〉i<n be a DMKB with static rules such that Oj ≡ ∅ for some j with
0 < j < n and

K ′ = 〈(Oi,Pi)〉i<n∧i 6=j .

Then K and K ′ have the same �-dynamic MKNF models.
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Proof. Let M be an MKNF interpretation and N ∈ M. We will prove that T �
KM

(N ) =

T �
(K′)M

(N ), which implies that the �-dynamic MKNF models of K and K ′ coincide. Put

T =
(
TPM0

(N ) ∪ κ(O0)
)
� O1 � . . . � Oj−1 .

It follows that

T �
KM

(N ) = [[T � Oj � · · · � On−1 ]] and T �(K′)M(N ) = [[T � Oj+1 � · · · � On−1 ]] .

Let T ′ = T �Oj . By (FO4) and (FO2.>) we obtain that T ′ ≡ T and by repeated application
of (FO4) we conclude that

T ′ � Oj+1 � · · · � On−1 ≡ T � Oj+1 · · · � On−1 .

Consequently, T �
KM

(N ) = T �
(K′)M

(N ).

Theorem 3.23 (Syntax Independence). Suppose that � satisfies (FO4). Let K = 〈(Oi,Pi)〉i<n
and K ′ = 〈(O′i,P′i)〉i<n be DMKBs with static rules such that P0 = P′0 and Oi ≡ O′i for all
i < n. Then K and K ′ have the same �-dynamic MKNF models.

Proof. Let M be an MKNF interpretation and N ∈ M. We will prove that T �
KM

(N ) =

T �
(K′)M

(N ), which implies that the �-dynamic MKNF models of K and K ′ coincide. Ob-
serve that

T �
KM

(N ) = [[(TP0(N ) ∪ κ(O0)) � O1 � · · · � On−1 ]] ,

T �(K′)M(N ) = [[
(
TP0(N ) ∪ κ(O′0)

)
� O′1 � · · · � O′n−1 ]] .

It follows from O0 ≡ O′0 that

TP0(N ) ∪ κ(O0) ≡ TP0(N ) ∪ κ(O′0)

and by applying (FO4) we obtain that

(TP0(N ) ∪ κ(O0)) � O1 � · · · � On−1 ≡
(
TP0(N ) ∪ κ(O′0)

)
� O′1 · · · � O′n−1 .

Consequently, T �
KM

(N ) = T �
(K′)M

(N ).
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C
Proofs: Layered Dynamic MKNF

Knowledge Bases

In the following we present proofs of results from Chapter 4, implicitly working under
the same assumptions as those imposed in that chapter. That is, we constrain ourselves
to a generalised atom base that consists of objective literals, meaning that MKNF pro-
grams coincide with logic programs and we assume that every rule is ground and has
exactly one literal in its head. Furthermore, we do not consider the equality predicate
because it interferes with language conservation of Winslett’s first-order update operator
(c.f. Example 2.35).

C.1 Semantics with Splitting Properties

C.1.1 MKNF Knowledge Bases

Remark C.1. Note that whenever U is a splitting set for an MKNF knowledge base K =
(O,P), the following holds:

pr(bU (O)) ⊆ U , pr(bU (P)) ⊆ U , pr(bU (K)) ⊆ U , pr(tU (O)) ⊆ P \ U .

Also note that the heads of rules in tU (P) contain only predicate symbols from P\U while
their bodies may also contain predicate symbols from U . However, for any X ∈ M, the
reducts eU (P,X ) and eU (K,X ) contain only predicate symbols from P \ U :

pr(eU (P,X )) ⊆ P \ U , pr(eU (K,X )) ⊆ P \ U .

These basic observations will be used in the following proofs without further notice or
reference.
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C.1.1.1 Splitting Set Theorem

Definition C.2 (Generalised Splitting Set Reduct). Let K = (O,P) be an MKNF knowl-
edge base, U ⊆ P a set of predicate symbols and X ,X ′ ∈ M. We define the reduct of P
relative to U and (X ′,X ) as

eU (P, (X ′,X )) = {H(π)← { L ∈ B(π) | pr(L) ⊆ P \ U } . | π ∈ tU (P)

∧ (X ′,X ) |= κ({ L ∈ B(π) | pr(L) ⊆ U })
}
.

The reduct of K relative to U and (X ′,X ) is eU (K, (X ′,X )) = (tU (O), eU (P, (X ′,X ))).

Lemma C.3. Let U be a splitting set for an MKNF knowledge base K and D, D′, E , E ′, F , F ′,
G, G′ ∈M be such that the following conditions are satisfied:

1. E [U ] = D[U ] and E ′[U ] = D′[U ];

2. F [P\U ] = D[P\U ] and F ′[P\U ] = D′[P\U ];

3. G[U ] = D[U ] and G′[U ] = D′[U ].

Then,

(D′,D) |= κ(K) implies (E ′, E) |= κ(bU (K)) ∧ (F ′,F) |= κ(eU (K, (G′,G))) .

Proof. Suppose that (D′,D) |= κ(K) and let K = (O,P). Since bU (O) ⊆ O, it follows
that for every φ ∈ bU (O), (D′,D) |= Kκ(φ). Also, every rule π ∈ bU (P) belongs to P
and we can conclude that (D′,D) |= κ(π). Consequently, (D′,D) |= κ(bU (K)) and from
Corollary A.17 we obtain (E ′, E) |= κ(bU (K)).

It remains to show that (F ′,F) |= κ(eU (K, (G′,G))). We know that eU (K, (G′,G)) =
(tU (O), eU (P, (G′,G))). Since tU (O) ⊆ O, it follows that for every φ ∈ tU (O), (D′,D) |=
Kκ(φ) and we can use Corollary A.17 to conclude that (F ′,F) |= Kκ(tU (φ)).

Take some rule σ ∈ eU (P, (G′,G)). By Corollary A.9, in order to prove that (F ′,F) |=
κ(σ), we can instead show that (F ′,F) |= κ(H(σ)) given the assumption that (F ′,F) |=
κ(B(σ)). This assumption together with Corollary A.17 implies that (D′,D) |= κ(B(σ))
and, by the definition of eU (K, (G′,G)), there must be some rule π ∈ P such that H(π) =
H(σ) and (G′,G) |= κ(B(π) \B(σ)). From the last property and Corollary A.17 we obtain
(D′,D) |= κ(B(π) \ B(σ)). Thus, (D′,D) |= κ(B(π)) and since (D′,D) |= κ(K) and κ(K)
contains κ(π), we conclude that (D′,D) |= κ(H(π)). Consequently, since H(π) = H(σ),
by Corollary A.17 we obtain (F ′,F) |= κ(H(σ)) and so (F ′,F) |= κ(σ). The choice of σ
was arbitrary, so we have proven that (F ′,F) |= κ(eU (P, (G′,G))).

Lemma C.4. Let U be a splitting set for an MKNF knowledge base K and D, D′, E , E ′, F , F ′,
G, G′ ∈M be such that the following conditions are satisfied:

1. E [U ] = D[U ] and E ′[U ] = D′[U ];

2. F [P\U ] = D[P\U ] and F ′[P\U ] = D′[P\U ];

3. G[U ] = D[U ] and G′[U ] = D′[U ].

Then,

(E ′, E) |= κ(bU (K)) ∧ (F ′,F) |= κ(eU (K, (G′,G))) implies (D′,D) |= κ(K) .

Proof. Take some φ ∈ κ(K) and let K = (O,P). If φ = Kκ(ψ) for some ψ ∈ O, then using
Corollary A.17 we can conclude that from O = bU (O) ∪ tU (O) and our assumptions it
follows that (D′,D) |= Kκ(φ).
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Now suppose that φ = κ(π) for some π ∈ P. If π ∈ bU (P), then it follows that
(E ′, E) |= κ(π) and by Corollary A.17 we conclude that (D′,D) |= κ(π). If π ∈ tU (P),
then assuming that that (D′,D) |= κ(B(π)) we need to prove that (D′,D) |= κ(H(π)). It
follows by Corollary A.17 that

(G′,G) |= κ({ L ∈ B(π) | pr(L) ⊆ U })

Consequently, eU (P, (G′,G)) contains a rule σ such that H(σ) = H(π) and

B(σ) = {L ∈ B(π) | pr(L) ⊆ P \ U } .

Thus, by Corollary A.17, (F ′,F) |= κ(B(σ)) and from (F ′,F) |= eU (K, (G′,G)) it fol-
lows that (F ′,F) |= κ(H(σ)). By another application of Corollary A.17 we obtain that
(D′,D) |= κ(H(σ)) and since H(σ) = H(π), it follows that (D′,D) |= κ(π). Consequently,
(D′,D) |= κ(K).

Proposition C.5. Let U be a splitting set for an MKNF knowledge base K and D, D′, E , E ′, F ,
F ′, G, G′ ∈M be such that the following conditions are satisfied:

1. E [U ] = D[U ] and E ′[U ] = D′[U ];

2. F [P\U ] = D[P\U ] and F ′[P\U ] = D′[P\U ];

3. G[U ] = D[U ] and G′[U ] = D′[U ].

Then,

(D′,D) |= κ(K) if and only if (E ′, E) |= κ(bU (K)) ∧ (F ′,F) |= κ(eU (K, (G′,G))) .

Proof. Follows by Lemmas C.3 and C.4.

Corollary C.6. Let U be a splitting set for an MKNF knowledge base K andM, X be MKNF
interpretations such that X [U ] =M[U ]. Then,

M |= κ(K) if and only if M |= κ(bU (K)) ∧M |= κ(eU (K,X )) .

Proof. Proposition C.5 for D = D′ = E = E ′ = F = F ′ =M and G = G′ = X implies that

(M,M) |= κ(K) if and only if (M,M) |= κ(bU (K)) ∧ (M,M) |= κ(eU (K, (X ,X ))) .

The claim now follows from Proposition A.8(2).

Corollary C.7. Let U be a splitting set for an MKNF knowledge base K andM, X , Y be MKNF
interpretations such that X [U ] =M[U ] and Y [P\U ] =M[P\U ]. Then,

M |= κ(K) if and only if X |= κ(bU (K)) ∧ Y |= κ(eU (K,X )) .

Proof. Proposition C.5 for D = D′ = M, E = E ′ = X , F = F ′ = Y and G = G′ = X
implies that

(M,M) |= κ(K) if and only if (X ,X ) |= κ(bU (K)) ∧ (Y,Y) |= κ(eU (K, (X ,X ))) .

The claim now follows from Proposition A.8(2).

Corollary C.8. Let U be a splitting set for an MKNF knowledge base K andM,M′, X , X ′ be
MKNF interpretations such thatM |= κ(K), M′[P\U ] = M[P\U ], X [U ] = M[U ] and X ′[U ] =
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M′[U ]. Then,

(M′,M) 6|= κ(K) implies (X ′,X ) 6|= κ(bU (K)) .

Proof. Proposition C.5 for D =M, D′ =M′, E = X , E ′ = X ′, F = F ′ =M, G = G′ = X
implies that

(M′,M) 6|= κ(K) if and only if (X ′,X ) 6|= κ(bU (K)) ∨ (M,M) 6|= κ(eU (K, (X ,X ))) .

Furthermore, from Corollary C.6 we know that M |= κ(eU (K,X )) is satisfied because
M |= κ(K). Hence, by Proposition A.8(2) the second disjunct on the right hand side of
the above equivalence can be safely omitted and we obtain the claim of this corollary.

Corollary C.9. Let U be a splitting set for an MKNF knowledge base K andM,M′, X , Y , Y ′
be MKNF interpretations such thatM |= κ(K),M′[U ] = X [U ] =M[U ], Y [P\U ] =M[P\U ] and
Y ′[P\U ] =M′[P\U ]. Then,

(M′,M) 6|= κ(K) implies (Y ′,Y) 6|= κ(eU (K,X )) .

Proof. Proposition C.5 for D = M, D′ = M′, E = E ′ = M, F = Y , F ′ = Y ′, G = G′ = X
implies that

(M′,M) 6|= κ(K) if and only if (M,M) 6|= κ(bU (K)) ∨ (Y ′,Y) 6|= κ(eU (K, (X ,X ))) .

Furthermore, from Corollary C.6 we know thatM |= κ(bU (K)) is satisfied becauseM |=
κ(K). Hence, by Proposition A.8(2), the first disjunct on the right hand side of the above
equivalence can be safely omitted and we obtain the claim of this corollary.

Corollary C.10. Let U be a splitting set for an MKNF knowledge base K andM,M′, X , X ′ be
MKNF interpretations such that X [U ] =M[U ] and X ′[U ] =M′[U ]. Then,

(X ′,X ) 6|= κ(bU (K)) implies (M′,M) 6|= κ(K) .

Proof. Proposition C.5 for D =M, D′ =M′, E = X , E ′ = X ′, F = G =M, F ′ = G′ =M′
implies that

(M′,M) 6|= κ(K) if and only if (X ′,X ) 6|= κ(bU (K)) ∨ (M′,M) 6|= κ(eU (K, (M′,M))) .

The claim of this corollary follows directly from this equivalence.

Corollary C.11. Let U be a splitting set for an MKNF knowledge base K andM,M′, X , Y , Y ′
be MKNF interpretations such that M′[U ] = X [U ] = M[U ], Y [P\U ] = M[P\U ] and Y ′[P\U ] =
M′[P\U ]. Then,

(Y ′,Y) 6|= κ(eU (K,X )) implies (M′,M) 6|= κ(K) .

Proof. Proposition C.5 for D = M, D′ = M′, E = E ′ = M, F = Y , F ′ = Y ′, G = G′ = X
implies that

(M′,M) 6|= κ(K) if and only if (M,M) 6|= κ(bU (K)) ∨ (Y ′,Y) 6|= κ(eU (K, (X ,X ))) .

The claim of this corollary follows from this equivalence by Proposition A.8(2).
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Proposition C.12. Let U be a splitting set for an MKNF knowledge baseK,M an MKNF model
of K and X = σ(M, U). Then X is an MKNF model of bU (K).

Proof. By Proposition A.22 we know thatM⊆ X and thatX is saturated relative to U . By
Corollary A.11, X is an MKNF model of bU (K) if and only if X |= κ(bU (K)) and for every
X ′ ) X it holds that (X ′,X ) 6|= κ(bU (K)). The former follows directly from Corollary C.7.
To verify the latter, pick some X ′ ) X . By Proposition A.31 there exists the greatest
MKNF interpretationM′ that coincides with X ′ on U (i.e.M′[U ] = X ′[U ]) and withM on
P \ U (i.e.M′[P\U ] =M[P\U ]) and which includes X ′ ∩M. Hence,

M⊆ X ∩M ⊆ X ′ ∩M ⊆M′ . (C.1)

Furthermore, we know thatX is saturated relative toU , so we can use Proposition A.19(2)
to conclude that

M[U ] = X [U ] ( X ′[U ] =M′[U ] . (C.2)

Consequently, by (C.1), (C.2) and Proposition A.15(3), we obtainM (M′. This, together
with the assumption thatM is an MKNF model of K, implies that (M′,M) 6|= κ(K). We
can now apply Corollary C.8 to conclude that (X ′,X ) 6|= κ(bU (K)), which is the desired
conclusion.

Proposition C.13. Let U be a splitting set for an MKNF knowledge baseK,M an MKNF model
of K, X = σ(M, U) and Y = σ(M,P \ U). Then Y is an MKNF model of eU (K,X ).

Proof. By Proposition A.22 we know thatM⊆ Y and that Y is saturated relative to P\U .
By Corollary A.11, Y is an MKNF model of eU (K,X ) if and only if Y |= κ(eU (K,X )) and
for every Y ′ ) Y it holds that (Y ′,Y) 6|= κ(eU (K,X )). The former follows directly from
Corollary C.7. To verify the latter, pick some Y ′ ) Y . By Proposition A.31 there exists the
greatest MKNF interpretationM′ that coincides withM on U (i.e. M′[U ] = M[U ]) and
with Y ′ on P \ U (i.e.M′[P\U ] = Y ′[P\U ]) and which includesM∩Y ′. Hence,

M⊆M∩Y ⊆M∩Y ′ ⊆M′ . (C.3)

Furthermore, we know that Y is saturated relative to P \ U , so we can use Proposi-
tion A.19(2) to conclude that

M[P\U ] = Y [P\U ] ( Y ′[P\U ] =M′[P\U ] . (C.4)

Consequently, by (C.3), (C.4) and Proposition A.15(3), we obtainM (M′. This, together
with the assumption thatM is an MKNF model of K, implies that (M′,M) 6|= κ(K). We
can now apply Corollary C.9 to conclude that (Y ′,Y) 6|= κ(eU (K,X )), which is the desired
conclusion.

Proposition C.14. Let U be a splitting set for an MKNF knowledge baseK and (X ,Y) a solution
to K w.r.t. U . Then X ∩ Y is an MKNF model of K.

Proof. Let K = (O,P) andM = X ∩ Y . In order to show thatM is an MKNF model of
K, we need to prove thatM |= κ(K) and that for everyM′ )M it holds that (M′,M) 6|=
κ(K). We verify the two conditions separately.

We know that X is an MKNF model of bU (K), so, by Proposition A.18, X is saturated
relative to U . Similarly, since Y is an MKNF model of eU (K,X ), it must be saturated
relative to P \ U . Hence, by Proposition A.28,M is semi-saturated relative to U ,M[U ] =
X [U ] andM[P\U ] = Y [P\U ].

199



C. PROOFS: LAYERED DYNAMIC MKNF KNOWLEDGE BASES

Since (X ,Y) is a solution to K w.r.t. U , X must an MKNF model of bU (K) and Y an
MKNF model of eU (K,X ). So X |= κ(bU (K)) and Y |= κ(eU (K,X )). Consequently, by
Corollary C.7,M |= κ(K).

Now take some MKNF interpretation M′ ) M and let X ′ = X ∪ M′ and Y ′ =
Y ∪M′. We already inferred thatM is semi-saturated relative to U , which means that by
Proposition A.29(2) one of the following cases must occur:

a) IfM′[U ] )M[U ], then

X ′[U ] = X [U ] ∪M′[U ] =M′[U ] )M[U ] = X [U ] ,

so Proposition A.15(3) implies that X ′ ) X . Hence, since X is an MKNF model of
bU (K), we infer that (X ′,X ) 6|= κ(bU (K)) and by Corollary C.10 we obtain (M′,M) 6|=
κ(K) as desired.

b) IfM′[U ] =M[U ] andM′[P\U ] )M[P\U ], then X ′[U ] =M′[U ] =M[U ] and

Y ′[P\U ] = Y [P\U ] ∪M′[P\U ] =M′[P\U ] )M[P\U ] = Y [P\U ] ,

so Proposition A.15(3) implies that Y ′ ) Y . Hence, since Y is an MKNF model
of eU (K,X ), we infer that (Y ′,Y) 6|= κ(eU (K,X )) and by Corollary C.11 we obtain
(M′,M) 6|= κ(K) as desired.

Theorem C.15 (Splitting Set Theorem for MKNF Knowledge Bases). Let U be a splitting
set for an MKNF knowledge base K. An MKNF interpretationM is an MKNF model of K if and
only ifM = X ∩ Y for some solution (X ,Y) to K w.r.t. U .

Proof. First suppose thatM is an MKNF model of K. By Proposition C.12 we obtain that
X = σ(M, U) is an MKNF model of bU (K) and by Proposition C.13 that Y = σ(M,P \U)
is an MKNF model of eU (K,X ). Furthermore, by Proposition A.22, X [U ] = M[U ] and X
is saturated relative to U , Y [P\U ] =M[P\U ] and Y is saturated relative to P \ U , andM⊆
X∩Y . To prove the converse inclusion, note that the following holds by Proposition A.28:

(X ∩ Y)[U ] = X [U ] =M[U ] ,

(X ∩ Y)[P\U ] = Y [P\U ] =M[P\U ] .

Suppose thatM ( X ∩ Y . Then, sinceM is an MKNF model of K, (X ∩ Y,M) 6|= κ(K)
and by Proposition C.5 for D =M, D′ = X ∩ Y , E = E ′ = F = F ′ =M, G = G′ = X , we
obtain

(M,M) 6|= κ(bU (K)) ∨ (M,M) 6|= κ(eU (K, (X ,X ))) .

However, Proposition A.8(2) and Corollary C.6 now entail thatM 6|= κ(K), a conflict with
the assumption thatM is an MKNF model of K. Consequently,M = X ∩ Y .

The converse implication follows directly from Proposition C.14.

Corollary C.16. Let U be a splitting set for an MKNF knowledge base K andM ∈ M. IfM
is an MKNF model of K, then the pair (σ(M, U), σ(M,P \ U)) is a solution to K w.r.t. U ,
M = σ(M, U) ∩ σ(M,P \ U) andM is semi-saturated relative to U .

Proof. This is a consequence of the proof of Theorem C.15 and of Proposition A.28.

Corollary C.17. Let U be a splitting set for an MKNF knowledge base K such that there exists
at least one solution to K w.r.t. U . Then K is MKNF satisfiable and an MKNF interpretationM
is an MKNF model of K if and only ifM = X ∩ Y for some solution (X ,Y) to K w.r.t. U .
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Proof. Follows from Theorem C.15.

Corollary C.18. Let U be a splitting set for an MKNF knowledge base K. An MKNF sentence φ
is MKNF entailed by K if and only if for every solution (X ,Y) of K w.r.t. U , X ∩ Y |= φ.

Proof. Follows from Theorem C.15.

C.1.1.2 Splitting Sequence Theorem

Remark C.19. Solutions to an MKNF knowledge base K w.r.t. a splitting sequence (U,P)
are the same as the solutions to K w.r.t. the splitting set U .

Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge base K, and let
〈Xα〉α<µ be a sequence of MKNF interpretations. Then,

pr(bU0(K)) ⊆ U0 ,

pr
(
eUα

(
bUα+1(K),

⋂
β≤αXβ

))
⊆ Uα+1 \ Uα whenever α+ 1 < µ

Furthermore, if X is a solution to K w.r.t. U , then X0 is saturated relative to U0 and
for every α such that α+ 1 < µ, Xα+1 is saturated relative to Uα+1 \Uα. Also note that for
any limit ordinal α, Xα = I, so Xα is saturated relative to any set of predicate symbols.

The proofs in this section follow the same pattern as those in (Turner, 1996).

Lemma C.20. Let 〈Uα〉α<µ be a sequence of sets of predicate symbols and 〈Xα〉α<µ be a sequence
of members of M such that for all α < µ, Xα is saturated relative to Uα. Then

⋂
α<µXα is

saturated relative to
⋃
α<µ Uα.

Proof. Let U =
⋃
α<µ Uα and X =

⋂
α<µXα and suppose that I [U ] belongs to X [U ]. Then

there is some J ∈ X such that I [U ] = J [U ]. This means that for every ground atom p with
pr(p) ⊆ U ,

I |= p if and only if J |= p .

We need to show that I belongs to X . Take some β < µ and some atom q such that
pr(q) ⊆ Uβ . Since Uβ is a subset of U , we obtain

I |= q if and only if J |= q .

It follows that I[Uβ] = J [Uβ] and since J ∈ X ⊆ Xβ , we conclude that I[Uβ] ∈ X [Uβ]
β .

Moreover, Xβ is saturated relative to Uβ , so I ∈ Xβ . Since the choice of β was arbitrary, I
belongs to Xβ for all β < µ. Thus, I ∈ X as desired.

Definition C.21 (Saturation Sequence Induced by a Splitting Sequence). Let U = 〈Uα〉α<µ
be a monotone, continuous sequence of sets of predicate symbols. The saturation sequence
induced by U is the sequence A = 〈Aα〉α<µ where

• A0 = U0;

• for any ordinal α such that α+ 1 < µ, Aα+1 = Uα+1 \ Uα;

• for any limit ordinal α, Aα = ∅.

Lemma C.22. Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge base K, A =
〈Aα〉α<µ the saturation sequence induced by U and X = 〈Xα〉α<µ a sequence of members of M
such that Xα is saturated relative to Aα for every α < µ. Then the following holds for all ordinals
α, β such that β < α < µ:
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•
⋂
γ≤β Xγ is saturated relative to Uβ ;

•
⋂
β<γ≤αXγ is saturated relative to Uα \ Uβ ;

•
⋂
α<γ<µXγ is saturated relative to P \ Uα.

Proof. By Lemma C.20 we obtain that
⋂
γ≤β Xγ is saturated relative to⋃

γ≤β
Aγ = A0 ∪

⋃
γ<β

Aγ+1 = U0 ∪
⋃
γ<β

Uγ+1 \ Uγ = Uβ .

The same lemma implies that
⋂
β<γ≤αXγ must be saturated relative to⋃

β<γ≤α
Aγ =

⋃
β≤γ<α

Aγ+1 =
⋃

β≤γ<γ+1≤α
Uγ+1 \ Uγ = Uα \ Uβ

and that
⋂
α<γ<µXγ must be saturated relative to⋃
α<γ<µ

Aγ =
⋃

α≤γ<γ+1<µ

Aγ+1 =
⋃

α≤γ<γ+1<µ

Uγ+1 \ Uγ = P \ Uα .

Lemma C.23. Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge base K, A =
〈Aα〉α<µ the saturation sequence induced by U ,M an MKNF model of K and X = 〈Xα〉α<µ a
sequence of MKNF interpretations where Xα = σ(M, Aα) for all α < µ. Then for every ordinal
α < µ it holds that ⋂

β≤α
Xβ = σ(M, Uα) .

Proof. We prove by induction on α:

1◦ Suppose that α = 0. We need to show that X0 = σ(M, U0), which follows directly
from the definition of X0.

2◦ Take some α such that α + 1 < µ. By the inductive assumption,
⋂
β≤αXβ =

σ(M, Uα). We immediately obtain:⋂
β≤α+1

Xβ = Xα+1 ∩
⋂
β≤α
Xβ = Xα+1 ∩ σ(M, Uα)

= σ(M, Uα+1 \ Uα) ∩ σ(M, Uα) .

It remains to show that σ(M, Uα+1) = σ(M, Uα+1 \ Uα) ∩ σ(M, Uα). We know that
Uα+1 is a splitting set forK and thatM is an MKNF model ofK, so by Corollary C.16
it follows that N = σ(M, Uα+1) is an MKNF model of bUα+1(K). Furthermore, Uα
is a splitting set for bUα+1(K), so by another application of Corollary C.16 we obtain
that

σ(M, Uα+1) = N = σ(N , Uα) ∩ σ(N ,P \ Uα) . (C.5)

Moreover, Proposition A.23 yields

σ(N , Uα) = σ(σ(M, Uα+1), Uα) = σ(M, Uα+1 ∩ Uα) = σ(M, Uα) (C.6)

and

σ(N ,P \ Uα) = σ(σ(M, Uα+1),P \ Uα) = σ(M, Uα+1 ∩ (P \ Uα))

= σ(M, Uα+1 \ Uα) .
(C.7)

202



C. PROOFS: LAYERED DYNAMIC MKNF KNOWLEDGE BASES

The desired conclusion follows from (C.5), (C.6) and (C.7).

3◦ Suppose α < µ is a limit ordinal and for all β < α it holds that
⋂
γ≤β Xγ = σ(M, Uβ).

First note that⋂
β≤α
Xβ = Xα ∩

⋂
β<α

Xβ = I ∩
⋂
β<α

⋂
γ≤β
Xγ =

⋂
β<α

σ(M, Uβ)

=
⋂
β<α

{
I ∈ I

∣∣∣ ∃J ∈M : J [Uβ] = I[Uβ]
}

=
{
I ∈ I

∣∣∣ ∀β < α ∃J ∈M : J [Uβ] = I[Uβ]
}

and also that

σ(M, Uα) = σ
(
M,

⋃
β<α Uβ

)
=
{
I ∈ I

∣∣∣ ∃J ∈M : J [
⋃
β<α Uβ] = I[

⋃
β<α Uβ]

}
.

From these two identities it can be inferred that σ(M, Uα) is a subset of
⋂
β≤αXβ .

Indeed, if I belongs to σ(M, Uα), then for some J ∈ M we have J [
⋃
β<α Uβ] =

I[
⋃
β<α Uβ], hence for any β0 < α and any atom p such that pr(p) ⊆ Uβ0 ⊆

⋃
β<α Uβ

we obtain

J |= p if and only if I |= p ,

which implies that I[Uβ0 ] = J [Uβ0 ].
To prove the converse inclusion, let Y =

⋂
β≤αXβ and proceed by contradiction,

assuming that σ(M, Uα) ( Y . By Corollary C.16 we know that σ(M, Uα) is an
MKNF model of bUα(K), so there is some formula φ ∈ bUα(K) such that

(Y, σ(M, Uα)) 6|= φ .

Furthermore, since Uα =
⋃
β<α Uβ and pr(φ) is a finite set of predicate symbols,

there is some β < α such that pr(φ) is a subset of Uβ . Consequently, by Corol-
lary A.17, we obtain (

Y[Uβ], σ(M, Uα)[Uβ]
)
6|= φ .

Let Y1 =
⋂
γ≤β Xγ and Y2 =

⋂
β<γ≤αXγ . By Lemma C.22, Y1 is saturated relative to

Uβ and Y2 is saturated relative to Uα \ Uβ and thus by Lemma A.25 also relative to

P \ Uβ . Furthermore, Y = Y1 ∩ Y2, so, by Proposition A.28, Y[Uβ] = Y[Uβ]
1 . Hence,(

Y[Uβ]
1 , σ(M, Uα)[Uβ]

)
6|= φ

and the inductive assumption for β yields(
σ(M, Uβ)[Uβ], σ(M, Uα)[Uβ]

)
6|= φ .

Finally, since Uβ is a subset of Uα, Proposition A.24 implies that

σ(M, Uα)[Uβ] =M[Uβ] = σ(M, Uβ)[Uβ] .

203



C. PROOFS: LAYERED DYNAMIC MKNF KNOWLEDGE BASES

Therefore, (
σ(M, Uβ)[Uβ], σ(M, Uβ)[Uβ]

)
6|= φ .

Corollary A.17 now implies that (σ(M, Uβ), σ(M, Uβ)) 6|= φ. But at the same time,
Uβ is a splitting set for K, so, by Corollary C.16, σ(M, Uβ) is an MKNF model of
bUβ (K). Since φ belongs to bUβ (K), we have reached a contradiction.

Proposition C.24. Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge base
K, A = 〈Aα〉α<µ the saturation sequence induced by U , M an MKNF model of K and X =
〈Xα〉α<µ a sequence of MKNF interpretations where Xα = σ(M, Aα) for all α < µ. Then X is
a solution to K w.r.t. U .

Proof. There are four conditions to verify.
First, X0 must be an MKNF model of bU0(K). Since U0 is a splitting set for K, Corol-

lary C.16 yields that σ(M, U0) is an MKNF model of bU0(K). By definition,X0 = σ(M, U0),
thus this part of the proof is finished.

Second, for any ordinal α such that α + 1 < µ it must hold that Xα+1 is an MKNF
model of

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
.

By Corollary C.16, N = σ(M, Uα+1) is an MKNF model of bUα+1(K). Furthermore, it can
be seen that Uα is a splitting set for bUα+1(K), so by another application of Corollary C.16,
we obtain that σ(N ,P\Uα) is an MKNF model of eUα(bUα+1(K), σ(N , Uα)). Moreover, by
Proposition A.23,

σ(N , Uα) = σ(σ(M, Uα+1), Uα) = σ(M, Uα+1 ∩ Uα) = σ(M, Uα)

and also

σ(N ,P \ Uα) = σ(σ(M, Uα+1),P \ Uα) = σ(M, Uα+1 ∩ (P \ Uα))

= σ(M, Uα+1 \ Uα) .

Lemma C.23 implies that σ(M, Uα) =
⋂
β≤αXβ and since Xα+1 = σ(M, Uα+1 \ Uα), it

follows that Xα+1 is an MKNF model of

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
.

Third, for every limit ordinal α < µ, Xα = I holds by definition.
Fourth, we need to verify that

⋂
α<µXα 6= ∅. It follows from the definition of X by

Proposition A.22 thatM is a subset of Xα for every α < µ. Hence,

∅ 6=M⊆
⋂
α<µ

Xα .

Proposition C.25. Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge base K.
If X = 〈Xα〉α<µ is a solution to K w.r.t. U , then for all α < µ,

⋂
β≤αXβ is an MKNF model of

bUα(K).

Proof. Let Yα =
⋂
β≤αXβ for every α < µ. We proceed by induction on α:

1◦ For α = 0 we need to show that Y0 = X0 is an MKNF model of bU0(K). This follows
directly from the assumptions.
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2◦ For α such that α+1 < µwe need to show that Yα+1 is an MKNF model of bUα+1(K).
By the inductive assumption, Yα is an MKNF model of bUα(K). Furthermore,

bUα(bUα+1(K)) = bUα(K)

and since X is a solution to K w.r.t. U , Xα+1 is an MKNF model of

eUα
(
bUα+1(K),Yα

)
.

Since Uα is a splitting set for K, it is also a splitting set for bUα+1(K). Consequently,
by Theorem C.15, Yα ∩ Xα+1 = Yα+1 is an MKNF model of bUα+1(K).

3◦ For a limit ordinal α < µ we need to show that Yα is an MKNF model of bUα(K).
First we show that Yα |= bUα(K) and then that for every Y ′ ) Yα it holds that
(Y ′,Yα) 6|= bUα(K).
Take some φ ∈ bUα(K) and suppose that β < α is some ordinal such that pr(φ) ⊆ Uβ .
We know that Yβ is an MKNF model of bUβ (K), so Yβ |= φ. Furthermore, for every
γ such that γ < µ, Xγ+1 is an MKNF model of eUγ (bUγ+1(K),Yγ), so by Proposi-
tion A.18, Xγ+1 is saturated relative to Uγ+1 \ Uγ . Consequently, by Lemma C.22,
Yβ =

⋂
γ≤β Xγ is saturated relative to Uβ and

⋂
β<γ≤αXγ is saturated relative to

Uα \Uβ and, by Lemma A.25, it is also saturated relative to P\Uβ . Hence, by Propo-

sition A.28, for Yα = Yβ ∩
⋂
β<γ≤αXγ it holds that Y[Uβ]

α = Y[Uβ]
β , and so Yα |= φ

follows from Corollary A.14.
Now suppose that Y ′ ) Yα. Then there must be some I ∈ Y ′ \Yα. Take some β < α
such that I /∈ Yβ (there must be such β, otherwise I ∈ Yα). Let Y ′′ = Y ′ ∪ Yβ . By
the inductive assumption, Yβ is an MKNF model of bUβ (K), so there must be some

φ ∈ bUβ (K) such that (Y ′′,Yβ) 6|= φ. Furthermore, Y[Uβ]
β = Y[Uβ]

α and

Y ′′[Uβ] = Y ′[Uβ] ∪ Y[Uβ]
β = Y ′[Uβ] ∪ Y[Uβ]

α = (Y ′ ∪ Yα)[Uβ] = Y ′[Uβ] .

Consequently, by Corollary A.17, (Y ′,Yα) 6|= φ.

Lemma C.26. Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge base K and let
V = 〈Vα〉α<µ+1 be a sequence of sets of predicate symbols such that for every α < µ, Vα = Uα
and Vµ = P. Then V is a splitting sequence for K.

Moreover, if X = 〈Xα〉α<µ is a solution to K w.r.t. U , then Y = 〈Yα〉α<µ+1, where for all
α < µ, Yα = Xα, and Yµ = I, is a solution to K w.r.t. V .

Proof. It is not difficult to verify that V is monotone, continuous, that every Vα is a split-
ting set for K and that

⋃
α<µ+1 Vα = P.

Now suppose that X is a solution to K w.r.t. U . All the properties of X propagate
to Y , so one only needs to check that µ is handled correctly. In case µ is a limit ordinal,
we need to show that Yµ = I, which holds by definition. On the other hand, if µ is a
non-limit ordinal, then let β be such that β + 1 = µ. From

⋃
α<µ Uα = P it follows that

Uβ = P, so we obtain

eVβ

(
bVµ(K),

⋂
γ≤β Yγ

)
= eP

(
K,
⋂
γ≤β Yγ

)
= ∅ .

Consequently, Yµ = I is its MKNF model.
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Theorem C.27 (Splitting Sequence Theorem for MKNF Knowledge Bases). Let U be a
splitting sequence for an MKNF knowledge base K. ThenM is an MKNF model of K if and only
ifM =

⋂
α<µXα for some solution 〈Xα〉α<µ to K w.r.t. U .

Proof. Let U = 〈Uα〉α<µ and suppose that A is the saturation sequence induced by U . If
M is an MKNF model of K, then it follows by Proposition C.24 that there is a solution
X = 〈Xα〉α<µ to K w.r.t. U where Xα = σ(M, Aα) for all α < µ.

Let V = 〈Vα〉α<µ+1 and Y = 〈Yα〉α<µ+1 where Vα = Uα and Yα = Xα for all α < µ,
Vµ = P and Yµ = I. By Lemma C.26, V is a splitting sequence for K and Y is a solution
to K w.r.t. V . Thus, by Lemma C.23,⋂

α<µ

Xα =
⋂
α<µ

Yα = I ∩
⋂
α<µ

Yα =
⋂

α<µ+1

Yα = σ(M, Vµ) = σ(M,P) =M .

To prove the converse implication, suppose that X is a solution to K w.r.t. U . Then,
by Lemma C.26, there is also a solution Y to K w.r.t. V = 〈Vα〉α<µ+1 such that for all
α < µ, Vα = Uα and Vµ = P. Furthermore,⋂

α<µ

Xα =
⋂
α≤µ
Yα

and, by Proposition C.25,
⋂
α≤µ Yα is an MKNF model of bVµ(K) = bP(K) = K.

Corollary C.28. Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge baseK, A =
〈Aα〉α<µ the saturation sequence induced by U ,M an MKNF model of K and X = 〈Xα〉α<µ a
sequence of MKNF interpretations where Xα = σ(M, Aα) for all α < µ. Then X is a solution
to K w.r.t. U andM =

⋂
α<µXα.

Proof. Follows from the proof of Theorem C.27 and from Proposition C.24.

Corollary C.29. Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge base K such
that there exists at least one solution to K w.r.t. U . Then K is MKNF satisfiable, andM is an
MKNF model of K if and only ifM =

⋂
α<µXα for some solution 〈Xα〉α<µ to K w.r.t. U .

Proof. Follows by Theorem C.27.

Corollary C.30. Let U = 〈Uα〉α<µ be a splitting sequence for an MKNF knowledge base K. An
MKNF sentence φ is an MKNF consequence of K if and only if for every solution 〈Xα〉α<µ to K
w.r.t. U ,

⋂
α<µXα |= φ.

Proof. Follows by Theorem C.27.

Theorem 4.13 (Splitting Theorem for MKNF Knowledge Bases). The MKNF models seman-
tics for MKNF knowledge bases satisfies the splitting set and splitting sequence properties.

Proof. Follows from Theorems C.15 and C.27.

C.1.2 Ontology Updates

Proposition C.31. Let T be a first-order theory, U a splitting sequence for T and A the satura-
tion sequence induced by U . Then,

[[T ]] =
⋂
α<µ

[[bAα(T )]] .
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Proof. Since U is a splitting sequence for T , for every formula φ ∈ T there exists a unique
α < µ such that φ belongs to bAα(T ). Hence,

[[T ]] =
⋂
φ∈T

[[φ ]] =
⋂
α<µ

⋂
φ∈bAα (T )

[[φ ]] =
⋂
α<µ

[[bAα(T )]] .

Lemma C.32. LetM,N ∈M. Then the following holds:

(1) IfM⊆ N , thenM �W N =M.

(2) IfM⊇ N , thenM �W N = N .

(3) M �WM =M.

(4) M �W N = ∅ if and only ifM = ∅ or N = ∅.

Proof.

(1) For every interpretation I , I <I
W
J for every J 6= I . Thus, ifM ⊆ N , for all I ∈ M

it holds that I �W N = { I }. Therefore,M �W N =M.

(2) For every interpretation I , I <I
W
J for every J 6= I . So if M ⊇ N , then every

interpretation I ∈ N ⊆M also belongs toM �W N . Furthermore,M �W N ⊆ N by
construction, so we obtainM �W N = N .

(3) Follows from (1).

(4) The direct implication follows by definition of �W. The converse implication follows
from (1) and (2).

Proposition C.33. Let T = 〈Ti〉i<n be a sequence of first-order theories with n > 0 andM =
[[3W T ]]. ThenM |= Tn−1.

Proof. Follows by induction on n, due to the fact thatM�WN ⊆ N for anyM,N ∈M.

Proposition C.34. Let A = 〈Aα〉α<µ be a saturation sequence, I, J ∈ I and N ∈ M be
sequence-saturated relative to A. Then,

J ∈ (I �W N ) if and only if ∀α < µ : J [Aα] ∈
(
I [Aα]

�W N [Aα]
)
.

Proof. Suppose that J /∈ (I �W N ). If J /∈ N , then since N is sequence-saturated relative
to A, there is some α < µ such that J [Aα] /∈ N [Aα]. But then J [Aα] /∈

(
I [Aα]

�W N [Aα]
)
, so

we reached the desired conclusion.
In the principal case we have J ∈ N , so there exists some K ∈ N such that K <I

W
J .

This means that for every predicate symbol P ∈ P,(
PK ÷ P I

)
⊆
(
P J ÷ P I

)
(C.8)

and for some predicate symbol P0 ∈ P,(
PK0 ÷ P I0

)
(
(
P J0 ÷ P I0

)
. (C.9)

Since A is a saturation sequence, there is a unique ordinal α < µ such that P0 ∈ Aα. It
follows from (C.9) that(

PK
[Aα]

0 ÷ P I[Aα]

0

)
=
(
PK0 ÷ P I0

)
(
(
P J0 ÷ P I0

)
=
(
P J

[Aα]

0 ÷ P I[Aα]

0

)
.
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Furthermore, for any predicate symbol P ∈ Aα it follows from (C.8) that(
PK

[Aα] ÷ P I[Aα]
)

=
(
PK ÷ P I

)
⊆
(
P J ÷ P I

)
=
(
P J

[Aα] ÷ P I[Aα]
)
.

Finally, for any predicate symbol P that does not belong to Aα,

P I
[Aα]

= P J
[Aα]

= PK
[Aα]

= ∅ .

Thus, (
PK

[Aα] ÷ P I[Aα]
)

= ∅ =
(
P J

[Aα] ÷ P I[Aα]
)

Therefore, we can conclude that

K [Aα] <I
[Aα]

W
J [Aα] ,

so J [Aα] /∈
(
I [Aα]

�W N [Aα]
)

as desired.

For the converse implication, suppose that for some α < µ, J [Aα] /∈
(
I [Aα]

�W N [Aα]
)
.

If J [Aα] /∈ N [Aα], we immediately obtain that J /∈ N . Consequently, J /∈ (I �W N ).

It remains to consider the principal case when J [Aα] ∈ N [Aα]. Then there must be
some interpretation K ∈ N [Aα] such that K <I[Aα] J [Aα]. Thus, for all predicate symbols
P ∈ P we know that (

PK ÷ P I[Aα]
)
⊆
(
P J

[Aα] ÷ P I[Aα]
)
. (C.10)

We also know that there is some predicate symbol P0 ∈ P such that(
PK0 ÷ P I

[Aα]

0

)
(
(
P J

[Aα]

0 ÷ P I[Aα]

0

)
. (C.11)

Additionally, for every predicate symbol P from P \Aα it holds that

P I
[Aα]

= P J
[Aα]

= PK = ∅ .

Thus, (
PK ÷ P I[Aα]

)
= ∅ =

(
P J

[Aα] ÷ P I[Aα]
)
.

Consequently, P0 ∈ Aα. Let K ′ be an interpretation such that for every ground atom p,

K ′ |= p if and only if K |= p ∨ J [P\Aα] |= p .

It follows that K ′[Aα] = K ∈ N [Aα] and for every ordinal β < µ such that β 6= α, K ′[Aβ] =

J [Aβ] ∈ N [Aβ], so since N is sequence-saturated relative to A, K ′ ∈ N . Take some
predicate symbol P ∈ P and consider the following two cases:

a) If P ∈ Aα, then from (C.10) we obtain(
PK

′ ÷ P I
)

=
(
PK ÷ P I[Aα]

)
⊆
(
P J

[Aα] ÷ P I[Aα]
)

=
(
P J ÷ P I

)
.

b) If P ∈ P \Aα, then since K ′[P\Aα] = J [P\Aα],(
PK

′ ÷ P I
)

=
(
P J ÷ P I

)
.
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Moreover, from (C.11) we obtain(
PK

′
0 ÷ P I0

)
=
(
PK0 ÷ P I

[Aα]

0

)
(
(
P J

[Aα]

0 ÷ P I[Aα]

0

)
=
(
P J0 ÷ P I0

)
.

It follows from the above considerations that K ′ <I
W
J . Consequently, J /∈ (I �W N ).

Proposition C.35. Let A = 〈Aα〉α<µ be a saturation sequence, J ∈ I andM,N ∈ M be both
sequence-saturated relative to A. Then,

J ∈ (M �W N ) if and only if ∀α < µ : J [Aα] ∈
(
M[Aα]

�W N [Aα]
)
.

Proof. By definition, J ∈ (M �W N ) if and only if for some I ∈ M, J ∈ (I �W N ). By
Proposition C.34, this holds if and only if

∀α < µ : J [Aα] ∈
(
I [Aα]

�W N [Aα]
)
. (C.12)

At the same time, the right hand side of our equivalence is true if and only if for some
sequence of interpretations 〈Iα〉α<µ the following holds:

∀α < µ : J [Aα] ∈
(
I [Aα]
α �W N [Aα]

)
. (C.13)

It remains to show that (C.12) is equivalent to (C.13). Indeed, (C.12) implies (C.13) by
putting Iα = I for all α < µ. Now suppose that (C.13) holds and let I be an interpretation
such that for every ground atom p,

I |= p if and only if ∃α < µ : I [Aα]
α |= p .

Then it holds for every α < µ that I [Aα] = I
[Aα]
α ∈ M[Aα]. SinceM is sequence-saturated

relative to A, this implies that I ∈ M. Moreover, J [Aα] ∈
(
I [Aα]

�W N [Aα]
)
. As a conse-

quence, (C.12) is satisfied and our proof is finished.

Proposition C.36. Let A = 〈Aα〉α<µ be a saturation sequence andM,N ∈M be both sequence-
saturated relative to A. Then,

J [Aα] ∈
(
M[Aα]

�W N [Aα]
)

if and only if J ∈ (σ(M, Aα) �W σ(N , Aα)) .

Proof. First note that ifM = ∅ or N = ∅, then the equivalence is trivially satisfied since
both (M[Aα]

�W N [Aα]) = ∅ and (σ(M, Aα) �W σ(N , Aα)) = ∅. Thus, we can assume that
M and N are MKNF interpretations.

By applying Proposition C.35 to σ(M, Aα) and σ(N , Aα) it follows that for every in-
terpretation J ,

J ∈ (σ(M, Aα) �W σ(N , Aα)) if and only if

∀β < µ : J [Aβ] ∈
(
σ(M, Aα)[Aβ] �W σ(N , Aα)[Aβ]

)
. (C.14)

By Lemma A.26 we obtain that whenever β 6= α, σ(M, Aα)[Aβ] = I[Aβ] and σ(N , Aα)[Aβ] =

I[Aβ], so by Lemma C.32(3) we can conclude that σ(M, Aα)[Aβ] �W σ(N , Aα)[Aβ] = I[Aβ].
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Thus, condition (C.14) gets simplified to

J ∈ (σ(M, Aα) �W σ(N , Aα)) if and only if J [Aα] ∈
(
σ(M, Aα)[Aα]

�W σ(N , Aα)[Aα]
)
.

Furthermore, by Proposition A.24, σ(M, Aα)[Aα] =M[Aα] and σ(N , Aα)[Aα] = N [Aα], so

J ∈ (σ(M, Aα) �W σ(N , Aα)) if and only if J [Aα] ∈
(
M[Aα]

�W N [Aα]
)
.

This completes our proof.

Corollary C.37. Let A = 〈Aα〉α<µ be a saturation sequence andM,N ∈ M be both sequence-
saturated relative to A. Then,

M �W N =
⋂
α<µ

σ(M, Aα) �W σ(N , Aα) .

Proof. Follows from Propositions C.35 and C.36.

Lemma C.38. Let A be a set of predicate symbols, I, J ∈ I and N ∈ M be saturated relative to
A. If J ∈ I �W N , then I coincides with J on P \A.

Proof. If J ∈ I �W N , then J ∈ N . Let J ′ be an interpretation such that for every ground
atom p,

J ′ |= p if and only if J [A] |= p ∨ I [P\A] |= p .

Then J ′[A] = J [A] ∈ N , so sinceN is saturated relative toA, J ′ belongs toN . Furthermore,
for any predicate symbol P ∈ A, P J

′ ÷ P I = P J ÷ P I and for any predicate symbol
P ∈ P \ A, P J

′ ÷ P I = ∅ ⊆ P J ÷ P I . If this inclusion was proper for some predicate
symbol P , then we would obtain that J ′ <I

W
J holds, contrary to the assumption that J

belongs to I �W N . Thus, for all predicate symbols P ∈ P \ A, P J ÷ P I must be equal to
∅. It follows that J [P\A] = J ′[P\A] = I [P\A], which is the desired result.

Proposition C.39. Let T = 〈Ti〉i<n be a finite sequence of first-order theories, U a splitting
sequence for T and A = 〈Aα〉α<µ the saturation sequence induced by U . Then,

[[3W T ]] =
⋂
α<µ

[[3W bAα(T )]] .

Proof. We prove by induction on n.

1◦ If n = 1, then [[3W T ]] = [[T0 ]] and for every α < µ, [[3W bAα(T )]] = [[bAα(T0)]]. The
claim thus follows from Proposition C.31.

2◦ We assume that the claim holds for n and prove it for n+ 1. Let T ′ = 〈Ti〉i<n+1. By
definition of 3W we obtain(

3W T ′
)

= (3W T ) �W Tn and
(
3W bAα(T ′)

)
= (3W bAα(T )) �W bAα(Tn) .

LetM = [[3W T ]], N = [[Tn ]] and for every α < µ,Mα = [[3W bAα(T )]] and Nα =
[[bAα(Tn)]]. Our goal is to prove that

M �W N =
⋂
α<µ

Mα �W Nα .
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We obtain M =
⋂
α<µMα and N =

⋂
α<µNα by the inductive assumption and

by Proposition C.31, respectively. Also, due to Theorem 2.43 and Proposition 2.41,
bothMα and Nα are saturated relative to Aα.
If M = ∅ or N = ∅, then, by Lemma C.32(4), M �W N = ∅ and it follows from
Proposition A.35 that for some α < µ, either Mα = ∅ or Nα = ∅. In either case
Mα �W Nα = ∅ and the desired equation is satisfied.
In the principal case, bothM 6= ∅ and N 6= ∅. Thus, we can use Proposition A.35
to conclude thatMα = σ(M, Aα) and Nα = σ(N , Aα) for all α < µ and, by Propo-
sition A.34, M and N are sequence-saturated relative to A. Furthermore, we can
apply Corollary C.37 to obtain the desired equation:

M �W N =
⋂
α<µ

σ(M, Aα) �W σ(N , Aα) =
⋂
α<µ

Mα �W Nα .

Theorem 4.16 (Splitting Theorem for Winslett’s First-Order Operator). The semantics for
sequences of first-order theories induced by Winslett’s first-order operator �W satisfies the splitting
set and splitting sequence properties.

Proof. Let U = 〈Uα〉α<µ be a splitting sequence for a sequence of first-order theories T
and A = 〈Aα〉α<µ be the saturation sequence induced by U . The following holds for any
X ∈M and all ordinals α with α+ 1 < µ:

bA0(T ) = bU0(T ) ,

bAα+1(T ) = bUα+1\Uα(T ) = tUα(bUα+1(T )) = eUα(bUα+1(T ),X ) .

Therefore, the splitting sequence property follows from Proposition C.39. The splitting
set property for a splitting set U follows from the splitting sequence property applied to
the splitting sequence 〈U,P〉.

C.1.3 Rule Updates

Proposition C.40 (Generalisation of Stable Models). Let S be one of AS, JU, DS and RD and
P be a logic program. Then J is a stable model of P if and only if J is an S-model of 〈P〉.
Proof (sketch). In case of the AS- and JU-semantics this follows directly by their definition
and by the fact that rej

AS
(〈P〉e, J) = rej

JU
(〈P〉e, J) = ∅. In case of the DS-semantics it also

holds that rej
DS

(〈P〉e, J) = ∅ and it is not difficult to verify that the equation

J ′ = least([all(〈P〉e) \ rej
DS

(〈P〉e, J)] ∪ def(〈P〉e, J))

is satisfied if and only if J is a stable model of P. Finally, in case of the RD-semantics, if
rej

RD
(〈P〉e, J) 6= ∅, then J is not a classical model of P since it violates at least one of the

rules in P. Thus, J is not a stable model of P and, additionally, the equation

J ′ = least([all(〈P〉e) \ rej
RD

(〈P〉e, J)] ∪ def(〈P〉e, J)) ,

is not satisfied because for some objective literal l, either l ∈ J ′ or ∼l ∈ J ′, but neither l
nor ∼l appears in heads of rules in the argument program of least(·), and thus cannot be
a part of its least model. On the other hand, if rej

RD
(〈P〉e, J) = ∅, then the same argument

as for the DS-semantics applies.

Proposition C.41. Let S be one of AS, JU, DS and RD and P = 〈Pi〉i<n be a DLP with n > 0.
If J is an S-stable model of P , then J |= Pn−1.
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Proof (sketch). In case of the AS-, JU- and DS-semantics this follows from the fact that
rules in Pn−1 cannot be rejected. In case of the RD-semantics, if some rules from Pn−1

reject each other, then the candidate interpretation is not an RD-model of P .

Theorem 4.20 (Splitting Theorem for Rule Update Semantics). The rule update semantics
AS, JU, DS and RD satisfy the splitting set and splitting sequence properties.

Proof (sketch). Let S be one of AS, JU, DS and RD. We need to prove that J is an S-model
of P if and only if J =

⋃
α<µ Jα where for every α < µ, Jα is an S-model of P α and

• P 0 = bU0(P );

• For any ordinal α such that α+ 1 < µ, P α+1 = eUα

(
bUα+1(P ),

⋃
β≤α Jβ

)
;

• For any limit ordinal α < µ, P α = 〈∅〉α<µ.

In case S is AS or JU, this follows by the splitting properties of logic programs (Lifschitz
and Turner, 1994) and from the observation that rules in rej

S
(P , J) correspond one-to-one

with the rules in
⋃
α<µ rej

S
(P α, Jα). In particular, if we put

Q = [ρ(P ) \ rej
S
(P , J)] and Qα = [ρ(P α) \ rej

S
(P α, Jα)] ,

then it follows that

• Q0 = bU0(Q);

• For every ordinal α such that α+ 1 < µ, Qα+1 = eUα

(
bUα+1(Q),

⋃
β≤α Jβ

)
;

• For every limit ordinal α, Qα = ∅.
Hence, by the results of (Lifschitz and Turner, 1994), J is a stable model of Q if and only
if J =

⋃
α<µ Jα where for every α < µ, Jα is a stable model ofQα. The desired result thus

follows by the definition of AS- and JU-models.
A similar argument applies in case S is DS or RD, but the set of default assump-

tions needs to be handled with additional care. More particularly, if A = 〈Aα〉α<µ is
the saturation sequence induced by U , then the unconstrained set of default assump-
tions def(P α, Jα) usually introduces rules with predicate symbols outsideAα. In order to
overcome this problem, for every DLP Q, interpretation K and set of predicate symbols
B we introduce the set

def(Q,K,B) = { ∼l | l ∈ LG ∧ pr(l) ⊆ B ∧ ¬∃π ∈ all(Q) : H(π) = l ∧K |= B(π) } .

It can be proven that as long as B ⊇ pr(Q), def(Q,K) can be replaced by def(Q,K,B) in
the definition of an S-model of Q, if accompanied by a suitable restriction in the definition
of K ′, i.e. K ′ = K ∪ {∼l | l ∈ LG \K ∧ pr(l) ⊆ B }. Let

Q = [ρ(P ) \ rej
S
(P , J)] ∪ def(P , J,P) ,

Qα = [ρ(P α) \ rej
S
(P α, Jα)] ∪ def(P α, Jα, Aα) .

Similarly as before, it follows that

• Q0 = bU0(Q);

• For every ordinal α such that α+ 1 < µ, Qα+1 = eUα

(
bUα+1(Q),

⋃
β≤α Jβ

)
;

• For every limit ordinal α, Qα = ∅.
Hence, J ′ = least(Q) if and only if J ′ =

⋃
α<µ J

′
α where for every α < µ, J ′α = least(Qα).

The desired result thus follows by the definition of DS- and RD-models.
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C.2 Splitting-Based Updates of MKNF Knowledge Bases

Proposition C.42. Let K be a basic DMKB and U a splitting sequence for K and suppose that
both � and S have the splitting sequence property and respect fact update. ThenM is a (�,S)-
dynamic MKNF model of K if and only ifM =

⋂
α<µXα for some solution 〈Xα〉α<µ to K w.r.t.

U .

Proof. Since � and S respect fact update, the case when K is both ontology- and rule-
based is treated equivalently by both semantics. Hence, it suffices to consider the case
when K is ontology-based and when it is rule-based separately. The same argument
applies to the layers of K: we do not need to consider cases when, say, K is ontology-
based and one of its layers is rule-based, since then the layer is both ontology- and rule-
based and the two update semantics coincide when applied to that layer.

Thus, if K is ontology-based, then the claim follows directly from the splitting se-
quence property of �.

On the other hand, if K = 〈(∅,Pi)〉i<n is rule-based, then by the splitting sequence
property of S it follows that J is an S-model of P = 〈Pi〉i<n if and only if J =

⋃
α<µ Jα for

some solution 〈Jα〉α<µ to P w.r.t. U . LetM be the MKNF interpretation corresponding
to J and for every α < µ, Xα the MKNF interpretation corresponding to Jα. It follows
that

M = { I ∈ I | I |= J } and ∀α < µ : Xα = { I ∈ I | I |= Jα } .

Consequently,

M = { I ∈ I | I |= J } =
{
I ∈ I

∣∣∣ I |= ⋃α<µ Jα

}
=
⋂
α<µ

{ I ∈ I | I |= Jα } =
⋂
α<µ

Xα .

Proposition C.43. Let K = 〈Ki〉i<n be a basic DMKB and A a set of predicate symbols such
that for all i < n, pr(Ki) ⊆ A. If both � and S conserve the language, then every (�,S)-dynamic
MKNF model of K is saturated relative to A.

Proof. Let Ki = (Oi,Pi) for all i < n. IfM is a (�,S)-dynamic MKNF model of K, then
one of the following cases must apply:

a) K is ontology-based and M = [[3〈κ(Oi) ∪ { l | (l.) ∈ Pi }〉i<n ]]. The claim then
follows from the assumption that � conserves the language.

b) K = 〈(∅,Pi)〉i<n is rule-based and

M = { I ∈ I | I |= J }

for some S-stable model J of 〈Pi〉i<n. We need to prove thatM is saturated relative
to A. Take some interpretation I such that I [A] ∈ M[A]. Then there is some I ′ ∈ M
such that I ′[A] = I [A]. Furthermore, I ′ ∈ M implies that I ′ |= J . Since S conserves
the language, we obtain that pr(J) ⊆ A. Consequently, I |= J and, by the definition
ofM, I ∈M.

Corollary C.44. Let K be a basic DMKB, U a splitting sequence for K and A the saturation se-
quence induced by U . If both � and S have the splitting sequence property, conserve the language
and respect fact update, then every (�,S)-dynamic MKNF model of K is sequence-saturated rel-
ative to A.

Proof. Follows by Propositions C.42, C.43, and A.34.
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Lemma C.45. Let K be a DMKB and U, V some sets of predicate symbols. Then,

bU (bV (K)) = bU∩V (K) .

Proof. Let K = 〈(Oi,Pi)〉i<n. We obtain the following:

bU (bV (K)) = 〈(bU (bV (Oi)), bU (bV (Pi)))〉i<n
bU∩V (K) = 〈(bU∩V (Oi), bU∩V (Pi))〉i<n

Take some i < n. We need to prove that bU (bV (Oi)) = bU∩V (Oi) and that bU (bV (Pi)) =
bU∩V (Pi). By the definition of the bottom of an ontology,

φ ∈ bU (bV (Oi))⇐⇒ φ ∈ bV (Oi) ∧ pr(φ) ⊆ U ⇐⇒ φ ∈ Oi ∧ pr(φ) ⊆ V ∧ pr(φ) ⊆ U
⇐⇒ φ ∈ Oi ∧ pr(φ) ⊆ U ∩ V ⇐⇒ φ ∈ bU∩V (Oi) .

Similarly, by the definition of the bottom of a program,

π ∈ bU (bV (Pi))⇐⇒ π ∈ bV (Pi) ∧ pr(π) ⊆ U ⇐⇒ π ∈ Pi ∧ pr(π) ⊆ V ∧ pr(π) ⊆ U
⇐⇒ π ∈ Pi ∧ pr(π) ⊆ U ∩ V ⇐⇒ π ∈ bU∩V (Pi) .

Lemma C.46. Let K be a DMKB, X ∈M, U a set of predicate symbols and V a splitting set for
K. Then,

eU (bV (K),X ) = bV (eU (K,X )) .

Proof. Let K = 〈(Oi,Pi)i<n〉. We obtain:

eU (bV (K),X ) = 〈(tU (bV (Oi)), eU (bV (Pi),X ))〉i<n
bV (eU (K,X )) = 〈(bV (tU (Oi)), bV (eU (Pi,X )))〉i<n

Take some i < n. We need to prove that tU (bV (Oi)) = bV (tU (Oi)) and that eU (bV (Pi),X ) =
bV (eU (Pi,X )). By the definition of the top and bottom of an ontology,

φ ∈ tU (bV (Oi))⇐⇒ φ ∈ bV (Oi) ∧ pr(φ) * U ⇐⇒ φ ∈ Oi ∧ pr(φ) ⊆ V ∧ pr(φ) * U

⇐⇒ φ ∈ tU (Oi) ∧ pr(φ) ⊆ V ⇐⇒ φ ∈ bV (tU (Oi)) .

To show that eU (bV (Pi),X ) ⊆ bV (eU (Pi,X )) Take some rule σ ∈ eU (bV (Pi),X ). It follows
that there is some rule π ∈ Pi such that pr(π) ⊆ V and

H(σ) = H(π) , X |= κ({ L ∈ B(π) | pr(L) ⊆ U }) ,

B(σ) = { L ∈ B(π) | pr(L) ⊆ P \ U } , pr(π) * U .

Consequently, σ ∈ eU (Pi,X ) and since pr(π) ⊆ V , it follows that σ ∈ bV (eU (Pi,X )).
To show the converse inclusion, take some rule σ ∈ bV (eU (Pi,X )). Then pr(σ) ⊆ V

and there exists some rule π ∈ Pi such that

H(σ) = H(π) , X |= κ({ L ∈ B(π) | pr(L) ⊆ U }) ,

B(σ) = { L ∈ B(π) | pr(L) ⊆ P \ U } , pr(π) * U .

Since pr(H(π)) ⊆ V and V is a splitting set forPi, it follows that pr(π) ⊆ V . Consequently,
π ∈ bV (Pi) and it follows from the above that σ ∈ eU (bV (Pi),X ).
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Lemma C.47. Let U, V be sets of predicate symbols and X ,Y some MKNF interpretations such
that X is saturated relative to U , Y is saturated relative to V and X coincides with Y on U ∩ V .
Then,

(X ∩ Y)[U ] = X [U ] and (X ∩ Y)[V ] = Y [V ] .

Proof. It suffices to prove one of the equations, the other one follows by the symmetry of
the claim. Since X ∩ Y ⊆ X , it immediately follows that (X ∩ Y)[U ] ⊆ X [U ]. Take some
I ∈ X [U ]. Since X coincides with Y on U ∩ V , there must be some J ∈ Y [V ] such that
J [U∩V ] = I [U∩V ]. Let I ′ be an interpretation such that for every ground atom p,

I ′ |= p if and only if I |= p ∨ J |= p .

It follows that I ′[U ] = I and I ′[V ] = J . From the assumption that X is saturated relative
to U and Y is saturated relative to V it follows that I ′ ∈ X ∩ Y . Hence, we can conclude
that I ∈ (X ∩ Y)[U ].

Lemma C.48. Let U, V be splitting sets for a DMKB K and X ,Y some MKNF interpretations
such that X is saturated relative to U , Y is saturated relative to V and X coincides with Y on
U ∩ V . Then,

eU (eV (K,Y),X ) = eU∪V (K,X ∩ Y) .

Proof. Let K = 〈(Oi,Pi)〉i<n. We obtain:

eU (eV (K,Y),X ) = 〈(tU (tV (Oi)), eU (eV (Pi,Y),X ))〉i<n
eU∪V (K,X ∩ Y) = 〈(tU∪V (Oi), eU∪V (Pi,X ∩ Y))〉i<n

Take some i < n. We need to prove that tU (tV (Oi)) = tU∪V (Oi) and eU (eV (Pi,Y),X ) =
eU∪V (Pi,X ∩ Y). Note that whenever U is a splitting set for an ontology O, tU (O) =
bP\U (O). Consequently, by Lemma C.45,

tU (tV (Oi)) = bP\U (bP\V (Oi)) = b(P\U)∩(P\V )(Oi) = bP\(U∪V )(Oi) = tU∪V (Oi) .

As for the second equation, it holds that σ ∈ eU (eV (Pi,Y),X ) if and only if for some rule
σ′ ∈ eV (Pi,Y),

H(σ) = H(σ′) , X |= κ(
{
L ∈ B(σ′)

∣∣ pr(L) ⊆ U
}

) ,

B(σ) =
{
L ∈ B(σ′)

∣∣ pr(L) ⊆ P \ U
}
, pr(σ′) * U .

(C.15)

Furthermore, σ′ ∈ eV (Pi,Y) if and only if for some rule π ∈ Pi,

H(σ′) = H(π) , Y |= κ({ L ∈ B(π) | pr(L) ⊆ V }) ,

B(σ′) = { L ∈ B(π) | pr(L) ⊆ P \ V } , pr(π) * V .
(C.16)

Since U and V are splitting sets for Pi, they are also splitting sets for eV (Pi,Y) and it
follows that pr(σ′) * U and pr(π) * V are equivalent to pr(H(σ′)) * U and pr(H(π)) *
V , respectively. Also, since pr(H(π)) is a singleton set, together they are equivalent to
pr(H(π)) * U ∪ V .

Moreover, by Lemma C.47, X ∩ Y coincides with X on U and with Y on V . These
observations imply that (C.15) and (C.16) are together equivalent to an existence of a rule
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π ∈ Pi such that

H(σ) = H(π) , X ∩ Y |= κ({ L ∈ B(π) | pr(L) ⊆ U ∪ V }),
B(σ) = { L ∈ B(π) | pr(L) ⊆ P \ (U ∪ V ) } , pr(H(π)) * (U ∪ V ) .

This is equivalent to σ ∈ eU∪V (Pi,X ∩ Y).

Lemma C.49. Let U, V be sets of predicate symbols, X ∈M and K a DMKB such that pr(K) ⊆
V . Then,

eU (K,X ) = eU (K, σ(X , V ))

Proof. Note that the second argument of eU (K, ·) is used to interpret literals in bodies of
rules in K. It follows from Proposition A.24 that σ(X , V )[V ] = X [V ]. Furthermore, by the
assumption it holds for any set of literals S in a body of a rule in K that pr(L) ⊆ V . Thus,
by Corollary A.14,

X |= κ(S)⇐⇒ σ(X , V ) |= κ(S) .

Lemma C.50. Let A be a saturation sequence,M ∈ M be sequence-saturated relative to A and
U a set of predicate symbols. Then σ(M, U) is also sequence-saturated relative to A.

Proof. Let A = 〈Aα〉α<µ and suppose that I is an interpretation such that for every α < µ,
I [Aα] ∈ σ(M, U)[Aα]. We need to prove that I ∈ σ(M, U). It follows from the assumptions
that for every α < µ there exists some Jα ∈ σ(M, U) such that I [Aα] = J

[Aα]
α and some

Kα ∈ M such that J [U ]
α = K

[U ]
α . Let K be an interpretation such that for every ground

atom p,

K |= p if and only if ∃α < µ : K [Aα]
α |= p .

It follows that for every α < µ, K [Aα] = K
[Aα]
α ∈M[Aα], so sinceM is sequence-saturated

relative to U , K ∈M. Furthermore, for every α < µ we obtain that

K [Aα∩U ] = K [Aα∩U ]
α = J [Aα∩U ] = I [Aα∩U ] .

Since every predicate symbol from U belongs toAα for some α < µ, we can conclude that
K [U ] = I [U ]. Consequently, I ∈ σ(M, U).

Lemma C.51. Let U = 〈Uα〉α<µ be a splitting sequence, A the saturation sequence induced by
U andM∈M be sequence-saturated relative to A. Then for any ordinal α < µ,

σ
(
M,

⋃
β≤αAβ

)
= σ(M, Uα) =

⋂
β≤α

σ(M, Aβ) .

Proof. First we show by induction on α that Uα =
⋃
β≤αAβ :

1◦ For α = 0 we obtain U0 = A0 by the definition of A.

2◦ We inductively assume that Uα =
⋃
β≤αAβ . Then,⋃

β≤α+1

Aβ = Uα ∪Aα+1 = Uα ∪ (Uα+1 \ Uα) = Uα ∪ Uα+1 = Uα+1 .
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3◦ Let α be a limit ordinal. We inductively assume that for all β < α it holds that
Uβ =

⋃
γ≤β Aγ . Consequently,⋃

β≤α
Aβ = Aα ∪

⋃
β<α

Aβ = ∅ ∪
⋃
β<α

⋃
γ≤β

Aγ =
⋃
β<α

Uβ = Uα .

This establishes the first equation.
As for the second equation, ifM is empty, then the claim trivially follows. So suppose

that there is some J0 ∈ M. If I ∈ σ(M, Uα), then there is some J ∈ M such that
J [Uα] = I [Uα]. Hence, for every β ≤ α, J [Aβ] = I[Aβ]. Thus, I ∈

⋂
β≤α σ(M, Aβ). For the

other inclusion, let I ∈
⋂
β≤α σ(M, Aβ). Then for every ordinal β ≤ α there exists some

interpretation Iβ ∈ M such that I[Aβ]
β = I[Aβ]. Let J be an interpretation such that for

every ground atom p,

J |= p if and only if I [Uα] |= p ∨ J [P\Uα]
0 |= p .

SinceM is sequence-saturated relative to A, it follows that J ∈M. Furthermore, J [Uα] =
I [Uα], so I ∈ σ(M, Uα).

Proposition 4.27 (Independence of Splitting Sequence). Let U , V be layering splitting se-
quences for a DMKB K. If both � and S have the splitting sequence property, conserve the
language and respect fact update, thenM is a (�,S)-dynamic MKNF model of K w.r.t. U if and
only ifM is a (�,S)-dynamic MKNF model of K w.r.t. V .

Proof. Suppose M is a (�,S)-dynamic MKNF model of K w.r.t. U = 〈Uα〉α<µ. Then
M =

⋂
α<µXα for some solution 〈Xα〉α<µ to K w.r.t. U . This means that:

• X0 is a (�,S)-dynamic MKNF model of K0 = bU0(K);

• For any ordinal α such that α+ 1 < µ, Xα+1 is a (�,S)-dynamic MKNF model of

Kα+1 = eUα

(
bUα+1(K),

⋂
γ≤αXγ

)
;

• For any limit ordinal α < µ, Xα = I, and thus it is a (�,S)-dynamic MKNF model
of Kα = 〈∅〉.

Since U is a layering splitting sequence, Kα is a basic DMKB for every α < µ. Let
A = 〈Aα〉α<µ be the saturation sequence induced by U . We know that for every α < µ,
Kα contains only predicate symbols from Aα, so by Proposition C.43, Xα is saturated
relative to Aα. Thus, by Proposition A.35, Xα = σ(M, Aα). Moreover, by Lemma C.51,⋂
γ≤αXγ =

⋂
γ≤α σ(M, Aγ) = σ(M, Uα), so

Kα+1 = eUα
(
bUα+1(K), σ(M, Uα)

)
.

Pick some arbitrary but fixed α < µ and suppose that V = 〈Vβ〉β<ν . Since V is a
splitting sequence for K, it is also a splitting sequence for Kα. Thus, by Proposition C.42
we know that Xα =

⋂
β<ν Yα,β for some solution 〈Yα,β〉β<ν to Kα w.r.t. V . Thus,

• Yα,0 is a (�,S)-dynamic MKNF model of Kα,0 = bV0(Kα);

• For any ordinal β such that β + 1 < ν, Yα,β+1 is a (�,S)-dynamic MKNF model of

Kα,β+1 = eVβ

(
bVβ+1

(Kα),
⋂
γ≤β Yα,γ

)
;
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• For any limit ordinal β < ν, Yα,β = I and thus it is a (�,S)-dynamic MKNF model
of Kα,β = 〈∅〉.

All in all, it follows that for all ordinals α, β such that α < µ and β < ν, Yα,β is a (�,S)-
dynamic MKNF model of Kα,β , as it is defined above.

Since Kα is a basic DMKB, Kα,β must also be a basic DMKB. Let B = 〈Bβ〉β<ν be the
saturation sequence induced by V . We know that for every β < ν, Kα,β contains only
predicate symbols fromBβ , so by Proposition C.43, Yα,β is saturated relative toBβ . Thus,
by Propositions A.35 and A.23,

Yα,β = σ(Xα, Bβ) = σ(σ(M, Aα), Bβ) = σ(M, Aα ∩Bβ) .

Let the sequence of DMKBs K ′ = 〈K ′β〉β<ν be defined as follows:

• K ′0 = bV0(K);

• For any ordinal β such that β + 1 < ν,

K ′β+1 = eVβ
(
bVβ+1

(K), σ(M, Vβ)
)

;

• For any limit ordinal β < ν, K ′β = 〈∅〉.

In the following we prove that for any ordinal β < ν and any ordinal α such that
α+ 1 < µ,

K0,β = bV0(K ′β) , (C.17)

Kα+1,β = eUα
(
bUα+1(K ′β), σ(M, Uα)

)
. (C.18)

This is obviously the case whenever β is a limit ordinal, so in the following we con-
sider the cases when it is a non-limit one. Suppose first that β = 0. Then we can use
Lemma C.45 to obtain

K0,0 = bU0(K0) = bV0(bU0(K)) = bU0∩V0(K) = bU0(bV0(K)) = bU0(K ′0)

and for any ordinal α such that α+1 < µwe can apply Lemmas C.45 and C.46, achieving
the following result:

Kα+1,0 = bV0(Kα+1)

= bV0(eUα(bUα+1(K), σ(M, Uα)))

= eUα(bV0(bUα+1(K)), σ(M, Uα))

= eUα(bUα+1∩V0(K), σ(M, Uα))

= eUα(bUα+1(bV0(K)), σ(M, Uα))

= eUα(bUα+1(K ′0), σ(M, Uα)) .

Now suppose that β is an ordinal such that β + 1 < ν. Using Lemmas C.45 and C.46 we
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obtain:

K0,β+1 = eVβ (bVβ+1
(K0), σ(M, Vβ))

= eVβ (bVβ+1
(bU0(K)), σ(M, Vβ))

= eVβ (bU0∩Vβ+1
(K), σ(M, Vβ))

= eVβ (bU0(bVβ+1
(K)), σ(M, Vβ))

= bU0(eVβ (bVβ+1
(K), σ(M, Vβ)))

= bU0(K ′β+1) .

Finally, for any ordinal α such that α + 1 < µ, Lemmas C.45, C.46 and C.48 imply the
following:

Kα+1,β+1 = eVβ (bVβ+1
(Kα+1), σ(M, Vβ))

= eVβ (bVβ+1
(eUα(bUα+1(K), σ(M, Uα))), σ(M, Vβ))

= eVβ (eUα(bVβ+1
(bUα+1(K)), σ(M, Uα)), σ(M, Vβ))

= eUα∪Vβ (bUα+1∩Vβ+1
(K), σ(M, Uα) ∩ σ(M, Vβ))

= eUα(eVβ (bUα+1(bVβ+1
(K)), σ(M, Vβ)), σ(M, Uα))

= eUα(bUα+1(eVβ (bVβ+1
(K), σ(M, Vβ))), σ(M, Uα))

= eUα(bUα+1(K ′β+1), σ(M, Uα)) .

Now since K ′β is saturated relative to Bβ , we can use Lemma C.49 to replace σ(M, Uα)
in (C.18) by σ(M, Uα ∩Bβ). Furthermore, by consecutively using Proposition A.23, Lem-
mas C.50 and C.51 and Proposition A.23 again, we can see that

σ(M, Uα ∩Bβ) = σ(σ(M, Bβ), Uα) =
⋂
γ≤α

σ(σ(M, Bβ), Aγ)

=
⋂
γ≤α

σ(M, Aγ ∩Bβ) =
⋂
γ≤α
Yγ,β .

Hence, (C.18) can be rewritten as:

Kα+1,β = eUα

(
bUα+1(K ′β),

⋂
γ≤α Yγ,β

)
.

Consequently, (C.17) and (C.18) together imply that 〈Yα,β〉α<µ is a solution to K ′β for all
β < ν. Now we can use Proposition C.42 to conclude that⋂

α<µ

Yα,β =
⋂
α<µ

σ(M, Aα ∩Bβ) =
⋂
α<µ

σ(σ(M, Bβ), Aα) = σ(M, Bβ)

is a (�,S)-dynamic MKNF model of K ′β . One of the last steps in the proof is to show
that M is sequence-saturated relative to B. We know from Corollary C.44 that Xα is
sequence-saturated relative to B, so we obtain the following:⋂

β<ν

σ(M, Bβ) =
⋂
β<ν

⋂
α<µ

σ(σ(M, Bβ), Aα) =
⋂
α<µ

⋂
β<ν

σ(σ(M, Aα), Bβ)

=
⋂
α<µ

⋂
β<ν

σ(Xα, Bβ) =
⋂
α<µ

Xα =M ,

219



C. PROOFS: LAYERED DYNAMIC MKNF KNOWLEDGE BASES

which implies thatM is sequence-saturated relative to B. Thus, for any β < ν, Lemma C.51
implies that

σ(M, Vβ) =
⋂
γ≤β

σ(M, Bγ) .

To sum up, define the sequence of interpretations Z = 〈Zβ〉β<ν by Zβ = σ(M, Bβ). We
know the following:

• Z0 = σ(M, B0) is a (�,S)-dynamic MKNF model of K ′0 = bV0(K);

• For any ordinal β such that β + 1 < ν, Zβ+1 = σ(M, Bβ+1) is a (�,S)-dynamic
MKNF model of

K ′β+1 = eVβ

(
bVβ+1

(K),
⋂
γ≤β σ(M, Bγ)

)
= eVβ

(
bVβ+1

(K),
⋂
γ≤β Zγ

)
;

• For any limit ordinal β < ν, put Zβ = σ(M, Bβ) = σ(M, ∅) = I.

Thus, Z is a solution to K w.r.t. V . Moreover, sinceM is sequence-saturated relative to
B, it follows by Proposition A.34 that

M =
⋂
β<ν

σ(M, Bβ) =
⋂
β<ν

Zβ .

SoM is a (�,S)-dynamic MKNF model of K w.r.t. V .
Proof of the converse implication follows by the symmetry of the claim.

C.3 Properties

Theorem 4.30 (Faithfulness w.r.t. MKNF Knowledge Bases). Suppose that S is faithful to
the stable models semantics and let 〈K〉 be a layered DMKB. An MKNF interpretationM is an
MKNF model of K if and only ifM is a (�,S)-dynamic MKNF model of 〈K〉.

Proof. Follows by Theorem 4.13 and Propositions 2.17 and 2.19.

Theorem 4.31 (Faithfulness w.r.t. First-Order Update Operator). Let K = 〈(Oi, ∅)〉i<n be
a DMKB. An MKNF interpretation M is a (�,S)-dynamic MKNF model of K if and only if
M = [[3〈Oi〉i<n ]].

Proof. Follows by the fact that K is basic, so U = 〈P〉 is a layering splitting sequence for
K. Thus, by Proposition 4.27, M is a (�,S)-dynamic MKNF model of K if and only if
M = [[3〈Oi〉i<n ]].

Theorem 4.32 (Faithfulness w.r.t. Rule Update Semantics). Let K = 〈(∅,Pi)〉i<n be a
DMKB. If J is an S-model of 〈Pi〉i<n, then the MKNF interpretation corresponding to J is a
(�,S)-dynamic MKNF model of K. IfM is a (�,S)-dynamic MKNF model of K, then the ASP
interpretation corresponding toM is an S-model of 〈Pi〉i<n.

Proof. Follows by the fact that K is basic, so U = 〈P〉 is a layering splitting sequence for
K. Thus, by Proposition 4.27,M is a (�,S)-dynamic MKNF model of K if and only ifM
corresponds some S-stable model of 〈Pi〉i<n.
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Theorem 4.33 (Primacy of New Information). Suppose that � satisfies (FO1) and S respects
primacy of new information and let K = 〈Ki〉i<n be a layered DMKB such that n > 0. IfM is a
(�,S)-dynamic MKNF model of K, thenM |= κ(Kn−1).

Proof. IfM is a (�,S)-dynamic MKNF model of K, then for some layering splitting se-
quence U = 〈Uα〉α<µ for K,M =

⋂
α<µXα for some solution X = 〈Xα〉α<µ to K w.r.t.

U . This means that

• X0 is a (�,S)-dynamic MKNF model of bU0(K);

• For any ordinal α such that α+ 1 < µ, Xα+1 is a (�,S)-dynamic MKNF model of

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
;

• For any limit ordinal α, Xα = I.

Let A = 〈Aα〉α<µ be the saturation sequence induced by U . It follows from the assump-
tions that � and S conserve the language, � satisfies (FO1) and S respects primacy of new
information by Proposition C.43 that

• X0 is saturated relative to A0 and X0 |= bU0(Kn−1);

• For any ordinal α such that α+ 1 < µ, Xα+1 is saturated relative to Aα+1 and

Xα+1 |= eUα

(
bUα+1(Kn−1),

⋂
β≤αXβ

)
;

• For any limit ordinal α, Xα = I is saturated relative to Aα = ∅.
Thus, by Proposition A.34,M is sequence-saturated relative to A, by Proposition A.35,

Xα = σ(M, Aα), and by Lemma C.51,
⋂
β≤αXβ = σ(M, Uα).

Now let φ be some formula from κ(Kn−1). If φ is of the form Kψ where ψ is a first-
order formula, then there must exist a unique ordinal α such that pr(φ) ⊆ Aα. Due to the
above considerations we can then conclude that Xα |= φ. Furthermore,

Xα |= φ⇐⇒ σ(M, Aα) |= φ⇐⇒ σ(M, Aα)[Aα] |= φ⇐⇒M[Aα] |= φ⇐⇒M |= φ .

On the other hand, if φ = κ(π) for some rule π, then the there exists a unique non-
limit ordinal α such that pr(H(π)) ⊆ Aα. Suppose that M |= κ(B(π)). If α = 0, then
it follows that π ∈ bU0(Kn−1) and it follows that X0 |= κ(B(π)). Consequently, X0 |=
κ(H(π)) and we can conclude that M |= κ(H(π)). If α = β + 1, then there is a rule
σ ∈ eUβ (bUβ+1

(Kn−1),
⋂
γ≤β Xγ) and Xβ+1 |= κ(B(σ)), Consequently, Xβ+1 |= κ(H(σ))

and we obtainM |= κ(H(σ)). In either case,M |= φ.

Definition C.52 (Generalised Update Semantics for Basic DMKBs with Static Rules). Let
K = 〈(Oi,Pi)〉i<n be a basic DMKB with static rules. An MKNF interpretation M is a
generalised (�,S)-dynamic MKNF model of K if either

a) K is ontology-based andM = [[3〈κ(Oi) ∪ { l | (l.) ∈ Pi }〉i<n ]], or

b) K is rule-based andM corresponds to some ASP interpretation J such that pr(J) ⊆
pr(P0) and J |= P0.

Definition C.53 (Generalised Solution to a DMKB with Static Rules). Let K = 〈(Oi,Pi)〉i<n
be a DMKB with static rules and U a layering splitting sequence for K. A generalised so-
lution to K w.r.t. U is a sequence of MKNF interpretations 〈Xα〉α<µ such that

1. X0 is a generalised (�,S)-dynamic MKNF model of bU0(K);
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2. For any ordinal α such that α+ 1 < µ, Xα+1 is a generalised (�,S)-dynamic MKNF
model of

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
;

3. For any limit ordinal α, Xα = I;

4.
⋂
α<µXα 6= ∅.

Remark C.54. For the remainder of this section we assume that � has the splitting se-
quence property, conserves the language, respects fact update and satisfies (FO2.>) as
well as (FO8.2), and S is faithful to the stable models semantics.

Proposition C.55. Let K be a positive DMKB with static rules and U a layering splitting
sequence for K. If X is a solution to K w.r.t. U , then it is a generalised solution to K w.r.t. U .

Proof. This follows from the assumption that S is faithful to the stable models semantics
and for every stable model J or a program P, J |= P.

Proposition C.56. Let K be a positive DMKB with static rules and U = 〈Uα〉α<µ a layering
splitting sequence for K. If there is a generalised solution X = 〈Xα〉α<µ to K w.r.t. U , then
there is a solution Y = 〈Yα〉α<µ to K w.r.t. U such that for all α < µ, Xα ⊆ Yα.

Proof. Let Y = 〈Yα〉α<µ be as follows:

• If bU0(K) is ontology-based, then

Y0 =
[[
3 〈κ(bU0(Oi)) ∪ { l | (l.) ∈ bU0(Pi) }〉i<n

]]
.

Otherwise, Y0 corresponds to the least set of objective literals J such that

J |= bU0(P0) .

• For any ordinal α such that α+ 1 < µ, if

eUα

(
bUα+1(K),

⋂
β≤α Yβ

)
is ontology-based, then

Yα+1 =
[[
3
〈
κ(tUα(bUα+1(Oi))) ∪

{
l
∣∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤α Yβ

) }〉
i<n

]]
.

Otherwise, Yα+1 corresponds to the least set of objective literals J such that

J |= eUα

(
bUα+1(P0),

⋂
β≤α Yβ

)
.

• For any limit ordinal α, Yα = I.

We verify by induction on α that Xα ⊆ Yα:

1◦ For α = 0 we consider two cases. If bU0(K) is ontology-based, then clearly X0 = Y0.
If it is rule-based, then X0 corresponds to some ASP interpretation J such that J |=
bU0(P0), and Y0 to the least set of literals J ′ such that J ′ |= bU0(P0). Clearly, J ⊇ J ′,
so

X0 = { I ∈ I | I |= J } ⊆
{
I ∈ I

∣∣ I |= J ′
}

= Y0 .
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2◦ Assuming that the claim holds for all β ≤ α, we prove that Xα+1 ⊆ Yα+1. Let X =⋂
β≤αXβ and Y =

⋂
β≤α Yβ . By the inductive assumption, X ⊆ Y . Consequently,

eUα(bUα+1(P0),X ) ⊇ eUα(bUα+1(P0),Y) . (C.19)

If eUα(bUα+1(K),X ) is ontology-based, then eUα(bUα+1(K),X ) and eUα(bUα+1(K),Y)
differ only in the first component. According to (C.19), the first component of
eUα(bUα+1(K),X ) is a superset of the first component of eUα(bUα+1(K),Y). Thus,
due to (FO8.2), we can conclude that Xα+1 ⊆ Yα+1.
If eUα(bUα+1(K),X ) is rule-based, then Xα+1 corresponds to an ASP interpretation
J such that J |= eUα(bUα+1(P0),X ) and Yα+1 corresponds to a the minimal set of
objective literals J ′ such that J ′ |= eUα(bUα+1(P0),Y). It then follows from (C.19)
that J |= eUα(bUα+1(P0),Y), so J ⊇ J ′ and we can conclude that

Xα+1 = { I ∈ I | I |= J } ⊆
{
I ∈ I

∣∣ I |= J ′
}

= Yα+1 .

3◦ The case when α is a limit ordinal follows trivially from Xα = Yα = I.

We have shown that Yα 6= ∅ for every α < µ and it follows by the definition of Y and
the assumption that S is faithful to the stable models semantics that Y is a solution to K
w.r.t. U .

Corollary C.57. Let K be a positive DMKB with static rules and U = 〈Uα〉α<µ a layering
splitting sequence for K. Then either there is no generalised solution to K w.r.t. U , or there is a
unique solution X = 〈Xα〉α<µ to K w.r.t. U and for every generalised solution Y = 〈Yα〉α<µ
to K w.r.t. U , Yα ⊆ Xα for every α < µ.

Proof. Follows from Propositions C.55 and C.56.

Proposition C.58. Let K be a positive DMKB with static rules, U = 〈Uα〉α<µ a layering split-
ting sequence for K, X = 〈Xα〉α<µ a generalised solution to K w.r.t. U andM =

⋂
α<µXα.

Then,
M⊆ T �K(M) .

Proof. Let T = 〈TP0(M) ∪ κ(O0), κ(O1), . . . , κ(On−1)〉where

TP0(M) =
⋃
{H(π) | π ∈ P0 ∧M |= κ(B(π)) } .

By the definition of T �K ,
T �K(M) = [[3T ]] .

Let A = 〈Aα〉α<µ be the saturation sequence induced by U . By the splitting sequence
property of � it follows that

T �K(M) = [[3T ]] =
⋂
α<µ

[[3 bAα(T )]] .

Furthermore, it follows from the definition of generalised solution that Xα is saturated
relative to Aα, so by Proposition A.35 and Lemma C.51,

Xα = σ(M, Aα) and
⋂
β≤α
Xα = σ(M, Uα) .

We prove that for all α < µ, Xα ⊆ [[3 bAα(T )]]:
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1. For α = 0 we obtain U0 = A0. Suppose first that bU0(K) is ontology-based and
X0 = [[3T ′ ]] where

T ′ = 〈κ(bU0(Oi)) ∪ { l | (l.) ∈ bU0(Pi) }〉i<n .

By the assumption that U0 is a splitting set for P0 it follows that bA0(TP0(M)) =
{ l | (l.) ∈ bU0(P0) } and since Pi = ∅ for all i > 0, this implies that bA0(T ) = T ′ and
we can conclude that X0 = [[3 bA0(T )]].
On the other hand, if bU0(K) is rule-based and X0 corresponds to some ASP inter-
pretation J such that J |= bU0(P0), then by (FO2.>),

[[3 bA0(T )]] = [[3 〈bU0(TP0(M)), ∅, . . . , ∅〉 ]] = [[bU0(TP0(M))]] .

We need to prove that X0 |= bU0(TP0(M)). Take some literal l ∈ bU0(TP0(M)). Then
there is some rule π ∈ P0 such that H(π) = l,M |= κ(B(π)) and pr(l) ⊆ U0. Since
U0 is a splitting set for P0, pr(B(π)) ⊆ U0. Consequently, X0 = σ(M, U0) |= κ(B(π))
and we obtain that J |= B(π). This implies that J |= l and we can conclude that
X0 |= l. Thus, X0 |= bU0(TP0(M)).

2. For a non-limit ordinal α+ 1 we have Aα+1 = Uα+1 \ Uα. Suppose first that

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
is ontology-based and Xα+1 = [[3T ′ ]] where

T ′ =
〈
κ(tUα(bUα+1(Oi))) ∪

{
l
∣∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤αXβ

) }〉
i<n

.

First note that since Uα and Uα+1 are splitting sets for Oi, we obtain

tUα(bUα+1(Oi)) = bP\Uα(bUα+1(Oi)) = b(P\Uα)∩Uα+1
(Oi) = bUα+1\Uα(Oi)

= bAα+1(Oi) .

Furthermore, since eUα(bUα+1(P0),
⋂
β≤αXβ) contains only facts, every rule π ∈

P0 such that pr(H(π)) ⊆ Uα+1 satisfies pr(B(π)) ⊆ Uα and due to the fact that⋂
β≤αXβ = σ(M, Uα) we can conclude that

bAα+1(TP0(M)) =
{
l
∣∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤αXβ

) }
.

Since Pi = ∅ for all i > 0, the above considerations imply that bAα+1(T ) = T ′ and
we can conclude that Xα+1 = [[3 bAα+1(T )]].
On the other hand, if

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
is rule-based and Xα+1 corresponds to some ASP interpretation J such that J |=
eUα(bUα+1(P0),

⋂
β≤αXβ), then by (FO2.>),

[[3 bAα+1(T )]] = [[3
〈
bAα+1(TP0(M)), ∅, . . . , ∅

〉
]] = [[bAα+1(TP0(M))]] .

We need to prove thatXα+1 |= bAα+1(TP0(M)). Take some literal l ∈ bAα+1(TP0(M)).
Then there is some rule π ∈ P0 such that H(π) = l,M |= κ(B(π)) and pr(l) ⊆ Aα+1.
It follows that there is some rule σ ∈ eUα(bUα+1(P0),

⋂
β≤αXβ) with H(σ) = l,
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M |= κ(B(σ)) and pr(σ) ⊆ Aα+1. Consequently, Xα+1 = σ(M, Aα+1) |= κ(B(σ))
and so J |= B(σ). This implies that J |= l and we can conclude that Xα+1 |= l. Thus,
Xα+1 |= bAα+1(TP0(M)).

3. If α is a limit ordinal, then it follows from (FO2.>) that

Xα = I = [[∅ ]] = [[3〈∅, ∅, . . . , ∅〉 ]] = [[3 b∅(T )]] = [[3 bAα(T )]] .

Proposition C.59. Let K be a positive DMKB with static rules, U = 〈Uα〉α<µ a layering split-
ting sequence for K, A = 〈Aα〉α<µ the saturation sequence induced by U and M an MKNF
interpretation. IfM = T �K(M), thenM =

⋂
α<µ σ(M, Aα) and 〈σ(M, Aα)〉α<µ is a gener-

alised solution to K w.r.t. U .

Proof. Let T = 〈TP0(M) ∪ κ(O0), κ(O1), . . . , κ(On−1)〉where

TP0(M) =
⋃
{H(π) | π ∈ P0 ∧M |= κ(B(π)) } .

By the definition of T �K , T �K(M) = [[3T ]]. By the splitting sequence property of � it
follows that

M = T �K(M) = [[3T ]] =
⋂
α<µ

[[3 bAα(T )]] .

Let Xα = σ(M, Aα) for all α < µ. Since � conserves the language, it follows from Propo-
sition A.35 that for all α < µ,

Xα = σ(M, Aα) = [[3 bAα(T )]] .

We need to prove that

1. X0 is a generalised (�,S)-dynamic MKNF model of bU0(K);

2. For any ordinal α such that α+ 1 < µ, Xα+1 is a generalised (�,S)-dynamic MKNF
model of

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
;

3. For any limit ordinal α, Xα = I;

4.
⋂
α<µXα 6= ∅.

We prove each condition separately:

1. Note first that U0 = A0. If bU0(K) is ontology-based, then we need to prove that
X0 = [[3T ′ ]] where

T ′ = 〈κ(bU0(Oi)) ∪ { l | (l.) ∈ bU0(Pi) }〉i<n .

Since Pi = ∅ for all i > 0, it follows that bU0(T ) = T ′ and thus

X0 = [[3 bA0(T )]] = [[3 bU0(T )]] = [[3T ′ ]] .

On the other hand, if bU0(K) is rule-based, then we have to show that X0 corre-
sponds to some ASP interpretation J such that J |= bU0(P0). Note that due to
(FO2.>),

X0 = [[3 bA0(T )]] = [[3〈bU0(TP0(M)), ∅, . . . , ∅〉 ]] = [[bU0(TP0(M))]] .

Put J = { l ∈ LG | X0 |= l }. It follows that if J |= B(π) for some rule π ∈ bU0(P0),
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then X0 |= κ(B(π)) and thusM |= κ(B(π)). Consequently, H(π) ∈ TP0(M) and we
conclude that X0 |= H(π), thus also J |= H(π).

2. For a non-limit ordinal α+ 1 we have Aα+1 = Uα+1 \ Uα. Suppose first that

eUα

(
bUα+1(K),

⋂
β≤αXβ

)
is ontology-based. We have to prove that Xα+1 = [[3T ′ ]] where

T ′ =
〈
κ(tUα(bUα+1(Oi))) ∪

{
l
∣∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤αXβ

) }〉
i<n

.

First note that since Uα and Uα+1 are splitting sets for Oi, we obtain

tUα(bUα+1(Oi)) = bP\Uα(bUα+1(Oi)) = b(P\Uα)∩Uα+1
(Oi) = bUα+1\Uα(Oi)

= bAα+1(Oi) .

Furthermore, since eUα(bUα+1(P0),
⋂
β≤αXβ) contains only facts, every rule π ∈

P0 such that pr(H(π)) ⊆ Uα+1 satisfies pr(B(π)) ⊆ Uα and due to the fact that⋂
β≤αXβ = σ(M, Uα) we can conclude that

bAα+1(TP0(M)) =
{
l
∣∣∣ (l.) ∈ eUα

(
bUα+1(Pi),

⋂
β≤αXβ

) }
.

Since Pi = ∅ for all i > 0, the above considerations imply that bAα+1(T ) = T ′ and
we can conclude that

Xα+1 = [[3 bA0(T )]] = [[3T ′ ]] .

On the other hand, if
eUα

(
bUα+1(K),

⋂
β≤αXβ

)
is rule-based, we need to prove that Xα+1 corresponds to some ASP interpretation
J such that J |= eUα(bUα+1(P0),

⋂
β≤αXβ). Due to (FO2.>),

Xα+1 = [[3 bAα+1(T )]] = [[3
〈
bAα+1(TP0(M)), ∅, . . . , ∅

〉
]] = [[bAα+1(TP0(M))]] .

Put J = { l ∈ LG | Xα+1 |= l }. It follows that if J |= B(π) for some rule π ∈
eUα(bUα+1(P0),

⋂
β≤αXβ), then there is a rule σ ∈ bUα+1(P0) such that H(π) = H(σ)

andM |= κ(B(σ)). Consequently, H(π) ∈ TP0(M) and we obtain Xα+1 |= H(π),
thus also J |= H(π).

3. Note that if α is a limit ordinal, then Aα = ∅. SinceM is an MKNF interpretation, it
follows thatM 6= ∅, and we obtain

Xα = σ(M, Aα) = σ(M, ∅) = I .

4. SinceM is an MKNF interpretation, it follows that ∅ 6=M =
⋂
α<µXα.

Proposition C.60. Let K be a positive layered DMKB with static rules. An MKNF interpreta-
tionM is a �-dynamic MKNF model of K if and only ifM is a (�,S)-dynamic MKNF model of
K.

Proof. Suppose thatM is the �-dynamic MKNF model of K. ThenM is the greatest fixed
point of T �K and it follows from Proposition C.59 that 〈σ(M, Aα)〉α<µ is a generalised
solution to K w.r.t. some splitting sequence U . Thus, by Corollary C.57, there exists
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a solution X = 〈Xα〉α<µ to K w.r.t. U such that for all α < µ, σ(M, Aα) ⊆ Xα. Let
N =

⋂
α<µXα. It holds that N is the (�,S)-dynamic MKNF model of K and we obtain

M =
⋂
α<µ

σ(M, Aα) ⊆
⋂
α<µ

Xα = N .

Also, it follows from Propositions C.55 and C.58 that

N ⊆ T �K(N )

and sinceM is the greatest fixed point of T �K , we can conclude that N ⊆M.
Similarly, if N is the (�,S)-dynamic MKNF model of K, then there is a solution X =

〈Xα〉α<µ to K w.r.t. some layering splitting sequence U = 〈Uα〉α<µ such that

N =
⋂
α<µ

Xα .

By Propositions C.55 and C.58, N ⊆ T �K(N ) and we can conclude that N ⊆ M where
M is the greatest fixed point of T �K , i.e. the (�,S)-dynamic MKNF model of K. It follows
from Proposition C.59 that 〈σ(M, Aα)〉α<µ is a generalised solution to K w.r.t. U . Thus,
by Corollary C.57, there exists a solution X = 〈Xα〉α<µ to K w.r.t. U such that for all
α < µ, σ(M, Aα) ⊆ Xα. It follows from the uniqueness of a �-dynamic MKNF model that
N =

⋂
α<µXα and we obtain

M =
⋂
α<µ

σ(M, Aα) ⊆
⋂
α<µ

Xα = N .

Proposition C.61. Let K be a layered DMKB with static rules. An MKNF interpretationM is
a (�,S)-dynamic MKNF model of K if and only ifM is a (�,S)-dynamic MKNF model of KM.

Proof. Follows from the assumption that S is faithful to the stable models semantics and
by the definition of a stable model.

Theorem 4.34 (Compatibility with Update Semantics from Chapter 3). Suppose that �
satisfies (FO2.>) and (FO8.2) and that S is faithful to the stable models semantics. Let K be a
layered DMKB with static rules. An MKNF interpretationM is a �-dynamic MKNF model of
K if and only ifM is a (�,S)-dynamic MKNF model of K.

Proof. Follows by the definition of a �-dynamic MKNF model and by Propositions C.60
and C.61.
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D
Proofs: Belief Updates on SE-Models

In the following we present proofs of results from Chapter 6, implicitly working under
the same assumptions as those imposed in that chapter. That is, we constrain ourselves to
propositional logic programs without explicit negation over a finite set of propositional
atoms A.

D.1 Semantic Rule Update Operators Based on SE-Models

Definition D.1 (Program Corresponding to a Set of Three-Valued Interpretations). Let
M be a set of three-valued interpretations. We denote by ‖M‖ some arbitrary but fixed
program P such that

[[P ]]SE = {X,X∗ | X ∈M } .

Instead of ‖ {X1, X2, . . . , Xn } ‖we usually write ‖X1, X2, . . . , Xn‖.

Definition D.2 (Order Assignment Generated by an Update Operator). Let ⊕ be a rule
update operator and X an three-valued interpretation. We define the binary relation ≺X⊕
for all three-valued interpretations Y , Z as follows: Y ≺X⊕ Z if and only if the following
conditions are satisfied:

Y ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE (D.1)
Z /∈ [[‖X‖ ⊕ ‖Y, Z‖ ]]SE (D.2)
If Y 6= Y ∗, then Z ∈ [[‖X‖ ⊕ ‖Y ∗, Z‖ ]]SE (D.3)

The preorder assignment generated by ⊕ assigns to every three-valued interpretation X the
reflexive and transitive closure ≤X⊕ of ≺X⊕ , i.e. Y ≤X⊕ Z if and only if Y = Z or there is
some n ≥ 2 and three-valued interpretations Y1, Y2, . . . , Yn such that Y = Y1 ≺X⊕ Y2 ≺X⊕
· · · ≺X⊕ Yn = Z.

Lemma D.3. Let ⊕ be a rule update operator satisfying conditions (P1)SE – (P8)SE and X , Y , Z
some three-valued interpretations. If Y ≤X⊕ Z, then either Y = Z or Z /∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE.
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Proof. Suppose that Y 6= Z. Then, by the definition of ≤X⊕ , for some n ≤ 2 and three-
valued interpretations Y1, Y2, . . . , Yn it holds that Y = Y1 ≺X⊕ Y2 ≺X⊕ · · · ≺X⊕ Yn = Z. We
will prove by induction on n that Yn /∈ [[‖X‖ ⊕ ‖Y1, Yn‖ ]]SE from which the desired result
follows directly.

1◦ For n = 2 this follows from Y1 ≺X⊕ Y2 by (D.2).

2◦ We inductively assume that

Yn /∈ [[‖X‖ ⊕ ‖Y1, Yn‖ ]]SE (D.4)

and prove that Yn+1 /∈ [[‖X‖ ⊕ ‖Y1, Yn+1‖ ]]SE.
We know that Yn ≺X⊕ Yn+1, so by (D.2) we obtain

Yn+1 /∈ [[‖X‖ ⊕ ‖Yn, Yn+1‖ ]]SE . (D.5)

Considering that the program ‖Y1, Yn, Yn+1‖ ∧̇ ‖Y1, Yn‖ is strongly equivalent to
‖Y1, Yn‖, by (P5)SE and (P4)SE we conclude that

(‖X‖ ⊕ ‖Y1, Yn, Yn+1‖) ∧̇ ‖Y1, Yn‖ |=SE ‖X‖ ⊕ ‖Y1, Yn‖

which, together with (D.4), implies that

Yn /∈ [[‖X‖ ⊕ ‖Y1, Yn, Yn+1‖ ]]SE . (D.6)

Similarly, since the program ‖Y1, Yn, Yn+1‖ ∧̇ ‖Yn, Yn+1‖ is strongly equivalent to
‖Yn, Yn+1‖, by (P5)SE and (P4)SE we obtain that

(‖X‖ ⊕ ‖Y1, Yn, Yn+1‖) ∧̇ ‖Yn, Yn+1‖ |=SE ‖X‖ ⊕ ‖Yn, Yn+1‖ ,

and so due to (D.5) it holds that

Yn+1 /∈ [[‖X‖ ⊕ ‖Y1, Yn, Yn+1‖ ]]SE . (D.7)

Now we consider two cases:

a) If Yn = Y ∗n , then (D.6) and (P1)SE imply that

‖X‖ ⊕ ‖Y1, Yn, Yn+1‖ |=SE ‖Y1, Yn+1‖ ;

‖X‖ ⊕ ‖Y1, Yn+1‖ |=SE ‖Y1, Yn, Yn+1‖ ,

so by (P6)SE we can conclude that ‖X‖ ⊕ ‖Y1, Yn, Yn+1‖ is strongly equivalent
to ‖X‖ ⊕ ‖Y1, Yn+1‖. But then the desired conclusion follows from (D.7).

b) If Yn 6= Y ∗n , then from (D.3) we infer that

Yn+1 ∈ [[‖X‖ ⊕ ‖Y ∗n , Yn+1‖ ]]SE . (D.8)

Furthermore, from (D.6) and (P1)SE we obtain

‖X‖ ⊕ ‖Y1, Yn, Yn+1‖ |=SE ‖Y1, Y
∗
n , Yn+1‖ ;

‖X‖ ⊕ ‖Y1, Y
∗
n , Yn+1‖ |=SE ‖Y1, Yn, Yn+1‖ ,

so by (P6)SE we can conclude that ‖X‖ ⊕ ‖Y1, Yn, Yn+1‖ is strongly equivalent
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to ‖X‖ ⊕ ‖Y1, Y
∗
n , Yn+1‖ and, due to (D.7),

Yn+1 /∈ [[‖X‖ ⊕ ‖Y1, Y
∗
n , Yn+1‖ ]]SE .

Since ‖Y1, Y
∗
n , Yn+1‖ is strongly equivalent to ‖Y1, Yn+1‖∨̇‖Y ∗n , Yn+1‖, it follows

from (P4)SE and (P7)SE that either Yn+1 /∈ [[‖X‖⊕‖Y1, Yn+1‖ ]]SE or Yn+1 /∈ [[‖X‖⊕
‖Y ∗n , Yn+1‖ ]]SE. The latter is impossible due to (D.8).

Lemma D.4. Let ⊕ be a rule update operator satisfying conditions (P1)SE – (P8)SE and X , Y , Z,
some three-valued interpretations. If Y ≮X⊕ Z, then the following conditions are satisfied:

(1) If Y = Z∗, then Z ∈ [[‖X‖ ⊕ ‖Y, Z‖ ]]SE.

(2) If Y = Y ∗ and Z ∈ [[‖X‖ ⊕ ‖Z‖ ]]SE, then Z ∈ [[‖X‖ ⊕ ‖Y, Z‖ ]]SE.

(3) If Y 6= Y ∗ and Z ∈ [[‖X‖ ⊕ ‖Y ∗, Z‖ ]]SE, then Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE.

Proof. First we show the following auxiliary statement: If Y = Z or Y /∈ [[‖X‖⊕‖Y,Z‖ ]]SE,
then all three conditions are satisfied.

First suppose that Y = Z. If Y = Z∗, then Y = Y ∗ = Z = Z∗, so it follows from
(P1)SE and (P3)SE that [[‖X‖ ⊕ ‖Y,Z‖ ]]SE = [[‖X‖ ⊕ ‖Z∗‖ ]]SE = {Z∗ }, verifying condition
(1). Furthermore, conditions (2) and (3) are satisfied because ‖Z‖ = ‖Y ∗, Z‖ = ‖Y, Z‖.

Now suppose that Y /∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE. If Y = Z∗, then it follows from (P1)SE and
(P3)SE that Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE. If Y = Y ∗, then it follows from (P1)SE that

‖X‖ ⊕ ‖Y,Z‖ |=SE ‖Z‖ and ‖X‖ ⊕ ‖Z‖ |=SE ‖Y,Z‖ ,

so by (P6)SE we obtain that ‖X‖ ⊕ ‖Y,Z‖ ≡SE ‖X‖ ⊕ ‖Z‖. Hence it follows from Z ∈
[[‖X‖ ⊕ ‖Z‖ ]]SE that Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE. On the other hand, if Y 6= Y ∗, then it follows
from (P1)SE that

‖X‖ ⊕ ‖Y,Z‖ |=SE ‖Y ∗, Z‖ and ‖X‖ ⊕ ‖Y ∗, Z‖ |=SE ‖Y,Z‖ ,

so by (P6)SE we obtain that ‖X‖ ⊕ ‖Y, Z‖ ≡SE ‖X‖ ⊕ ‖Y ∗, Z‖. Hence it follows from
Z ∈ [[‖X‖ ⊕ ‖Y ∗, Z‖ ]]SE that Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE.

Turning to the proof of the lemma, note that since Y ≮X⊕ Z, either Y �X⊕ Z or Z ≤X⊕ Y .
In the former case, Y ⊀X⊕ Z, so, by the definition of ≺X⊕ , either Y /∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE, so
we can apply our auxiliary statement, or Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE as desired, or Y 6= Y ∗

and Z /∈ [[‖X‖ ⊕ ‖Y ∗, Z‖ ]]SE, in which case all three conditions are trivially satisfied. In
the latter case it follows from Lemma D.3 that either Y = Z or Y /∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE, so
the rest follows once again from the auxiliary statement.

Proposition D.5. Let ⊕ be a rule update operator satisfying conditions (P1)SE – (P8)SE, X an
three-valued interpretation and U a program. Then,

[[‖X‖ ⊕ U ]]SE = min
(
[[U ]]SE,≤X⊕

)
.

Proof. If [[U ]]SE = ∅, then [[‖X‖ ⊕ U ]]SE is empty by (P1)SE and the equation holds trivially.
If [[U ]]SE 6= ∅, then by (P3)SE there is some Z ∈ [[‖X‖ ⊕ U ]]SE and by (P1)SE, Z ∈ [[U ]]SE.

Suppose that Z is not minimal in [[U ]]SE w.r.t. ≤X⊕ . Then there is some Y ∈ [[U ]]SE such
that Y <X⊕ Z. Thus, Y 6= Z, so by Lemma D.3 we conclude that Z /∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE.
Considering that U ∧̇ ‖Y,Z‖ is strongly equivalent to ‖Y,Z‖, it follows from (P4)SE and
(P5)SE that (‖X‖⊕U)∧̇‖Y,Z‖ |=SE ‖X‖⊕‖Y,Z‖. Consequently, Z /∈ [[‖X‖⊕U ]]SE, contrary
to our assumption. Therefore, [[‖X‖ ⊕ U ]]SE is a subset of min([[U ]]SE,≤X⊕ ).
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To prove the converse inclusion, assume that Z is minimal in [[U ]]SE w.r.t.≤X⊕ and take
some Y ∈ [[U ]]SE. Note that Y ≮X⊕ Z, so we can use Lemma D.4. We will show that
Z ∈ [[‖X‖ ⊕ ‖Y, Z‖ ]]SE. We consider three cases:

a) If Y = Z∗, then Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE follows immediately from condition (1) of
Lemma D.4.

b) If Y = Y ∗, then we can conclude from the previous case and from the fact that
[[U ]]SE is well-defined that Z ∈ [[‖X‖⊕‖Z‖ ]]SE. Thus, by condition (2) of Lemma D.4
it follows that Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE.

c) If Y 6= Y ∗, then we can conclude from the previous case and from the fact that [[U ]]SE
is well-defined that Z ∈ [[‖X‖⊕ ‖Y ∗, Z‖ ]]SE. Thus, by condition (3) of Lemma D.4 it
follows that Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE.

The choice of Y was arbitrary, so we have proven that Z ∈ [[‖X‖ ⊕ ‖Y,Z‖ ]]SE for all
Y ∈ [[U ]]SE. This means that by repeated application of (P7)SE, Z is an SE-model of the
program

‖X‖ ⊕
∨̇

Y ∈[[U ]]SE

‖Y,Z‖

and since U is strongly equivalent to the program
∨̇
Y ∈[[U ]]SE

‖Y, Z‖, it follows from (P4)SE

that Z ∈ [[‖X‖ ⊕ U ]]SE.

Proposition D.6. If a rule update operator⊕ satisfies conditions (P1)SE – (P8)SE, then the preorder
assignment generated by ⊕ is semi-faithful and organised and it characterises ⊕.

Proof. We first show that the assignment generated by⊕ characterises⊕. We know that P
is strongly equivalent to the program

∨̇
X∈[[P ]]SE

‖X‖, so by (P4)SE and repeated application
of (P8)SE we obtain that P ⊕ U is strongly equivalent to the program∨̇

X∈[[P ]]SE

(‖X‖ ⊕ U) .

Furthermore, by Proposition D.5 it follows that [[‖X‖⊕U ]]SE = min
(
[[U ]]SE,≤X⊕

)
, so indeed

[[P ⊕ U ]]SE =
⋃

X∈[[P ]]SE

[[‖X‖ ⊕ U ]]SE =
⋃

X∈[[P ]]SE

min
(
[[U ]]SE,≤X⊕

)
. (D.9)

To see that the assignment generated by ⊕ is semi-faithful, first take some three-
valued interpretations X , Y such that Y 6= X and Y 6= X∗. We need to show that either
X <X⊕ Y or X∗ <X⊕ Y . The equation (D.9) together with (P2)SE imply that

[[‖X‖ ⊕ ‖Y ∗, X‖ ]]SE = min
(
{Y ∗, X,X∗ } ,≤X⊕

)
∪min

(
{Y ∗, X,X∗ } ,≤X∗⊕

)
= {X,X∗ } ,

[[‖X‖ ⊕ ‖Y,X‖ ]]SE = min
(
{Y, Y ∗, X,X∗ } ,≤X⊕

)
∪min

(
{Y, Y ∗, X,X∗ } ,≤X∗⊕

)
= {X,X∗ } .

Thus, Y ∗ is not minimal within {Y ∗, X,X∗ } and Y is not minimal within {Y, Y ∗, X,X∗ }
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w.r.t. ≤X⊕ . In other words:

either X <X⊕ Y ∗ or X∗ <X⊕ Y ∗ and (D.10)

either X <X⊕ Y or X∗ <X⊕ Y or Y ∗ <X⊕ Y . (D.11)

In case of the first two alternatives of (D.11), we have already achieved our goal. The
third alternative together with (D.10) and transitivity of <X⊕ also concludes the proof of
the first condition of semi-faithfulness. To see that the second condition holds as well,
consider that by (P2)SE, [[‖X∗‖ ⊕ ‖X‖ ]]SE = {X∗ } and [[‖X‖ ⊕ ‖X‖ ]]SE = {X,X∗ }, so it
follows from (D.9) that

X /∈ min({X,X∗ } ,≤X∗⊕ ) and X ∈ min({X,X∗ } ,≤X⊕ ) ∪min({X,X∗ } ,≤X∗⊕ ) .

Hence X ∈ min({X,X∗ } ,≤X⊕ ). In other words, if X∗ ≤X⊕ X , then it must also be the
case that X ≤X⊕ X∗. Consequently, the order assignment generated by ⊕ is semi-faithful.

To show that it is also organised, consider well-defined sets of three-valued interpre-
tationsM, N and three-valued interpretations X , Y such that

Y ∈ min
(
M,≤X⊕

)
∪min

(
M,≤X∗⊕

)
and Y ∈ min

(
N ,≤X⊕

)
∪min

(
N ,≤X∗⊕

)
.

By (D.9) we obtain that Y ∈ [[‖X‖ ⊕ ‖M‖ ]]SE and Y ∈ [[‖X‖ ⊕ ‖N‖ ]]SE. Applying (P7)SE

and (P4)SE yields that Y ∈ [[‖X‖ ⊕ ‖M ∪ N‖ ]]SE. Consequently, by (D.9), either Y ∈
min

(
M∪N ,≤X⊕

)
or Y ∈ min

(
M∪N ,≤X∗⊕

)
, so the order assignment generated by ⊕ is

organised.

Lemma D.7. Let ω be a semi-faithful preorder assignment and X a three-valued interpretation.
Then there is no three-valued interpretation Y such that Y <Xω X .

Proof. We prove by contradiction. Suppose that Y <Xω X for some three-valued inter-
pretation Y . Clearly, Y 6= X due to irreflexivity of <Xω and Y 6= X∗ due to the second
condition of semi-faithfulness. Hence Y 6= X and Y 6= X∗, so by the first condition of
semi-faithfulness, either X <Xω Y or X∗ <Xω Y . The former is in conflict with the irreflex-
ivity of <Xω and in the latter case it follows by transitivity of <Xω that X∗ <Xω X , contrary
to the second condition of semi-faithfulness.

Proposition D.8. Let ⊕ be a rule update operator. If ⊕ is characterised by a semi-faithful and
organised preorder assignment, then it is also characterised by a faithful and organised partial
order assignment.

Proof. Let ⊕ be characterised by a semi-faithful and organised preorder assignment ω.
We define the assignment ω′ over X as follows:

Y ≤Xω′ Z if and only if Y = X ∨ Y = Z ∨ Y <Xω Z .

We need to show that ≤Xω′ is a partial order for all X ∈ X, that ω′ is faithful and
organised and that for all programs P, U ,

[[P ⊕ U ]]SE =
⋃

X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω′

)
.

Note that due to Lemma D.7, the following holds for all three-valued interpretations
X , Y :

If Y ≤Xω′ X , then Y = X. (D.12)
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Otherwise we would obtain that Y <Xω X which is in conflict with Lemma D.7.
Turning back to the main proof, reflexivity of ≤Xω′ follows directly by its definition.
To show that≤Xω′ is antisymmetric, take some three-valued interpretations Y1, Y2 such

that Y1 ≤Xω′ Y2 and Y2 ≤Xω′ Y1. If Y1 = X , then Y2 ≤Xω′ X and it follows from (D.12) that
Y2 = X = Y1. The case when Y2 = X is symmetric. If Y1 6= X and Y2 6= X , then, by
the definition of ≤Xω′ , either Y1 = Y2 as desired, or Y1 <

X
ω Y2 and Y2 <

X
ω Y1, which is in

conflict with the transitivity and irreflexivity of <Xω .
Turning to transitivity of≤Xω′ , suppose that Y1 ≤Xω′ Y2 and Y2 ≤Xω′ Y3. We need to show

that Y1 ≤Xω′ Y3. We consider three cases:

a) If Y1 = X , then Y1 ≤Xω′ Y3 by the definition of ≤Xω′ .
b) If Y2 = X , then Y1 ≤Xω′ X , so Y1 = X due to (D.12) and the previous case applies.

c) If Y1 6= X and Y2 6= X , then the desired conclusion follows from the transitivity of
equality and of <Xω .

As for faithfulness of ω′, suppose that Y 6= X . We have X ≤Xω′ Y by definition and
Y �Xω′ X follows from (D.12).

To show that ω′ is organised, we prove the following property: For any well-defined
set of three-valued interpretationsM and any three-valued interpretation X ,

min
(
M,≤Xω′

)
∪min

(
M,≤X∗ω′

)
= min

(
M,≤Xω

)
∪min

(
M,≤X∗ω

)
. (D.13)

From (D.13) it follows that since ω is organised, ω′ must also be.
Before we prove (D.13), we need to note that Y <Xω′ Z holds if and only if Y ≤Xω′ Z

and Z �Xω′ Y , so according to the definition of ≤Xω′

Y <Xω′ Z if and only if (Y = X ∨ Y = Z ∨ Y <Xω Z) ∧ (Z 6= X ∧ Z 6= Y ∧ Z ≮Xω Y ) .

Due to Lemma D.7 and the transitivity and irreflexivity of <Xω , this can be simplified to

Y <Xω′ Z if and only if (Y = X ∧ Y 6= Z) ∨ Y <Xω Z . (D.14)

Coming back to the proof of (D.13), we need to consider three cases:

a) If X /∈M and X∗ /∈M, then for all Y,Z ∈M, Y 6= X and Y 6= X∗, so by (D.14),

Y <Xω′ Z if and only if Y <Xω Z and Y <X
∗

ω′ Z if and only if Y <X
∗

ω Z ,

from which the desired conclusion follows directly.

b) If X /∈M and X∗ ∈M, then for all Y,Z ∈M, Y 6= X , so by (D.14),

Y <Xω′ Z if and only if Y <Xω Z .

Consequently, min(M,≤Xω′) = min(M,≤Xω ), and by (D.14) and semi-faithfulness of
ω we obtain min(M,≤X∗ω′ ) = {X∗ } = min(M,≤X∗ω ).

c) If X ∈M, then X∗ ∈M, and by (D.14) and semi-faithfulness of ω,

{X } ⊆ min
(
M,≤Xω

)
⊆ {X,X∗ } , min

(
M,≤X∗ω

)
= {X∗ } ,

min
(
M,≤Xω′

)
= {X } , min

(
M,≤X∗ω′

)
= {X∗ } ,

from which the desired conclusion follows straightforwardly.
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Finally, it follows from the assumption that ω characterises ⊕ and from (D.13) that

[[P ⊕ U ]]SE =
⋃

X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω

)
=

⋃
X∈[[P ]]SE

(
min

(
[[U ]]SE,≤Xω

)
∪min

(
[[U ]]SE,≤X

∗
ω

))
=

⋃
X∈[[P ]]SE

(
min

(
[[U ]]SE,≤Xω′

)
∪min

(
[[U ]]SE,≤X

∗
ω′

))
=

⋃
X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω′

)
.

Proposition D.9. Let⊕ be a rule update operator. If⊕ is characterised by a faithful and organised
partial order assignment, then ⊕ satisfies conditions (P1)SE – (P8)SE.

Proof. Let ⊕ be characterised by a faithful and organised partial order assignment ω. We
consider each condition separately:

(P1)SE Since ω characterises ⊕, for all programs P, U ,

[[P ⊕ U ]]SE =
⋃

X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω

)
,

so all elements of [[P ⊕ U ]]SE belong to [[U ]]SE. Equivalently, P ⊕ U |=SE U .

(P2)SE Suppose that P |=SE U and take some X ∈ [[P ]]SE ⊆ [[U ]]SE. Since the preorder as-
signment is faithful, for all Y ∈ [[U ]]SE with Y 6= X we haveX <Xω Y . Consequently,
min([[U ]]SE,≤Xω ) = {X } and so

[[P ⊕ U ]]SE =
⋃

X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω

)
=

⋃
X∈[[P ]]SE

{X } = [[P ]]SE .

(P3)SE Suppose that [[P ]]SE 6= ∅ and [[U ]]SE 6= ∅. Then there is some X0 ∈ [[P ]]SE and also
some Y ∈ min([[U ]]SE,≤X0

ω ), so we obtain

Y ∈ min
(
[[U ]]SE,≤X0

ω

)
⊆

⋃
X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω

)
= [[P ⊕ U ]]SE .

Hence, [[P ⊕ U ]]SE 6= ∅.
(P4)SE If P ≡SE Q and U ≡SE V , then

[[P ⊕ U ]]SE =
⋃

X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω

)
=

⋃
X∈[[Q ]]SE

min
(
[[V ]]SE,≤Xω

)
= [[Q⊕ V ]]SE .

Therefore, P ⊕ U ≡SE Q⊕ V .

(P5)SE Suppose that Y is an SE-model of (P ⊕ U) ∧̇ V . Then Y ∈ [[V ]]SE and there is some
SE-model X of P such that Y belongs to min([[U ]]SE,≤Xω ). Consequently, Y also
belongs to min([[U ]]SE ∩ [[V ]]SE,≤Xω ), so Y is an SE-model of P ⊕ (U ∧̇ V).

(P6)SE Assume that P ⊕ U |=SE V and P ⊕ V |=SE U . We will prove by contradiction that
P ⊕ U |=SE P ⊕ V . The other half can be proved similarly.
So suppose that Y is an SE-model of P ⊕ U but not of P ⊕ V . Then there is some
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SE-model X of P such that

Y ∈ min([[U ]]SE,≤Xω ) . (D.15)

At the same time, there must be some SE-model Z of V such that Z <Xω Y . Let
Z0 be minimal w.r.t. ≤Xω among all such Z. Then by transitivity of <Xω we obtain
that Z0 ∈ min([[V ]]SE,≤Xω ) and, consequently, Z0 is an SE-model of P ⊕ V . By the
assumption we now obtain that Z0 is an SE-model of U . But since Z0 <

X
ω Y , this is

in conflict with (D.15).

(P7)SE Suppose that P is strongly equivalent to ‖X‖ for some three-valued interpretation
X and Y is an SE-model of both P ⊕ U and P ⊕ V . We will show that Y is an
SE-model of P ⊕ (U ∨̇ V). LetM = [[U ]]SE and N = [[V ]]SE. It follows that

Y ∈ min(M,≤Xω ) ∪min(M,≤X∗ω ) and Y ∈ min(N ,≤Xω ) ∪min(N ,≤X∗ω ) ,

so since ω is organised, Y ∈ min(M∪N ,≤Xω ) ∪min(M∪N ,≤X∗ω ). Consequently,
Y is an SE-model of P ⊕ (U ∨̇ V).

(P8)SE The following sequence of equations establishes the property:

[[(P ∨̇ Q)⊕ U ]]SE =
⋃

X∈[[P∨̇Q ]]SE

min
(
[[U ]]SE,≤Xω

)
=

⋃
X∈[[P ]]SE

min
(
[[U ]]SE,≤Xω

)
∪

⋃
X∈[[Q ]]SE

min
(
[[U ]]SE,≤Xω

)
= [[P ⊕ U ]]SE ∪ [[Q⊕ U ]]SE

= [[(P ⊕ U) ∨̇ (Q⊕ U)]]SE

Theorem 6.14. Let ⊕ be a rule update operator. The following conditions are equivalent:

a) The operator ⊕ satisfies conditions (P1)SE – (P8)SE.

b) The operator ⊕ is characterised by a semi-faithful and organised preorder assignment.

c) The operator ⊕ is characterised by a faithful and organised partial order assignment.

Proof. Follows from Propositions D.6, D.8 and D.9.

D.2 Specific Order Assignment for Rule Updates

Proposition D.10. The assignment W is a preorder assignment.

Proof. Recall that the assignment W is defined for all three-valued interpretations X =
(I, J), Y = (K1, L1), Z = (K2, L2) as follows: Y ≤X

W
Z if and only if

1. (L1 ÷ J) ⊆ (L2 ÷ J);

2. If (L1 ÷ J) = (L2 ÷ J), then (K1 ÷ I) \∆ ⊆ (K2 ÷ I) \∆ where ∆ = L1 ÷ J .

In order to show that W is a preorder assignment, we need to prove that given an arbi-
trary three-valued interpretation X = (I, J), ≤X

W
is a preorder over X. This holds if and

only if ≤X
W

is reflexive and transitive. First we show reflexivity. Take some three-valued
interpretation Y = (K,L). By definition Y ≤X

W
Y holds if and only if

1. (L÷ J) ⊆ (L÷ J);

2. If (L÷ J) = (L÷ J), then (K ÷ I) \∆ ⊆ (K ÷ I) \∆ where ∆ = L÷ J .
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It is not difficult to check that both conditions hold.
To show transitivity, take some three-valued interpretations Y1 = (K1, L1), Y2 =

(K2, L2), Y3 = (K3, L3) such that Y1 ≤XW Y2 and Y2 ≤XW Y3. We need to show that
Y1 ≤XW Y3. According to the definition of ≤X

W
we obtain

1. (L1 ÷ J) ⊆ (L2 ÷ J);

2. If (L1 ÷ J) = (L2 ÷ J), then (K1 ÷ I) \∆ ⊆ (K2 ÷ I) \∆ where ∆ = L1 ÷ J ;

and also

1’ (L2 ÷ J) ⊆ (L3 ÷ J);

2’ If (L2 ÷ J) = (L3 ÷ J), then (K2 ÷ I) \∆ ⊆ (K3 ÷ I) \∆ where ∆ = L2 ÷ J .

We need to show the following two conditions:

1∗ (L1 ÷ J) ⊆ (L3 ÷ J);

2∗ If (L1 ÷ J) = (L3 ÷ J), then (K1 ÷ I) \∆ ⊆ (K3 ÷ I) \∆ where ∆ = L1 ÷ J .

It can be seen that 1∗ follows from 1. and 1’ by transitivity of the subset relation. To show
that 2∗ holds as well, suppose that (L1 ÷ J) = (L3 ÷ J). Then by 1. and 1’ we obtain that
(L1 ÷ J) = (L2 ÷ J) = (L3 ÷ J) = ∆ and so by 2. and 2’ it holds that

(K1 ÷ I) \∆ ⊆ (K2 ÷ I) \∆ ⊆ (K3 ÷ I) \∆ .

Consequently, 2∗ is also satisfied and our proof is finished.

Lemma D.11. Let X = (I, J), Y = (K1, L1), Z = (K2, L2) be three-valued interpretations.
Then Y <X

W
Z holds if and only if one of the following conditions is satisfied:

a) (L1 ÷ J) ( (L2 ÷ J), or

b) (L1 ÷ J) = (L2 ÷ J) and (K1 ÷ I) \∆ ( (K2 ÷ I) \∆ where ∆ = L1 ÷ J .

Proof. By definition Y <X
W
Z holds if and only if Y ≤X

W
Z and not Z ≤X

W
Y . This in turn

holds if and only if the following two conditions hold

1. (L1 ÷ J) ⊆ (L2 ÷ J);

2. If (L1 ÷ J) = (L2 ÷ J), then (K1 ÷ I) \∆ ⊆ (K2 ÷ I) \∆ where ∆ = L1 ÷ J .

and one of the following conditions also holds:

i) (L2 ÷ J) * (L1 ÷ J), or

ii) (L2 ÷ J) = (L1 ÷ J) and (K2 ÷ I) \∆ * (K1 ÷ I) \∆ where ∆ = L2 ÷ J .

It is not difficult to verify that conditions 1., 2. and i) are together equivalent to a) and
that conditions 1., 2. and ii) are together equivalent to b). This concludes our proof.

Proposition D.12. The assignment W is well-defined.

Proof. By definition we need to show that there is a rule update operator ⊕ such that for
all programs P, U ,

[[P ⊕ U ]]SE =
⋃

X∈[[P ]]SE

min
(
[[U ]]SE,≤XW

)
.

This holds if and only if for every well-defined set of three-valued interpretationsM and
every three-valued interpretation X , the set of three-valued interpretations

min
(
M,≤X

W

)
∪min

(
M,≤X∗

W

)
(D.16)
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is well-defined. Suppose that Y belongs to (D.16). We need to demonstrate that Y ∗ also
belongs to (D.16). We consider two cases:

(a) Suppose that Y ∈ min(M,≤X
W

). If Y ∗ belongs to min(M,≤X∗
W

), then we are fin-
ished. On the other hand, if Y ∗ does not belong to min(M,≤X∗

W
), then there must be

some Z ∈ M such that Z <X
∗

W
Y ∗. Let Y = (K1, L1), Z = (K2, L2) and X = (I, J).

By Lemma D.11 we know that Z <X
∗

W
Y ∗ holds if and only if one of the following

conditions is satisfied:

a) (L2 ÷ J) ( (L1 ÷ J), or

b) (L2 ÷ J) = (L1 ÷ J) and (K2 ÷ J) \∆ ( (L1 ÷ J) \∆ where ∆ = L2 ÷ J .

If a) is satisfied, then Lemma D.11 implies that Z <X
W
Y which is in conflict with the

assumption that Y ∈ min(M,≤X
W

). So b) must hold. But in that case we infer that
(K2 ÷ J) \∆ is a proper subset of

(L1 ÷ J) \∆ = (L1 ÷ J) \ (L1 ÷ J) = ∅ ,

which is impossible.

(b) Suppose that Y ∈ min(M,≤X∗
W

) and let X = (I, J), Y = (K,L). We first show that
Y ∗ ≤X∗

W
Y holds – for this, the following conditions need to be satisfied:

1. (L÷ J) ⊆ (L÷ J);

2. If (L÷ J) = (L÷ J), then (L÷ J) \∆ ⊆ (K ÷ J) \∆ where ∆ = L÷ J .

It is not difficult to verify that both conditions hold.
Thus, since Y ∗ ≤X∗

W
Y , there can be no Z ∈Mwith Z <X

∗

W
Y ∗ because by transitiv-

ity we would obtain Z <X
∗

W
Y which would be in conflict with the assumption that

Y ∈ min(M,≤X∗
W

). So Y ∗ ∈ min(M,≤X∗
W

) and our proof is finished.

Proposition D.13. The assignment W is faithful.

Proof. Take some three-valued interpretations X = (I, J), Y = (K,L) such that Y 6= X .
We need to show that X <X

W
Y . By Lemma D.11 this holds if and only if one of the

following conditions is satisfied:

a) (J ÷ J) ( (L÷ J), or

b) (J ÷ J) = (L÷ J) and (I ÷ I) \∆ ( (K ÷ I) \∆ where ∆ = J ÷ J .

We consider two cases:

i) If L÷ J = ∅, then L = J and since Y 6= X , we conclude that K 6= I . Consequently,
the second condition is satisfied because I ÷ I = ∅ and K ÷ I is non-empty.

ii) If L÷ J 6= ∅, then a) holds since J ÷ J = ∅.

Proposition D.14. The assignment W is organised.

Proof. Recall that by definition W is organised if for all three-valued interpretations X , Y
and all well-defined sets of three-valued interpretationsM,N the following condition is
satisfied:

If Y ∈ min(M,≤X
W

) ∪min(M,≤X∗
W

) and Y ∈ min(N ,≤X
W

) ∪min(N ,≤X∗
W

),

then Y ∈ min(M∪N ,≤X
W

) ∪min(M∪N ,≤X∗
W

).

Suppose that Y /∈ min(M∪N ,≤X
W

) ∪min(M∪N ,≤X∗
W

). We need to show that at least
one of the following holds:
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i) Y /∈ min(M,≤X
W

) ∪min(M,≤X∗
W

);

ii) Y /∈ min(N ,≤X
W

) ∪min(N ,≤X∗
W

).

If Y /∈M, then i) is trivially satisfied. Similarly, if Y /∈ N , then ii) is trivially satisfied.
So we can assume that Y ∈M∩N . Then it follows from the assumption that there must
be some Z1, Z2 ∈ M ∪ N such that Z1 <

X
W
Y and Z2 <

X∗

W
Y . If Z1 and Z2 both belong

toM, then i) is satisfied; if they both belong to N , then ii) is satisfied. So let’s assume,
without loss of generality, that Z1 ∈ M and Z2 ∈ N . Furthermore, let X = (I, J),
Y = (K,L), Z1 = (K1, L1) and Z2 = (K2, L2). Then it follows from Z2 <X

∗

W
Y and

Lemma D.11 that we need to consider two cases:

a) If (L2÷J) ( (L÷J), then by Lemma D.11 we also haveZ2 <
X
W
Y and, consequently,

ii) is satisfied.

b) If (L2 ÷ J) = (L÷ J) and (K2 ÷ J) \∆ ( (K ÷ J) \∆ where ∆ = (L2 ÷ J), then it
follows that (K ÷ J) \∆ 6= ∅ and by using ∆ = L2 ÷ J = L÷ J we obtain

(K ÷ J) \ (L÷ J) 6= ∅ . (D.17)

Furthermore, from Z1 <
X
W
Y we know that one of the following cases occurs:

a’) (L1 ÷ J) ( (L÷ J), or

b’) (L1 ÷ J) = (L÷ J) and (K1 ÷ I) \∆ ( (K ÷ I) \∆, where ∆ = L1 ÷ J .

We will show that Z∗1 <X
∗

W
Y . By Lemma D.11 this holds if and only if one of the

following conditions is satisfied:

a∗) (L1 ÷ J) ( (L÷ J), or

b∗) (L1 ÷ J) = (L÷ J) and (L1 ÷ J) \∆ ( (K ÷ J) \∆, where ∆ = L1 ÷ J .

We see that a’) implies a∗) and b’) together with (D.17) implies b∗). Also, sinceM is
well-defined, we have Z∗1 ∈M, so i) is satisfied.

Proposition 6.15. The assignment W is a well-defined, faithful and organised preorder assign-
ment.

Proof. Follows by Propositions D.10, D.12, D.13 and D.14.
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E
Proofs: Semantic Characterisations

of Rules and Programs

In the following we present proofs of results from Chapter 7, implicitly working under
the same assumptions as those imposed in that chapter. That is, we constrain ourselves to
propositional logic programs without explicit negation over a finite set of propositional
atoms A.

Definition E.1. Let π be a rule. By π+ and π−, respectively, we denote the rules

H(π)+ ← B(π)+. and ∼H(π)− ← ∼B(π)−.

Lemma E.2. Let π be a rule and J an interpretation. Then,

J |= π if and only if J |= π+ ∨ J |= π− .

Proof. Suppose first that J |= π. Then one of the following cases applies:

a) If J 6|= L for some literal L ∈ B(π), then, depending on whether L is an atom or a
default literal, it follows that J |= π+ or J |= π−, respectively.

b) If J |= L for some literal L ∈ H(π), then, depending on whether L is an atom or a
default literal, it follows that J |= π+ or J |= π−, respectively.

On the other hand, if J |= π+, then either J 6|= p for some atom p ∈ B(π), or J |= p for
some atom p ∈ H(π). In either case it follows that J |= π.

Similarly, if J |= π−, then either J 6|= L for some default literal L ∈ B(π), or J |= L for
some default literal L ∈ H(π). In either case it follows that J |= π.

Lemma E.3. Let π be a rule and J an interpretation. Then,

πJ =

{
τ J |= π− ;

π+ otherwise .
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Proof. Follows directly from the definitions of πJ , π+ and π−.

E.1 SE-Models vs. Individual Rules

Lemma E.4. Let (I, J) be a three-valued interpretation and π a rule. Then,

(I, J) ∈ [[π ]]SE if and only if (I |= π+ ∧ J |= π+) ∨ J |= π− .

Proof. First take some SE-model (I, J) of π and suppose that J 6|= π−. We need to prove
that I |= π+ and J |= π+. It follows from the definition of SE-models that J |= π and
I |= πJ , so by Lemma E.2 we obtain J |= π+. Furthermore, it follows from Lemma E.3
that πJ = π+ , so it also holds that I |= π+.

Turning to the converse implication, first suppose that J |= π−. By Lemmas E.2 and
E.3 we obtain J |= π and πJ = τ , so I |= πJ and thus (I, J) is an SE-model of π. If
J 6|= π−, then we need to show that I |= π+ together with J |= π+ imply that (I, J) is an
SE-model of π. We obtain J |= π from Lemma E.2 and I |= πJ holds because πJ = π+ by
Lemma E.3.

E.1.1 SE-Canonical Rules

Lemma 7.3. Rules of the following forms are SE-tautological:

p;H ← p,B. H;∼p← B,∼p. H ← B, p,∼p.

Proof. First assume that a rule π is of the first form and take some three-valued interpre-
tation (I, J). We need to show that (I, J) is an SE-model of π. According to Lemma E.4,
it suffices to show that I |= π+ and J |= π+. Both of these properties follow from the fact
that p belongs to both H(π)+ and B(π)+.

Now suppose that π is of the second form. Given a three-valued interpretation (I, J),
we see that the atom p belongs to both H(π)− and B(π)−, so J |= π−. Hence we can use
Lemma E.4 to conclude that (I, J) is an SE-model of π.

Finally, suppose that π takes the third form and take some three-valued interpretation
(I, J). If J |= π−, then (I, J) is an SE-model of π by Lemma E.4. On the other hand, if
J 6|= π−, then J |= ∼p. Consequently, I 6|= p because I is a subset of J . These findings
imply that I |= π+ and J |= π+, so by using Lemma E.4 we can once again conclude that
(I, J) is an SE-model of π.

Lemma E.5. Rules of the following forms are SE-equivalent:

p;H ← B,∼p. H ← B,∼p.

Proof. Let the first rule be denoted by π1, the second by π2 and take some three-valued
interpretation (I, J). We need to show that (I, J) is an SE-model of π1 if and only if it is
an SE-model of π2. According to Lemma E.4, it suffices to prove the following:

(I |= π+
1 ∧ J |= π+

1 )∨ J |= π−1 if and only if (I |= π+
2 ∧ J |= π+

2 )∨ J |= π−2 . (E.1)

Note first that π−1 = π−2 , so

J |= π−1 if and only if J |= π−2 . (E.2)

Now consider two cases:
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a) If J |= π−1 , then J |= π−2 due to (E.2) and we can conclude that (E.1) holds.

b) If J 6|= π−1 , then J 6|= π−2 due to (E.2) and (E.1) reduces to the following goal:

I |= π+
1 ∧ J |= π+

1 if and only if I |= π+
2 ∧ J |= π+

2 . (E.3)

Now it suffices to observe that J 6|= π−1 implies J |= ∼p, hence J 6|= p, and since I
is a subset of J , we can conclude that I 6|= p. Since π+

1 differs from π+
2 only in the

head atom p, it follows that (E.3) is satisfied.

Lemma E.6. Rules of the following forms are SE-equivalent:

H;∼p← p,B. H ← p,B.

Proof. Let the first rule be denoted by π1, the second by π2 and take some three-valued
interpretation (I, J). We need to show that (I, J) is an SE-model of π1 if and only if it is
an SE-model of π2. According to Lemma E.4, it suffices to prove the following:

(I |= π+
1 ∧ J |= π+

1 )∨ J |= π−1 if and only if (I |= π+
2 ∧ J |= π+

2 )∨ J |= π−2 . (E.4)

Note first that π+
1 = π+

2 , so

I |= π+
1 ∧ J |= π+

1 if and only if I |= π+
2 ∧ J |= π+

2 . (E.5)

Now consider two cases:

a) If both I |= π+
1 and J |= π+

1 , then I |= π+
2 and J |= π+

2 due to (E.5) and we can
conclude that (E.4) holds.

b) If either I 6|= π+
1 or J 6|= π+

1 , then I 6|= π+
2 or J 6|= π+

2 due to (E.5) and (E.4) reduces
to the following goal:

J |= π−1 if and only if J |= π−2 . (E.6)

Now it suffices to observe that I 6|= π+
1 implies I |= p and since I is a subset of J , we

can conclude that J 6|= ∼p. Similarly, J 6|= π+
1 implies J |= p so that J 6|= ∼p. Since

π−1 differs from π−2 only in the head literal ∼p, it follows that (E.6) is satisfied.

Lemma 7.4. Rules of the following forms are SE-equivalent:

H;∼L← L,B. H ← L,B.

Proof. Follows from Lemmas E.5 and E.6.

Lemma 7.5. Rules of the following forms are SE-equivalent:

∼p;∼H− ← B. ∼H− ← p,B.

Proof. Let the first rule be denoted by π1, the second by π2 and take some three-valued
interpretation (I, J). We need to prove that (I, J) is an SE-model of π1 if and only if it is
an SE-model of π2. According to Lemma E.4, it suffices to prove the following:

(I |= π+
1 ∧ J |= π+

1 )∨ J |= π−1 if and only if (I |= π+
2 ∧ J |= π+

2 )∨ J |= π−2 . (E.7)
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Note that the rules π+
1 , π−1 , π+

2 and π−2 are as follows:

π+
1 : ← B+. π−1 : ∼p;∼H− ← ∼B−.
π+

2 : ← p,B+. π−2 : ∼H− ← ∼B−.

Suppose first that the left-hand side of (E.7) is satisfied. If I |= π+
1 and J |= π+

1 , then
clearly also I |= π+

2 and J |= π+
2 , i.e. the right-hand side is also satisfied. If J |= π−1 , then

either J |= π−2 , which also satisfies the right-hand side, or J |= ∼p. In the latter case it
follows that J 6|= p and I 6|= p because I is a subset of J . Consequently, I |= π+

2 and
J |= π+

2 , once again satisfying the right-hand side.
Now suppose that the right-hand side of (E.7) is satisfied. If I |= π+

2 and J |= π+
2 , then

either J |= π+
1 and thus also I |= π+

1 , or J 6|= p, in which case it follows that J |= π−1 . In
either case, the left-hand side is satisfied. The case that remains is when J |= π−2 , which
directly entails that J |= π−1 .

Theorem 7.8. Every rule π is SE-equivalent to the SE-canonical rule canSE(π).

Proof. This can be shown by a careful iterative application of Lemmas 7.3, E.5, E.6 and
7.5. First observe that if canSE(π) = τ , then Lemma 7.3 implies that π is SE-tautological,
thus indeed SE-equivalent to τ .

In the principal case we can use Lemma E.5 on all atoms from H(π)+ ∩ B(π)− and
remove them one by one from H(π)+ while preserving SE-models. A similar situation
occurs with atoms from H(π)− ∩B(π)+ which can be, according to Lemma E.6, removed
from H(π)− without affecting SE-models. After these steps are performed, we obtain the
rule

(H(π)+ \B(π)−);∼(H(π)− \B(π)+)← B(π)+,∼B(π)−. (E.8)

This is also the result of canSE(π), unless the set H(π)+ \ B(π)− is empty. In that case,
one can repeatedly apply Lemma 7.5 and move the atoms from the negative head of rule
(E.8) into its positive body. This way, we obtain the rule

← (B(π)+ ∪H(π)−),∼B(π)−.

which also coincides with the result of canSE(π).

E.1.2 Reconstructing Rules from SE-Models

Lemma 7.9. Let (I, J) be a three-valued interpretation and π a rule. Then (I, J) /∈ [[π ]]SE if and
only if the following conditions are satisfied:

1. Either B(π)+ ⊆ I ⊆ A \H(π)+ or J ∩H(π)+ = ∅ and

2. H(π)− ∪B(π)+ ⊆ J ⊆ A \B(π)−.

Proof. Note first that since I is a subset of J , we can equivalently state the conditions
above as follows:

1’ Either B(π)+ ⊆ I ⊆ A \H(π)+ or B(π)+ ⊆ J ⊆ A \H(π)+ and

2’ H(π)− ⊆ J ⊆ A \B(π)−.

By Lemma E.4, (I, J) /∈ [[π ]]SE if and only if (I 6|= π+ ∨ J 6|= π+) ∧ J 6|= π−. We will show
that this is equivalent to the two conditions above.
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We know that I 6|= π+ if and only if

∀p ∈ B(π)+ : I |= p and ∀p ∈ H(π)+ : I 6|= p ,

which is equivalent to

∀p ∈ B(π)+ : p ∈ I and ∀p ∈ H(π)+ : p /∈ I .

In other words, I 6|= π+ if and only if B(π)+ ⊆ I and I ∩H(π)+ = ∅. Similarly, J 6|= π+ if
and only B(π)+ ⊆ J and J ∩H(π)+ = ∅. Consequently, I 6|= π+ ∨ J 6|= π+ if and only if
condition 1’ holds.

On the other hand, J 6|= π− holds if and only if

∀∼p ∈ ∼B(π)− : J |= ∼p and ∀∼p ∈ ∼H(π)− : J 6|= ∼p ,

which is equivalent to

∀p ∈ B(π)− : p /∈ J and ∀p ∈ H(π)− : p ∈ J .

In other words, J ∩B(π)− = ∅ and H(π)− ⊆ J , equivalently to condition 2’ above.

Corollary E.7. Let π be an SE-canonical rule different from τ , put I = B(π)+, J = H(π)− ∪
B(π)+ and J ′ = A \B(π)−, and let p be an atom. Then the following holds:

(1) (I, J) /∈ [[π ]]SE.

(2) (I, J ∪ { p }) ∈ [[π ]]SE if and only if p ∈ B(π)−.

(3) (I ∪ { p } , J ∪ { p }) ∈ [[π ]]SE if and only if p ∈ H(π)+ ∪B(π)−.

(4) (I, J ′) /∈ [[π ]]SE.

Proof. All parts of the corollary follow from Lemma 7.9 and the disjointness properties
satisfied by SE-canonical rules.

Lemma E.8. Let π be an SE-canonical rule different from τ and p an atom. Then p ∈ B(π)− if
and only if for all (I, J) ∈ X,

p ∈ J implies (I, J) ∈ [[π ]]SE .

Proof. Suppose that p ∈ B(π)− and take some three-valued interpretation (I, J) with p ∈
J . Then J 6|= ∼p, so it follows that J |= π−. Consequently, by Lemma E.4, (I, J) ∈ [[π ]]SE.

To prove the converse implication, let I = B(π)+ and J = H(π)− ∪B(π)+. It follows
that (I, J ∪ { p }) ∈ [[π ]]SE, so by Corollary E.7(2) we conclude that p ∈ B(π)−.

Lemma E.9. Let π be an SE-canonical rule different from τ and p an atom. Then p ∈ H(π)+ if
and only if p /∈ B(π)− and for all (I, J) ∈ X,

p ∈ I implies (I, J) ∈ [[π ]]SE .

Proof. Suppose that p ∈ H(π)+ and take some three-valued interpretation (I, J) with
p ∈ I . Then I |= p and J |= p, so it follows that I |= π+ and J |= π+. Consequently, by
Lemma E.4, (I, J) ∈ [[π ]]SE.
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To prove the converse implication, let I = B(π)+ and J = H(π)− ∪B(π)+. It follows
that (I ∪ { p } , J ∪ { p }) ∈ [[π ]]SE, so by Corollary E.7(3) we conclude that p ∈ H(π)+ ∪
B(π)−. Moreover, by the assumption we know that p /∈ B(π)−, so p ∈ H(π)+.

Lemma 7.10. Let π be an SE-canonical rule different from τ and p an atom. Then:

• p ∈ B(π)− if and only if for all (I, J) ∈ X,

p ∈ J implies (I, J) ∈ [[π ]]SE ;

• p ∈ H(π)+ if and only if p /∈ B(π)− and for all (I, J) ∈ X,

p ∈ I implies (I, J) ∈ [[π ]]SE .

Proof. Follows from Lemmas E.8 and E.9.

Lemma E.10. Let π be an SE-canonical rule different from τ and p an atom. Then p ∈ B(π)+ if
and only if for all (I, J) ∈ X,

(p /∈ I ∧ J ∩H(π)+ 6= ∅) ∨ p /∈ J implies (I, J) ∈ [[π ]]SE .

Proof. Suppose that p ∈ B(π)+ and take some three-valued interpretation (I, J). If p /∈ I
and J ∩ H(π)+ 6= ∅, then J |= π+ and I |= π+. On the other hand, if p /∈ J , then
p /∈ I since I is a subset of J , and we can once again conclude that J |= π+ and I |= π+.
Consequently, by Lemma E.4, (I, J) ∈ [[π ]]SE.

To prove the converse implication, we consider two cases:

a) If H(π)+ = ∅, then H(π)− = ∅ because π is SE-canonical. Put I = J = B(π)+.
According to Corollary E.7(1), (I, J) /∈ [[π ]]SE while (I \{ p } , J \{ p }) ∈ [[π ]]SE by the
assumption. Consequently, J must be different from J \ { p }, so p ∈ J = B(π)+.

b) If H(π)+ 6= ∅, then put I = B(π)+ and J ′ = A \ B(π)−. We obtain (I, J ′) /∈ [[π ]]SE
by Corollary E.7(4). Furthermore, J ′ ∩H(π)+ 6= ∅ because, since π is SE-canonical,
H(π)+ ∩ B(π)− = ∅. It thus follows by the assumption that (I \ { p } , J ′) ∈ [[π ]]SE.
Consequently, I must be different from I \ { p }, so p ∈ I = B(π)+.

Lemma E.11. Let p be an atom. Then p ∈ H(π)− if and only if p /∈ B(π)+ and for all (I, J) ∈ X,

p /∈ J implies (I, J) ∈ [[π ]]SE .

Proof. Suppose that p ∈ H(π)− and take some three-valued interpretation (I, J) with p /∈
I . Then J |= ∼p, so it follows that J |= π−. Consequently, by Lemma E.4, (I, J) ∈ [[π ]]SE.

To prove the converse implication, let I = B(π)+ and J = H(π)− ∪B(π)+. It follows
by Corrolary E.7(1) that (I, J) /∈ [[π ]]SE while by our assumption, (I\{ p } , J\{ p }) ∈ [[π ]]SE.
Consequently, J must differ from J \ { p }, which implies that p ∈ J = H(π)− ∪ B(π)+.
Furthermore, by the assumption p /∈ B(π)+, so we can conclude that p ∈ H(π)−.

Lemma 7.11. Let p be an atom. Then:

• p ∈ B(π)+ if and only if for all (I, J) ∈ X,

(p /∈ I ∧ J ∩H(π)+ 6= ∅) ∨ p /∈ J implies (I, J) ∈ [[π ]]SE ;
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• p ∈ H(π)− if and only if p /∈ B(π)+ and for all (I, J) ∈ X,

p /∈ J implies (I, J) ∈ [[π ]]SE .

Proof. Follows from Lemmas E.10 and E.11.

Theorem 7.13. For every SE-canonical rule π, ‖[[π ]]SE‖SE = π.

Proof. If π = τ , then [[π ]]SE = X and, by Definition 7.12, ‖X‖SE = τ = π, so the identity is
satisfied. In the principal case, π is an SE-canonical rule different from τ . LetM = [[π ]]SE.
It follows from Definition 7.12 and Lemmas 7.10 and 7.11 that π = ‖M‖SE.

E.1.3 SE-Rule-Expressible Sets of Interpretations

Lemma E.12. Let M be a set of three-valued interpretations different from X. Then the sets
HSE(M)+ ∪HSE(M)−, BSE(M)+ and BSE(M)− are pairwise disjoint.

Proof. First suppose that p is a member of bothHSE(M)+∪HSE(M)− andBSE(M)+. Since
p belongs to BSE(M)+, it cannot belong to HSE(M)− by definition. So p belongs to both
HSE(M)+ and BSE(M)+. Take an arbitrary three-valued interpretation (I, J). If p ∈ I ,
then, by the definition ofHSE(M)+, (I, J) ∈M. If p /∈ I but p ∈ J , then J ∩HSE(M)+ 6= ∅,
so, by the definition ofBSE(M)+, (I, J) ∈M. If p /∈ J , then, by the definition ofBSE(M)+,
once again (I, J) ∈M. As a consequence,M = X, contrary to our assumption.

Now suppose that p is a member of both HSE(M)+ ∪HSE(M)− and BSE(M)−. Then,
since p belongs to BSE(M)−, it cannot belong to HSE(M)+ by definition. So p belongs
to both HSE(M)− and BSE(M)−. Take an arbitrary three-valued interpretation (I, J). If
p ∈ J , then, by the definition of BSE(M)−, (I, J) ∈ M. If p /∈ J , then, by the definition of
HSE(M)−, (I, J) ∈M. As a consequence,M = X, contrary to our assumption.

Finally, suppose that p is a member of both BSE(M)+ and BSE(M)− and take an ar-
bitrary three-valued interpretation (I, J). If p ∈ J , then, by the definition of BSE(M)−,
(I, J) ∈ M. If p /∈ J , then, by the definition of BSE(M)+, we obtain (I, J) ∈ M once
again. Consequently,M = X, contrary to our assumption.

Lemma E.13. For every set of three-valued interpretationsM, ‖M‖SE is an SE-canonical rule.

Proof. IfM = X, then ‖M‖SE = τ and the proof is finished. Otherwise, ‖M‖SE is of the
form

HSE(M)+;∼HSE(M)− ← BSE(M)+,∼BSE(M)−.

To show that this rule is SE-canonical, we need to prove that the setsHSE(M)+∪HSE(M)−,
BSE(M)+ andBSE(M)− are pairwise disjoint and thatHSE(M)− = ∅wheneverHSE(M)+ =
∅. The former follows from Lemma E.34. As for the latter, suppose that HSE(M)+ = ∅.
Then J ∩ HSE(M)+ = ∅ for all J ∈ I, so it follows from the definitions of BSE(M)+ and
HSE(M)− that HSE(M)− = ∅.

Lemma 7.17. The set of all SE-models of an SE-canonical rule π is the least among all sets of
three-valued interpretationsM such that ‖M‖SE = π.

Proof. Let π be an SE-canonical rule. From Theorem 7.13 we know that ‖[[π ]]SE‖SE = π,
so it remains to show that [[π ]]SE is a subset of every set of interpretations M such that
‖M‖SE = π. Take one such M. If π = τ , then [[π ]]SE = X. Furthermore, M = X, for
otherwise the set HSE(M)+ ∩BSE(M)+ would be non-empty, contrary to Lemma E.12.
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In the principal case, π is not the canonical tautology, so from ‖M‖SE = π we obtain
thatM 6= X as well as H(π)+ = HSE(M)+, H(π)− = HSE(M)−, B(π)+ = BSE(M)+ and
B(π)− = BSE(M)−. Take some (I, J) ∈ [[π ]]SE, we need to show that (I, J) ∈ M. By
Lemma E.4 we obtain that either I |= π+ and J |= π+, or J |= π−. This means that we
have five cases to consider:

a) If I |= p for some p ∈ H(π)+, then p ∈ HSE(M)+ and p ∈ I , so it follows from the
definition of HSE(M)+ that (I, J) ∈M.

b) If I 6|= p for some p ∈ B(π)+ and J |= p for some p ∈ H(π)+, then p ∈ BSE(M)+

and p /∈ I and J ∩HSE(M)+ 6= ∅, so it follows from the definition of BSE(M)+ that
(I, J) ∈M.

c) If J 6|= p for some p ∈ B(π)+, then p ∈ BSE(M)+ and p /∈ J , so it follows from the
definition of BSE(M)+ that (I, J) ∈M.

d) If J |= ∼p for some p ∈ H(π)−, then p ∈ HSE(M)− and p /∈ J , so it follows from the
definition of HSE(M)− that (I, J) ∈M.

e) If J 6|= ∼p for some p ∈ B(π)−, then p ∈ BSE(M)− and p ∈ J , so it follows from the
definition of BSE(M)− that (I, J) ∈M.

Proposition E.14. A set of three-valued interpretationsM is SE-rule-expressible if and only if
M⊆ [[‖M‖SE ]]SE.

Proof. IfM is an SE-rule-expressible set of interpretations, then there exists some rule π
such thatM = [[π ]]SE. By Corollary 7.14, ‖M‖SE = ‖[[π ]]SE‖SE = canSE(π), so our goal is to
prove that [[π ]]SE ⊆ [[canSE(π)]]SE. This immediately follows from Theorem 7.8.

For the converse implication, suppose that M ⊆ [[‖M‖SE ]]SE and put π = ‖M‖SE.
By Lemma 7.17 we know that [[π ]]SE ⊆ M and together with our assumption we obtain
[[π ]]SE =M. HenceM is SE-rule-expressible.

Proposition E.15. A set of three-valued interpretationsM is SE-rule-expressible if and only if
there exist convex sublattices L1, L2 of (I,⊆) such that

X \M = { (I, J) ∈ X | I ∈ L1 ∧ J ∈ L2 } ∪ { (I, J) ∈ X | J ∈ L1 ∩ L2 } .

Proof. Suppose thatM is an SE-rule-expressible set of interpretations. Then there exists
some rule π such that M = [[π ]]SE. Let the sets of interpretations L1, L2 be defined as
follows:

L1 =
{
I ∈ I

∣∣ B(π)+ ⊆ I ⊆ A \H(π)+
}
,

L2 =
{
J ∈ I

∣∣ H(π)− ∪B(π)+ ⊆ J ⊆ A \B(π)−
}
.

It can be straightforwardly verified that these sets are convex sublattices of (I,⊆). It
remains to prove that

X \M = { (I, J) ∈ X | I ∈ L1 ∧ J ∈ L2 } ∪ { (I, J) ∈ X | J ∈ L1 ∩ L2 } . (E.9)

According to Lemma 7.9, (I, J) ∈ X \M if and only if

1. Either B(π)+ ⊆ I ⊆ A \H(π)+ or J ∩H(π)+ = ∅ and

2. H(π)− ∪B(π)+ ⊆ J ⊆ A \B(π)−.
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Note that the first disjunct of 1. together with condition 2. occurs if and only if I ∈ L1 and
J ∈ L2, while the second disjunct of 1. together with 2. occurs if and only if J ∈ L1 ∩ L2.
Consequently, (E.9) is satisfied.

Now suppose that L1, L2 are two convex sublattices of (I,⊆) such that (E.9) holds. Let
>1, ⊥1 be the top and bottom elements of L1 and >2, ⊥2 be the top and bottom elements
of L2. Furthermore, let π be a rule of the form

(A \ >1);∼⊥2 ← ⊥1,∼(A \ >2).

We prove thatM = [[π ]]SE. Take some three-valued interpretation (I, J). By Lemma E.4
we know that (I, J) /∈ [[π ]]SE if and only if either I 6|= π+ and J 6|= π−, or J 6|= π+ and
J 6|= π−. This holds if and only if either

B(π)+ ⊆ I and I ∩H(π)+ = ∅ and J ∩B(π)− = ∅ and H(π)− ⊆ J or
B(π)+ ⊆ J and J ∩H(π)+ = ∅ and J ∩B(π)− = ∅ and H(π)− ⊆ J .

In other words, either

⊥1 ⊆ I and I ∩ (A \ >1) = ∅ and J ∩ (A \ >2) = ∅ and ⊥2 ⊆ J or
⊥1 ⊆ J and J ∩ (A \ >1) = ∅ and J ∩ (A \ >2) = ∅ and ⊥2 ⊆ J .

Equivalently, either I ∈ L1 and J ∈ L2, or J ∈ L1 ∩ L2. By (E.9) this is equivalent to
(I, J) /∈M.

Theorem 7.18. LetM be a set of three-valued interpretations. Then the following conditions are
equivalent:

1. M is SE-rule-expressible.

2. M⊆ [[‖M‖SE ]]SE.

3. There exist convex sublattices L1, L2 of (I,⊆) such that

X \M = { (I, J) ∈ X | I ∈ L1 ∧ J ∈ L2 } ∪ { (I, J) ∈ X | J ∈ L1 ∩ L2 } .

Proof. Follows from Propositions E.14 and E.15.

E.2 Robust Equivalence Models

We first concentrate on a systematic analysis of the expressivity of RE-models w.r.t. a
single rule. The presentation follows the same pattern as the one used in Section E.1 for
SE-models.

In Section E.2.1 we introduce a set of representatives of rule equivalence classes in-
duced by RE-models and show how the representative of a class can be constructed given
one of its members. Then we show how to reconstruct a representative from the set of
its RE-models in Section E.2.2. Finally, in Section E.2.3, we pinpoint the conditions under
which a set of three-valued interpretations is expressible by a rule under RE-models, i.e.
conditions that a setMmust satisfy so that a rule π exists such that [[π ]]RE =M. All these
results pave the way towards proofs of properties of RE-models reported in Section 7.2
which are reported in Section E.2.4.
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E.2.1 RE-Canonical Rules

Lemma E.16. Let (I, J) be a three-valued interpretation and π a rule. Then,

(I, J) ∈ [[π ]]RE if and only if I |= π+ ∨ J |= π− .

Proof. First take some RE-model (I, J) of π and suppose that J 6|= π−. We need to prove
that I |= π+. By the definition of RE-models, I |= πJ and by Lemma E.3, πJ = π+, so
indeed I |= π+.

For the converse implication, first suppose that J |= π−. It follows from Lemma E.3
that πJ = τ , so I |= πJ and thus (I, J) is an RE-model of π. If J 6|= π−, then πJ = π+, so
it immediately follows from I |= π+ that (I, J) is an RE-model of π.

We start by bringing out simple but powerful transformations that simplify a given
rule while preserving its RE-models. For the rest of this section we assume that H and
B are sets of literals, p is an atom and L a literal. The following result summarises the
conditions under which a rule is RE-tautological:

Lemma E.17. Rules of the following forms are RE-tautological:

p;H ← p,B. H;∼p← B,∼p. H ← B, p,∼p.

Proof. First assume that a rule π is of the first form and take some three-valued interpre-
tation (I, J). We need to show that (I, J) is an RE-model of π. According to Lemma E.16,
it suffices to show that I |= π+, which follows from the fact that p belongs to both H(π)+

and B(π)+.
Now suppose that π is of the second form. Given a three-valued interpretation (I, J),

we see that the atom p belongs to both H(π)− and B(π)−, so J |= π−. Hence we can use
Lemma E.16 to conclude that (I, J) is an RE-model of π.

Finally, suppose that π takes the third form and take some three-valued interpretation
(I, J). If J |= π−, then (I, J) is an RE-model of π by Lemma E.16. On the other hand,
if J 6|= π−, then J |= ∼p and, consequently, I 6|= p because I is a subset of J . This
implies that I |= π+, so by using Lemma E.16 we can once again conclude that (I, J) is
an RE-model of π.

Lemma E.17 shows that repeating an atom in different “components” of the rule fre-
quently causes the rule to be RE-tautological. In particular, this happens if the same atom
occurs in the positive head and positive body, or in the negative head and negative body,
or in the positive and negative bodies of a rule. How about the cases when the head con-
tains a negation of a literal from the body? The following Lemmas clarify this situation:

Lemma E.18. Rules of the following forms are RE-equivalent:

p;H ← B,∼p. H ← B,∼p.

Proof. Let the first rule be denoted by π1, the second by π2 and take some three-valued
interpretation (I, J). We need to show that (I, J) is an RE-model of π1 if and only if it is
an RE-model of π2. According to Lemma E.16, it suffices to prove the following:

I |= π+
1 ∨ J |= π−1 if and only if I |= π+

2 ∨ J |= π−2 . (E.10)

First note that π−1 = π−2 , so

J |= π−1 if and only if J |= π−2 . (E.11)
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Now consider two cases:

a) If J |= π−1 , then J |= π−2 due to (E.11) and we can conclude that (E.10) holds.

b) If J 6|= π−1 , then J 6|= π−2 due to (E.11) and (E.10) reduces to the following goal:

I |= π+
1 if and only if I |= π+

2 . (E.12)

It now suffices to observe that J 6|= π−1 implies J |= ∼p and since I is a subset of J ,
we can conclude that I 6|= p. Since π+

1 differs from π+
2 only in the head atom p, it

follows that (E.12) is satisfied.

Lemma E.19. Rules of the following forms are RE-equivalent:

H;∼p← p,B. H ← p,B.

Proof. Let the first rule be denoted by π1, the second by π2 and take some three-valued
interpretation (I, J). We need to show that (I, J) is an RE-model of π1 if and only if it is
an RE-model of π2. According to Lemma E.16, it suffices to prove the following:

I |= π+
1 ∨ J |= π−1 if and only if I |= π+

2 ∨ J |= π−2 . (E.13)

First note that π+
1 = π+

2 , so

I |= π+
1 if and only if I |= π+

2 . (E.14)

Now consider two cases:

a) If I |= π+
1 , then I |= π+

2 due to (E.14) and we can conclude that (E.13) holds.

b) If I 6|= π+
1 , then I 6|= π+

2 due to (E.14) and (E.13) reduces to the following goal:

J |= π−1 if and only if J |= π−2 . (E.15)

It now suffices to observe that I 6|= π+
1 implies I |= p and since I is a subset of J , we

can conclude that J 6|= ∼p. Since π−1 differs from π−2 only in the head literal ∼p, it
follows that (E.15) is satisfied.

So if a literal is present in the body of a rule, its negation can be removed from the
head without affecting its RE-models.

Until now we have seen that a rule π that has a common atom in at least two of the
sets H(π)+ ∪ H(π)−, B(π)+ and B(π)− is either RE-tautological, or RE-equivalent to a
rule where the atom is omitted from the rule’s head. So such a rule is always RE-equiv-
alent either to the canonical tautology τ , or to a rule without such repetitions. Perhaps
surprisingly, repetitions in the positive and negative head cannot be simplified away. For
example, over the alphabet Ap = { p }, the rule “p;∼p← .” has two RE-models, (∅, ∅) and
({ p } , { p }), so it is not RE-tautological, nor is it RE-equivalent to any of the facts “p.”
and “∼p.”. Actually, it is not very difficult to see that it is not RE-equivalent to any other
rule, even over larger alphabets. So the fact that an atom is in both H(π)+ and H(π)−

cannot all by itself imply that some kind of RE-models preserving rule simplification is
possible.

Armed with the above results, we can introduce the notion of an RE-canonical rule.
Each such rule represents a different rule equivalence class induced by the RE-models
semantics. In other words, every rule is RE-equivalent to exactly one RE-canonical rule.
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After the definition, we provide constructive transformations which show that this is
indeed the case. Note that the definition can be derived directly from the lemmas above:

Definition E.20 (RE-Canonical Rule). We say that a rule π is RE-canonical if either it is τ ,
or the sets H(π)+ ∪H(π)−, B(π)+ and B(π)− are pairwise disjoint.

The following transformation provides a direct way of constructing an RE-canonical
rule that is RE-equivalent to a given rule π.

Definition E.21 (Transformation into an RE-Canonical Rule). Given a rule π, we define
the RE-canonical rule canRE(π) as follows:

(i) If any of the sets H(π)+ ∩B(π)+, H(π)− ∩B(π)− and B(π)+ ∩B(π)− is non-empty,
then canRE(π) = τ .

(ii) If (i) does not apply, then canRE(π) is the rule

(H(π)+ \B(π)−);∼(H(π)− \B(π)+)← B(π)+,∼B(π)−.

Correctness of the transformation follows directly from Lemmas E.17, E.18 and E.19.

Theorem E.22. For every rule π, [[π ]]RE = [[canRE(π)]]RE.

Proof. This can be shown by a careful iterative application of Lemmas E.17, E.18 and E.19.
First observe that if canRE(π) = τ , then Lemma E.17 implies that π is RE-tautological, thus
indeed RE-equivalent to τ .

In the principal case we can use Lemma E.18 on all atoms from H(π)+ ∩ B(π)− and
remove them one by one from H(π)+ while preserving RE-models. A similar situation
occurs with atoms fromH(π)−∩B(π)+ which can be, according to Lemma E.19, removed
fromH(π)− without affecting RE-models. After these steps are performed, we obtain the
rule

(H(π)+ \B(π)−);∼(H(π)− \B(π)+)← B(π)+,∼B(π)−.

This is also the result of canRE(π).

What remains to be proven is that no two different RE-canonical rules are RE-equiva-
lent. In the next section we show how every RE-canonical rule can be reconstructed from
the set of its RE-models. As a consequence, no two different RE-canonical rules can have
the same set of RE-models.

E.2.2 Reconstructing Rules from RE-Models

In order to reconstruct a rule π from the set of its RE-models, we need to understand
how exactly each literal in the rule influences its models. The following lemma provides
a useful characterisation of the set of countermodels of a rule in terms of syntax:

Lemma E.23. Let (I, J) be a three-valued interpretation and π a rule. Then (I, J) /∈ [[π ]]RE if
and only if the following conditions are satisfied:

1. B(π)+ ⊆ I ⊆ A \H(π)+ and

2. H(π)− ⊆ J ⊆ A \B(π)−.
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Proof. By Lemma E.16, (I, J) /∈ [[π ]]RE if and only if both I 6|= π+ and J 6|= π−. We will
show that the former is equivalent to condition 1. and the latter to condition 2. above.

We know that I 6|= π+ if and only if

∀p ∈ B(π)+ : I |= p and ∀p ∈ H(π)+ : I 6|= p ,

which is equivalent to

∀p ∈ B(π)+ : p ∈ I and ∀p ∈ H(π)+ : p /∈ I .

In other words, B(π)+ ⊆ I and I ∩H(π)+ = ∅, equivalently to condition 1. above.
On the other hand, J 6|= π− holds if and only if

∀∼p ∈ ∼B(π)− : J |= ∼p and ∀∼p ∈ ∼H(π)− : J 6|= ∼p ,

which is equivalent to

∀p ∈ B(π)− : p /∈ J and ∀p ∈ H(π)− : p ∈ J .

In other words, J ∩B(π)− = ∅ and H(π)− ⊆ J , equivalently to condition 2. above.

The following consequences of Lemma E.23 will be useful in further proofs.

Corollary E.24. Let π be an RE-canonical rule different from τ , put I = B(π)+, J = H(π)− ∪
B(π)+ and J ′ = A \B(π)−, and let p be an atom. Then the following holds:

(1) (I, J) /∈ [[π ]]RE.

(2) (I, J ∪ { p }) ∈ [[π ]]RE if and only if p ∈ B(π)−.

(3) (I ∪ { p } , J ∪ { p }) ∈ [[π ]]RE if and only if p ∈ H(π)+ ∪B(π)−.

(4) (I, J ′) /∈ [[π ]]RE.

(5) (I \ { p } , J ′) ∈ [[π ]]RE if and only if p ∈ B(π)+.

Proof. All parts of the corollary follow from Lemma E.23 and the disjointness properties
satisfied by RE-canonical rules.

If we take a closer look at the conditions in Lemma E.23, we find that the presence
of an atom from B(π)− in J guarantees that the second condition is falsified, so (I, J) is
an RE-model of π, regardless of the content of I . Somewhat similar is the situation with
positive head atoms – whenever an atom from H(π)+ is present in I , the first condition
is falsified and (I, J) is an RE-model of π. More formally, given a rule π, every atom
p ∈ B(π)− it holds that

p ∈ J implies (I, J) ∈ [[π ]]RE (E.16)

and for every atom p ∈ H(π)+ it holds that

p ∈ I implies (I, J) ∈ [[π ]]RE . (E.17)

If we restrict ourselves to RE-canonical rules different from τ , we find that these condi-
tions are not only necessary, but, when combined properly, also sufficient to decide what
atoms belong to the negative body and positive head of π.
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If not stated otherwise, we assume in the rest of this section that π is an RE-canon-
ical rule different from τ . Keeping in mind that every atom that satisfies the condition
(E.16) also satisfies the condition (E.17) (because I is a subset of J), and that B(π)− is by
definition disjoint with H(π)+, we arrive at the following results:

Lemma E.25. Let p be an atom. Then p ∈ B(π)− if and only if for all (I, J) ∈ X,

p ∈ J implies (I, J) ∈ [[π ]]RE .

Proof. Suppose that p ∈ B(π)− and take some three-valued interpretation (I, J) with p ∈
J . Then J 6|= ∼p, so it follows that J |= π−. Consequently, by Lemma E.16, (I, J) ∈ [[π ]]RE.

To prove the converse implication, let I = B(π)+ and J = H(π)− ∪B(π)+. It follows
that (I, J ∪ { p }) ∈ [[π ]]RE, so by Corollary E.24(2) we conclude that p ∈ B(π)−.

Lemma E.26. Let p be an atom. Then p ∈ H(π)+ if and only if p /∈ B(π)− and for all (I, J) ∈ X,

p ∈ I implies (I, J) ∈ [[π ]]RE .

Proof. Suppose that p ∈ H(π)+ and take some three-valued interpretation (I, J) with p ∈
I . Then I |= p, so it follows that I |= π+. Consequently, by Lemma E.16, (I, J) ∈ [[π ]]RE.

To prove the converse implication, let I = B(π)+ and J = H(π)− ∪B(π)+. It follows
that (I ∪ { p } , J ∪ { p }) ∈ [[π ]]RE, so by Corollary E.24(3) we conclude that p belongs to
H(π)+∪B(π)−. Moreover, by the assumption we know that p /∈ B(π)−, so p ∈ H(π)+.

As can be seen from Lemma E.23, the role of atoms from H(π)− and B(π)+ is dual to
that of atoms fromB(π)− andH(π)+. Intuitively, their absence in J and in I , respectively,
implies that (I, J) is an RE-model of π. It follows from the first condition of Lemma E.23
that every p ∈ B(π)+ satisfies the following condition:

p /∈ I implies (I, J) ∈ [[π ]]RE . (E.18)

Furthermore, the second condition in Lemma E.23 implies that every p ∈ H(π)− satisfies
the following condition:

p /∈ J implies (I, J) ∈ [[π ]]RE . (E.19)

These observations lead to the following results:

Lemma E.27. Let p be an atom. Then p ∈ B(π)+ if and only if for all (I, J) ∈ X,

p /∈ I implies (I, J) ∈ [[π ]]RE .

Proof. Suppose that p ∈ B(π)+ and take some three-valued interpretation (I, J) with p /∈
I . Then I 6|= p, so it follows that I |= π+. Consequently, by Lemma E.16, (I, J) ∈ [[π ]]RE.

To prove the converse implication, let I = B(π)+ and J ′ = A \ B(π)−. It follows that
(I \ { p } , J ′) ∈ [[π ]]RE, so by Corollary E.24(5) we conclude that p ∈ B(π)+.

Lemma E.28. Let p be an atom. Then p ∈ H(π)− if and only if p /∈ B(π)+ and for all (I, J) ∈ X,

p /∈ J implies (I, J) ∈ [[π ]]RE .

Proof. Suppose that p ∈ H(π)− and take some three-valued interpretation (I, J) with p /∈
J . Then J |= ∼p, so it follows that J |= π−. Consequently, by Lemma E.16, (I, J) ∈ [[π ]]RE.

To prove the converse implication, let I = B(π)+ and J = H(π)− ∪ B(π)+. Corol-
lary E.24(1) guarantees that (I, J) /∈ [[π ]]RE. Furthermore, by the assumption it follows
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that (I \ { p } , J \ { p }) ∈ [[π ]]RE. Consequently, J must differ from J \ { p }, which implies
that p ∈ J . Furthermore, since J = H(π)− ∪ B(π)+ and p /∈ B(π)+ by assumption, we
conclude that p ∈ H(π)−.

Together, the four lemmas above are sufficient to reconstruct an RE-canonical rule
from its set of RE-models. The following definition sums up these results by introducing
the notion of a rule RE-induced by a set of three-valued interpretations:

Definition E.29 (Rule RE-Induced by a Set of Interpretations). Let M be a set of three-
valued interpretations. The rule RE-induced byM, denoted by ‖M‖RE, is defined as fol-
lows: IfM = X, then ‖M‖RE = τ ; otherwise, ‖M‖RE is of the form

HRE(M)+;∼HRE(M)− ← BRE(M)+,∼BRE(M)−.

where

BRE(M)− = { p ∈ A | ∀(I, J) ∈ X : p ∈ J =⇒ (I, J) ∈M } ,

HRE(M)+ = { p ∈ A | ∀(I, J) ∈ X : p ∈ I =⇒ (I, J) ∈M } \BRE(M)− ,

BRE(M)+ = { p ∈ A | ∀(I, J) ∈ X : p /∈ I =⇒ (I, J) ∈M } ,

HRE(M)− = { p ∈ A | ∀(I, J) ∈ X : p /∈ J =⇒ (I, J) ∈M } \BRE(M)+ .

The main property of RE-induced rules is that every RE-canonical rule is induced by
its own set of RE-models and can thus be “reconstructed” from its set of RE-models. This
follows directly from Definition E.29 and Lemmas E.25 – E.28.

Theorem E.30. For every RE-canonical rule π, ‖[[π ]]RE‖RE = π.

Proof. If π = τ , then [[π ]]RE = X and, by Definition E.29, ‖X‖RE = τ = π, so the identity is
satisfied. In the principal case, π is an RE-canonical rule different from τ . LetM = [[π ]]RE.
It follows from Definition E.29 and Lemmas E.25 – E.28 that π = ‖M‖RE.

This result, together with Theorem E.22, has a number of consequences. First, for any
rule π, the RE-canonical rule canRE(π) is RE-induced by the set of RE-models of π.

Corollary E.31. For every rule π, ‖[[π ]]RE‖RE = canRE(π).

Proof. Follows directly from Theorems E.22 and E.30.

Furthermore, Theorem E.30 implies that for two different RE-canonical rules π1, π2

we have ‖[[π1 ]]RE‖RE = π1 and ‖[[π2 ]]RE‖RE = π2, so [[π1 ]]RE and [[π2 ]]RE must differ.

Corollary E.32. No two different RE-canonical rules are RE-equivalent.

Proof. Follows directly from Theorem E.30.

Finally, the previous result together with Theorem E.22 imply that for every rule there
not only exists an RE-equivalent RE-canonical rule, but this rule is also unique.

Corollary E.33. Every rule is RE-equivalent to exactly one RE-canonical rule.

Proof. Follows directly from Theorem E.22 and Corollary E.32.
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E.2.3 RE-Rule-Expressible Sets of Interpretations

Naturally, not all sets of three-valued interpretations can be expressed by a single rule
under the RE-models semantics – otherwise any program could be reduced to a single
rule. We say that a set of three-valued interpretations M is RE-rule-expressible if there
exists a rule π such that [[π ]]RE = M. In the following we examine the conditions under
which a set of three-valued interpretations is RE-rule-expressible.

We offer two approaches to find a characterisation of the class of RE-rule-expressible
sets of interpretations. The first is based on RE-induced rules introduced previously,
while the second is formulated using lattice theory and is strongly related to Lemma E.23.

The first characterisation follows from two properties of the ‖ · ‖RE transformation.
First, it can be applied to any set of interpretations, even those that are not RE-rule-
expressible, and it always results in an RE-canonical rule. Second, if ‖M‖RE = π, then
[[π ]]RE is a subset ofM.

Lemma E.34. Let M be a set of three-valued interpretations different from X. Then the sets
HRE(M)+ ∪HRE(M)−, BRE(M)+ and BRE(M)− are pairwise disjoint.

Proof. Suppose first that p is a member of bothHRE(M)+∪HRE(M)− andBRE(M)+. Since
p belongs to BRE(M)+, it cannot belong to HRE(M)− by definition. So p belongs to both
HRE(M)+ and BRE(M)+. Take an arbitrary three-valued interpretation (I, J). If p ∈ I ,
then, by the definition of HRE(M)+, (I, J) ∈ M. If p /∈ I , then, by the definition of
BRE(M)+, (I, J) ∈M. As a consequence,M = X, contrary to our assumption.

Now suppose that p is a member of both HRE(M)+ ∪HRE(M)− and BRE(M)−. Then,
since p belongs to BRE(M)−, it cannot belong to HRE(M)+ by definition. So p belongs
to both HRE(M)− and BRE(M)−. Take an arbitrary three-valued interpretation (I, J). If
p ∈ J , then, by the definition of BRE(M)−, (I, J) ∈ M. If p /∈ J , then, by the definition of
HRE(M)−, (I, J) ∈M. As a consequence,M = X, contrary to our assumption.

Finally, suppose that p is a member of both BRE(M)+ and BRE(M)− and take an ar-
bitrary three-valued interpretation (I, J). If p ∈ J , then, by the definition of BRE(M)−,
(I, J) ∈ M. If p /∈ J , then p /∈ I because I is a subset of J , and by the definition of
BRE(M)+ we obtain (I, J) ∈ M once again. Consequently, M = X, contrary to our
assumption.

Lemma E.35. For every set of three-valued interpretationsM, ‖M‖RE is an RE-canonical rule.

Proof. IfM = X, then ‖M‖RE = τ and the proof is finished. Otherwise, ‖M‖RE is of the
form

HRE(M)+;∼HRE(M)− ← BRE(M)+,∼BRE(M)−.

To show that this rule is RE-canonical, we need to prove that the setsHRE(M)+∪HRE(M)−,
BRE(M)+ and BRE(M)− are pairwise disjoint, which follows from Lemma E.34.

Lemma E.36. The set of all RE-models of an RE-canonical rule π is the least among all sets of
three-valued interpretationsM such that ‖M‖RE = π.

Proof. Let π be an RE-canonical rule. From Theorem E.30 we know that ‖[[π ]]RE‖RE = π,
so it remains to show that [[π ]]RE is a subset of every set of interpretations M such that
‖M‖RE = π. Take one such M. If π = τ , then [[π ]]RE = X. Furthermore, M = X, for
otherwise the set HRE(M)+ ∩BRE(M)+ would be non-empty, contrary to Lemma E.34.

In the principal case, π is not the canonical tautology, so from ‖M‖RE = π we obtain
thatM 6= X as well as H(π)+ = HRE(M)+, H(π)− = HRE(M)−, B(π)+ = BRE(M)+ and
B(π)− = BRE(M)−. Take some (I, J) ∈ [[π ]]RE, we need to show that (I, J) ∈ M. By
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Lemma E.16 we obtain that either I |= π+ or J |= π−. This means that we have four cases
to consider:

a) If I 6|= p for some p ∈ B(π)+, then p ∈ BRE(M)+ and p /∈ I , so it follows from the
definition of BRE(M)+ that (I, J) ∈M.

b) If I |= p for some p ∈ H(π)+, then p ∈ HRE(M)+ and p ∈ I , so it follows from the
definition of HRE(M)+ that (I, J) ∈M.

c) If J 6|= ∼p for some p ∈ B(π)−, then p ∈ BRE(M)− and p ∈ J , so it follows from the
definition of BRE(M)− that (I, J) ∈M.

d) If J |= ∼p for some p ∈ H(π)−, then p ∈ HRE(M)− and p /∈ J , so it follows from the
definition of HRE(M)− that (I, J) ∈M.

Thus, to verify that M is RE-rule-expressible, it suffices to check that all interpreta-
tions fromM are RE-models of ‖M‖RE.

Proposition E.37. A set of three-valued interpretationsM is RE-rule-expressible if and only if
M⊆ [[‖M‖RE ]]RE.

Proof. IfM is an RE-rule-expressible set of interpretations, then there exists some rule π
such thatM = [[π ]]RE. By Corollary E.31, ‖M‖RE = ‖[[π ]]RE‖RE = canRE(π), so our goal is to
prove that [[π ]]RE ⊆ [[canRE(π)]]RE. This immediately follows from Theorem E.22.

For the converse implication, suppose that M ⊆ [[‖M‖RE ]]RE and put π = ‖M‖RE.
By Lemma E.36 we know that [[π ]]RE ⊆ M and together with our assumption we obtain
[[π ]]RE =M. HenceM is RE-rule-expressible.

The second characterisation follows from Lemma E.23 which tells us that if M is
RE-rule-expressible, then its complement consists of interpretations (I, J) following a
certain pattern. Their second component J always includes a fixed set of atoms and is
itself included in another fixed set of atoms. Their first component I satisfies a similar
property. More formally, for the sets

I⊥ = B(π)+, I> = A \H(π)+,

J⊥ = H(π)− ∪B(π)+, J> = A \B(π)−,

it holds that all interpretations from X \ M are of the form (I, J) where J⊥ ⊆ J ⊆ J>

and I⊥ ⊆ I ⊆ I>. It turns out that this also holds vice versa: if the X \ M satisfies the
above property, thenM is RE-rule-expressible. Furthermore, to accentuate the particular
structure that arises, we can substitute the condition J⊥ ⊆ J ⊆ J> with saying that
J belongs to a convex sublattice of I.1 A similar substitution can be performed for I ,
yielding:

Proposition E.38. A set of three-valued interpretationsM is RE-rule-expressible if and only if
there exist convex sublattices L1, L2 of (I,⊆) such that

X \M = { (I, J) ∈ X | I ∈ L1 ∧ J ∈ L2 } .

1A sublattice L of L′ is convex if u ∈ L whenever s, t ∈ L and s ≤ u ≤ t holds in L′. For more details see
e.g. (Davey and Priestley, 1990).
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Proof. Suppose thatM is an RE-rule-expressible set of interpretations. Then there exists
some rule π such that M = [[π ]]RE. Let the sets of interpretations L1, L2 be defined as
follows:

L1 =
{
I ∈ I

∣∣ B(π)+ ⊆ I ⊆ A \H(π)+
}

L2 =
{
J ∈ I

∣∣ H(π)− ⊆ J ⊆ A \B(π)−
}

It can be straightforwardly verified that these sets are convex sublattices of (I,⊆). It
remains to prove that

X \M = { (I, J) ∈ X | I ∈ L1 ∧ J ∈ L2 } . (E.20)

This follows directly by Lemma E.23.
Now suppose that L1, L2 are two convex sublattices of (I,⊆) such that (E.20) holds.

Let >1, ⊥1 be the top and bottom elements of L1 and >2, ⊥2 be the top and bottom
elements of L2. Furthermore, let π be a rule of the form

(A \ >1);∼⊥2 ← ⊥1,∼(A \ >2).

We prove thatM = [[π ]]RE. Take some three-valued interpretation (I, J). By Lemma E.16
we know that (I, J) /∈ [[π ]]RE if and only if I 6|= π+ and J 6|= π− which holds if and only if
B(π)+ ⊆ I and I ∩H(π)+ = ∅ and J ∩B(π)− = ∅ and H(π)− ⊆ J . In other words,

⊥1 ⊆ I and I ∩ (A \ >1) = ∅ and J ∩ (A \ >2) = ∅ and ⊥2 ⊆ J .

Equivalently, I ∈ L1 and J ∈ L2, so by (E.20) it is also equivalent to (I, J) /∈M.

Theorem E.39. LetM be a set of three-valued interpretations. Then the following conditions are
equivalent:

1. M is RE-rule-expressible.

2. M⊆ [[‖M‖RE ]]RE.

3. There exist convex sublattices L1, L2 of (I,⊆) such that

X \M = { (I, J) ∈ X | I ∈ L1 ∧ J ∈ L2 } .

Proof. Follows from Propositions E.37 and E.38.

E.2.4 Comparison of RE-Models with SE-Models

Proposition 7.21. If π, σ are two different abolishing rules or an abolishing rule and a constraint,
then π, σ are not RE-equivalent.

Proof. Follows from Corollary E.32 since every abolishing rule and every constraint is
RE-canonical.

Lemma E.40. For every rule π, canSE(π) = canSE(canRE(π)).

Proof. Follows directly from Definitions 7.7 and E.21.

Lemma E.41. If π is not RE-equivalent to any abolishing rule, then canRE(π) = canSE(π).

Proof. Follows directly from Definitions 7.7 and E.21.
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Proposition 7.22.

• If two rules are RE-equivalent, then they are SE-equivalent.

• If two rules, neither of which is RE-equivalent to an abolishing rule, are SE-equivalent,
then they are RE-equivalent.

• A rule is RE-tautological if and only if it is SE-tautological.

Proof. Suppose that π and σ are RE-equivalent. Then canRE(π) = canRE(σ) by Theo-
rem E.22 and Corollary E.32. By Lemma E.40 it follows that

canSE(π) = canSE(canRE(π)) = canSE(canRE(σ)) = canSE(σ)

and by Theorem 7.8 we can conclude that π, σ are SE-equivalent.
Now suppose that neither π nor σ is RE-equivalent to an abolishing rule and π is

RE-equivalent to σ. Then, by Theorem E.22, canRE(π) is RE-equivalent to canRE(σ) and
by Corollary E.32, canRE(π) = canRE(σ). Furthermore, it follows from Lemma E.41 that
canSE(π) = canSE(σ) and by Theorem 7.8, π is SE-equivalent to σ.

Finally, by Corollary E.32, a rule π is RE-tautological if and only if canRE(π) = τ which
holds if and only if canSE(π) = τ (c.f. Definitions 7.7 and E.21) which, by Corollary 7.15,
holds if and only if π is SE-tautological.

Proposition 7.23. An interpretation J is a stable model of a program P if and only if (J, J) ∈
[[P ]]RE and for all I ( J , (I, J) /∈ [[P ]]RE.

Proof. Suppose that J is a stable model of P. Then J is a subset-minimal model of PJ .
Thus, (J, J) is an RE-model of P. Now suppose that (I, J) is an RE-model of P for some
I ⊆ J . Then I |= PJ and by the minimality of J we then obtain that I = J .

Now suppose that (J, J) is an RE-model of P and for all I ( J , (I, J) is not an
RE-model of P. Then J |= PJ . Furthermore, it must also be a subset-minimal model
of PJ . Consequently, J is a stable model of P.

Proposition 7.24. LetM be a set of three-valued interpretations. Then there exists a program P
such that [[P ]]RE =M.

Proof. Let P contain the rule

π(I,J) : (A \ I);∼J ← I,∼(A \ J).

for all three-valued interpretations (I, J) that do not belong to M. It is an immediate
consequence of Lemma E.23 that [[π(I,J) ]]RE = X \ { (I, J) }. Thus,

[[P ]]RE =
⋂

(I,J)∈X\M

X \ { (I, J) } = X \
⋃

(I,J)∈X\M

{ (I, J) } = X \ (X \M) =M .

E.3 Program Equivalence and Entailment

Definition E.42. A program entailment relation is a preorder on the set of all programs. A
program equivalence relation is an equivalence relation on the set of all programs.

Given a program entailment relation |= and a program equivalence relation≡, we say
that |= is associated with ≡ if for all programs P, Q,

P ≡ Q if and only if P |= Q and Q |= P .
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Proposition 7.28. If X is one of SE, RE, SMR, RMR, SR, RR and SU, then the program entail-
ment relation |=X is associated with the program equivalence relation ≡X.

Proof. If X is SE, RE or SU, then the property follows immediately from the definitions of
|=X and ≡X.

If X is either SR or RR, then it follows from the definition of |=X that P |=X Q is
equivalent to 〈〈Pτ 〉〉X ⊇ 〈〈Qτ 〉〉X. Thus, P |=X Q together with Q |=X P is equivalent to
〈〈Pτ 〉〉X = 〈〈Qτ 〉〉X, which is the definition of P ≡X Q.

It remains to consider the case when X is SMR or RMR. Let Y be SE or RE, respectively.
First suppose that P ≡X Q. By the definition of ≡X we obtain that

min〈〈Pτ 〉〉Y = min〈〈Qτ 〉〉Y . (E.21)

Our goal is to prove that P |=X Q and Q |=X P. We only show the former; the proof
of the latter is analogous. Take some σ ∈ Q. Our goal is find some π ∈ Pτ such that
[[π ]]Y ⊆ [[σ ]]Y. Take some subset-minimal set of three-valued interpretationsM ∈ 〈〈Qτ 〉〉Y
such that M ⊆ [[σ ]]Y. It follows from (E.21) that M belongs to 〈〈Pτ 〉〉Y. In other words,
there exists some π ∈ Pτ such that [[π ]]Y =M⊆ [[σ ]]Y.

Now suppose that both P |=X Q and Q |=X P. We need to prove that P ≡X Q, i.e.
that min〈〈Pτ 〉〉Y = min〈〈Qτ 〉〉Y. We only show that min〈〈Pτ 〉〉Y ⊆ min〈〈Qτ 〉〉Y; the proof of the
other inclusion is analogical. Take some π ∈ Pτ such that

[[π ]]Y ∈ min〈〈Pτ 〉〉Y . (E.22)

Since Q |=X P, there exists some σ ∈ Qτ such that

[[σ ]]Y ⊆ [[π ]]Y . (E.23)

Let σ′ ∈ Qτ be such that

[[σ′ ]]Y ∈ min〈〈Qτ 〉〉Y and [[σ′ ]]Y ⊆ [[σ ]]Y . (E.24)

Since P |=X Q, there exists some π′ ∈ Pτ such that

[[π′ ]]Y ⊆ [[σ′ ]]Y . (E.25)

By (E.25), (E.24) and (E.23) we now obtain

[[π′ ]]Y ⊆ [[σ′ ]]Y ⊆ [[σ ]]Y ⊆ [[π ]]Y ,

so by (E.22) we can conclude that

[[π′ ]]Y = [[σ′ ]]Y = [[σ ]]Y = [[π ]]Y ,

Consequently, it follows from (E.24) that [[π ]]Y ∈ min〈〈Qτ 〉〉Y.

Lemma E.43. Let |=X, |=Y be program entailment relations and ≡X, ≡Y program equivalence
relations such that |=X is associated with ≡X and |=Y is associated with ≡Y. The following holds:

|=X� |=Y implies ≡X�≡Y .

Proof. Suppose that |=X� |=Y and take some programs P, Q such that P ≡Y Q. We need
to show that P ≡X Q. Since |=Y is associated with ≡Y, we can conclude that P |=Y Q

260



E. PROOFS: SEMANTIC CHARACTERISATIONS OF RULES AND PROGRAMS

and Q |=Y P. Furthermore, from |=X� |=Y it follows that P |=X Q and Q |=X P, and the
assumption that |=X is associated with ≡X implies P ≡X Q.

Corollary E.44. Let |=X, |=Y be program entailment relations and ≡X, ≡Y program equivalence
relations such that |=X is associated with ≡X and |=Y is associated with ≡Y. The following holds:

≡X≺≡Y and |=X≺ |=Y if and only if |=X� |=Y and ≡Y�≡X .

Proof. By the definition, ≡X≺≡Y and |=X≺ |=Y hold if and only if

≡X�≡Y and ≡Y�≡X and |=X� |=Y and |=Y� |=X . (E.26)

By Lemma E.43, |=X� |=Y implies ≡X�≡Y and ≡Y�≡X implies |=Y�≡X, so condition
(E.26) can be simplified to

|=X� |=Y and ≡Y�≡X .

Lemma E.45. Let π be a rule and J an interpretation. The following holds:

J |= π if and only if J |= πJ if and only if (J, J) ∈ [[π ]]RE .

Proof. Follows from Lemmas E.2 and E.3 and from the definition of RE-models.

Lemma E.46. Let Π, Σ be rules or programs. The following holds:

[[Π]]RE ⊆ [[Σ]]RE implies [[Π]]SE ⊆ [[Σ]]SE .

Proof. Assume that [[Π]]RE ⊆ [[Σ]]RE. Then for all three-valued interpretations (I, J),

I |= ΠJ implies I |= ΣJ . (E.27)

Together with Lemma E.45 this implies that for all interpretations J ,

J |= Π implies J |= ΠJ implies J |= ΣJ implies J |= Σ . (E.28)

In order to show that [[Π]]SE ⊆ [[Σ]]SE, take some (I, J) ∈ [[Π]]SE. By the definition of
SE-models,

J |= Π and I |= ΠJ ,

so by (E.28) and (E.27) we can conclude that

J |= Σ and I |= ΣJ .

Thus, by the definition of SE-models, (I, J) ∈ [[Σ]]SE.

Proposition 7.30. The following holds:

(1) ≡SM≺≡SE≺≡RE≺≡RMR≺≡RR≺≡SU and |=SE≺ |=RE≺ |=RMR≺ |=RR≺ |=SU ;

(2) ≡SE≺≡SMR≺≡SR≺≡RR and |=SE≺ |=SMR≺ |=SR≺ |=RR ;

(3) ≡SMR≺≡RMR and |=SMR≺ |=RMR ;

(4) ≡RE�≡SMR and ≡SMR�≡RE and |=RE� |=SMR and |=SMR� |=RE ;

(5) ≡RE�≡SR and ≡SR�≡RE and |=RE� |=SR and |=SR� |=RE ;

(6) ≡RMR�≡SR and ≡SR�≡RMR and |=RMR� |=SR and |=SR� |=RMR .
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Proof. We consider each statement separately:

(1) First we show that≡SM≺≡SE, i.e. that≡SM�≡SE and≡SE�≡SM. To verify the former,
suppose that P, Q are programs with P ≡SE Q. Then, according to Proposition 6.4,
P ∪ ∅ has the same stable models as Q ∪ ∅. Consequently, P ≡SM Q. To see that
≡SE�≡SM, observe that the programs P = ∅, Q = { p← q. } are SM-equivalent but
not SE-equivalent.

Turning to the remaining relationships, it follows from Corollary E.44 that we can
instead prove that

|=SE� |=RE� |=RMR� |=RR� |=SU and ≡SU�≡RR�≡RMR�≡RE�≡SE .
(E.29)

We first concentrate on the left-hand side of (E.29). In order to show that |=SE� |=RE,
suppose that P, Q are programs such that P |=RE Q. Then [[P ]]RE ⊆ [[Q ]]RE and it
follows from Lemma E.46 that [[P ]]SE ⊆ [[Q ]]SE. Consequently, P |=SE Q.

We also need to prove that |=RE� |=RMR. Take some programs P, Q with P |=RMR Q
and put Pτ = P ∪ { τ }. It follows that

∀σ ∈ Q∃πσ ∈ Pτ : [[πσ ]]RE ⊆ [[σ ]]RE . (E.30)

We need to prove that [[P ]]RE ⊆ [[Q ]]RE. Suppose that X ∈ [[P ]]RE. Then for all π ∈ P,

X ∈ [[π ]]RE . (E.31)

Take some σ ∈ Q. Our goal is to show that X ∈ [[σ ]]RE. By (E.30) there exists some
πσ ∈ Pτ such that [[πσ ]]RE ⊆ [[σ ]]RE. If πσ = τ , then it immediately follows that
X ∈ X = [[τ ]]RE ⊆ [[σ ]]RE. If πσ ∈ P, then X ∈ [[πσ ]]RE by (E.31), so that X ∈ [[σ ]]RE.

Our next goal is to show that |=RMR� |=RR. This follows directly by the definitions of
|=RMR and |=RR.

To prove the final part of the left-hand side of (E.29), suppose that P |=SU Q. Then

[[Q \ P ]]SE = X . (E.32)

We need to prove that P |=RR Q, i.e. that for every σ ∈ Q there is some π ∈ Pτ
such that [[π ]]RE = [[σ ]]RE. Pick some σ ∈ Q. Note that Q = (Q ∩ P) ∪ (Q \ P). If
σ ∈ Q ∩ P, then σ ∈ P and we can put π = σ to finish the proof. In the remaining
case, σ ∈ Q \ P and it follows from (E.32) that [[σ ]]SE = X. Thus, putting π = τ
finishes the proof.

As for the right-hand side of (E.29), we can see that≡SU�≡RR because the programs
P = {∼p← p. } and Q = {← p. } are RR-equivalent but not SU-equivalent.

Similarly, programs P = { p. } and Q = { p., p← q. } are RMR-equivalent but not
RR-equivalent, so it follows that ≡RR�≡RMR.

Next, to verify that ≡RMR�≡RE it suffices to observe that the programs P = { p., q. }
and Q = { p., q ← p. } are RE-equivalent but not RMR-equivalent.

Finally, programsP = {∼p. } andQ = {← p. } are SE-equivalent but not RE-equiv-
alent, proving that ≡RE�≡SE.

(2) It follows from Corollary E.44 that we can instead prove that

|=SE� |=SMR� |=SR� |=RR and ≡RR�≡SR�≡SMR�≡SE . (E.33)
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We first concentrate on the left-hand side of (E.33). To prove that |=SE� |=SMR, take
some programs P, Qwith P |=SMR Q and put Pτ = P ∪ { τ }. It follows that

∀σ ∈ Q∃πσ ∈ Pτ : [[πσ ]]SE ⊆ [[σ ]]SE . (E.34)

We need to prove that [[P ]]SE ⊆ [[Q ]]SE. Suppose that X ∈ [[P ]]SE. Then for all π ∈ P,

X ∈ [[π ]]SE . (E.35)

Take some σ ∈ Q. Our goal is to show that X ∈ [[σ ]]SE. By (E.34) there exists some
πσ ∈ Pτ such that [[πσ ]]SE ⊆ [[σ ]]SE. If πσ = τ , then it immediately follows that
X ∈ X = [[τ ]]SE ⊆ [[σ ]]SE. If πσ ∈ P, then X ∈ [[πσ ]]SE by (E.31), so that X ∈ [[σ ]]SE.

Our next goal is to show that |=SMR� |=SR. This follows directly by the definitions of
|=SMR and |=SR.

To prove the final part of the left-hand side of (E.33), suppose that P |=RR Q. Then

∀σ ∈ Q∃π ∈ P : [[π ]]RE = [[σ ]]RE

and, due to Lemma E.46, we obtain that

∀σ ∈ Q∃π ∈ P : [[π ]]SE = [[σ ]]SE .

Consequently, P |=SR Q.

As for the right-hand side of (E.29), we can see that≡RR�≡SR because the programs
P = {∼p. } and Q = {← p. } are SR-equivalent but not RR-equivalent.

Similarly, programs P = { p. } and Q = { p., p← q. } are SMR-equivalent but not
SR-equivalent, so it follows that ≡SR�≡SMR.

Finally, to verify that≡SMR�≡SE it suffices to observe that the programsP = { p., q. }
and Q = { p., q ← p. } are SE-equivalent but not SMR-equivalent.

(3) It follows from Corollary E.44 that we can instead prove that

|=SMR� |=RMR and ≡RMR�≡SMR . (E.36)

To show the former, take some programs P, Q such that P |=RMR Q. It follows that

∀σ ∈ Q∃π ∈ P : [[π ]]RE ⊆ [[σ ]]RE

and, due to Lemma E.46, we obtain that

∀σ ∈ Q∃π ∈ P : [[π ]]SE ⊆ [[σ ]]SE .

Consequently, P |=SMR Q.

As for the latter, it suffices to observe that the programs P = {∼p. } and Q =
{← p. } are SMR-equivalent but not RMR-equivalent.

(4) According to Lemma E.43, it suffices to show that ≡RE�≡SMR and ≡SMR�≡RE. The
former follows from the fact that the programs P = {∼p. } and Q = {← p. } are
SMR-equivalent but not RE-equivalent. The latter can be verified by observing that
though the programs P = { p., q. } and Q = { p., q ← p. } are RE-equivalent, they
are not SMR-equivalent.
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(5) According to Lemma E.43, it suffices to show that ≡RE�≡SR and ≡SR�≡RE. The
former follows from the fact that the programs P = {∼p. } and Q = {← p. } are
SR-equivalent but not RE-equivalent. The latter can be verified by observing that
though the programs P = { p., q. } and Q = { p., q ← p. } are RE-equivalent, they
are not SR-equivalent.

(6) According to Lemma E.43, it suffices to show that ≡RMR�≡SR and ≡SR�≡RMR. The
former follows from the fact that the programs P = {∼p. } and Q = {← p. } are
SR-equivalent but not RMR-equivalent. The latter can be verified by observing that
the programs P = { p. } and Q = { p., p← q. } are RMR-equivalent, they are not
SR-equivalent.
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F
Proofs: Exception-Based Updates

In the following we present proofs of results from Chapter 8, implicitly working under
the same assumptions as those imposed in that chapter. That is, we constrain ourselves to
propositional logic programs without explicit negation over a finite set of propositional
atoms A.

F.1 Exception-Based Rule Update Operators

Before we start with the proofs of syntactic and semantic properties of exception-based
rule update operators, we take a closer look in Section F.1.1 at the conditions under which
a set of three-valued interpretations forces an atom to have a certain truth value (MJ(p) =
V), and under which two sets of three-valued interpretations are in a conflict (M 1Jp N ).
Then, in Sections F.1.2, F.1.3 and F.1.4, we prove the syntactic properties of δa-, δb- and
δc-based rule update operators, respectively. Finally, Section F.1.5 is concerned with the
semantic properties of exception-based rule update operators.

F.1.1 Conflict Between Sets of RE-Models

First we define some notation that we will need in the following.

Definition F.1 (Additional Notation). Let X be a three-valued interpretation. Given an
atom p, we say that X is an RE-model of p if X(p) = T. We say that X is an RE-model of
∼p if X(p) = F. We denote the set of all RE-models of a literal L by [[L ]]RE. Given a set of
literals S, we say that X is an RE-model of S if X is an RE-model of all literals in S. We
denote the set of all RE-models of S by [[S ]]RE.

Given a rule π, we say H(π)+ is the positive head of π, H(π)− is the negative head of π,
B(π)+ is the positive body of π and B(π)− is the negative body of π.

Given a sequence of rule basesR = 〈Ri〉i<n, we define

〈〈R〉〉RE = 〈〈〈Ri〉〉RE〉i<n .
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Lemma F.2. Let π be a rule and J1, J2 be interpretations such that both πJ1 and πJ2 are different
from τ . Then πJ1 = πJ2 .

Proof. Follows directly from the definition of a rule reduct.

Lemma F.3. Let π be a rule, p an atom and X = (I, J) a three-valued interpretation. If (I \
{ p } , J ∪ { p }) is not an RE-model of π, then the following holds:

1. Neither p nor ∼p belongs to B(π);

2. X is an RE-model of B(π);

3. X is not an RE-model of any literal from H(π) \ { p,∼p }.

Proof. From the assumption it follows that πJ∪{ p } is different from τ . This has two con-
sequences. First, H(π)− is included in J ∪ { p }, so all atoms from H(π)−, except possibly
p, belong to J , and thus

X is not an RE-model of any default literal
from H(π) \ {∼p }.

(F.1)

The second consequence is that B(π)− ∩ (J ∪ { p }) is empty. Hence, ∼p does not belong
to B(π). Furthermore, B(π)− ∩ J must also be empty, so we can conclude that

X is an RE-model of all default literals from B(π). (F.2)

It also follows from the assumption that I \ { p } contains B(π)+ but does not contain any
atom fromH(π)+. As a consequence, p does not belong toB(π) and we can also conclude
that

X is an RE-model of all atoms from B(π); and (F.3)
X is not an RE-model of any atom from H(π) \ { p }. (F.4)

We can now use (F.2) and (F.3) to conclude that X is an RE-model of B(π) and, similarly,
we can use (F.1) and (F.4) to conclude that X is not an RE-model of any literal from
H(π) \ { p,∼p }.

Lemma F.4. Let π be a rule, p an atom and X = (I, J) a three-valued interpretation. Then
(I \ { p } , J ∪ { p }) is not an RE-model of π if the following holds:

1. Neither p nor ∼p belongs to B(π);

2. X is an RE-model of B(π);

3. X is not an RE-model of any literal from H(π) \ { p,∼p }.

Proof. We need to prove that I \ { p } is not a model of πJ∪{ p }. We first need to show that
πJ∪{ p } is equal to the rule H(π)+ ← B(π)+. This holds if H(π)− is included in J ∪ { p }
and B(π)− is disjoint with J ∪ { p }. Since X is an RE-model of B(π), we can conclude
that the set B(π)− is disjoint with J which, together with the assumption that ∼p does
not belong to B(π), implies that B(π)− is disjoint with J ∪ { p }. We also know that X is
not an RE-model of any literal fromH(π)\{ p,∼p }, so we can conclude thatH(π)− \{ p }
is included in J . Thus, H(π)− is included in J ∪ { p } and we managed to prove that
πJ∪{ p } is equal to the rule H(π)+ ← B(π)+.

It remains to show that I \ { p } includes B(π)+ and that it does not contain any atom
from H(π)+. We know that X is an RE-model of B(π), so I includes B(π)+. Also, since
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p does not belong to B(π), I \ { p } also includes B(π)+. Finally, we know that X is
not an RE-model of any atom from H(π)+ \ { p }, so I does not contain any atom from
H(π)+ \ { p }. This implies that I \ { p } does not contain any atom from H(π)+.

Proposition F.5. Let π be a rule, p an atom and X = (I, J) a three-valued interpretation. Then
(I \ { p } , J ∪ { p }) is not an RE-model of π if and only if the following holds:

1. Neither p nor ∼p belongs to B(π);

2. X is an RE-model of B(π);

3. X is not an RE-model of any literal from H(π) \ { p,∼p }.

Proof. Follows from Lemmas F.3 and F.4.

Corollary F.6. Let π be a rule, p an atom and J an interpretation with p ∈ J . If (J, J) is an
RE-model of π but (J \ { p } , J) is not, then p ∈ H(π) and J |= B(π).

Proof. It follows immediately from Proposition F.5 that J |= B(π). Furthermore, by the
definition of RE-model, J is a model of πJ while J \ { p } is not. Hence J contains some
atom from H(π) that is not contained in J \ { p }. This atom can only be p.

Lemma F.7. Let π be a rule,M = [[π ]]RE, p an atom, J an interpretation and V a truth value. If
MJ(p) = V, then the following holds:

1. Neither p nor ∼p belongs to B(π);

2. J is a model of B(π);

3. J is not a model of any literal from H(π) \ { p,∼p };
4. One of the following conditions holds:

(a) V is T and H(π) ∩ { p,∼p } = { p }, or

(b) V is F and H(π) ∩ { p,∼p } = {∼p }.

Proof. First assume that V = T. Then (J ∪ { p } , J ∪ { p }) is an RE-model of π although
both (J \{ p } , J∪{ p }) and (J \{ p } , J \{ p }) are not. By Proposition F.5 and Lemma E.45
we can conclude that the first three of the properties that we need to prove are satisfied.
It remains to show that H(π) ∩ { p,∼p } = { p }, i.e. that p belongs to H(π)+ but it does
not belong to H(π)−. To see that the former holds, note that J \ { p } is not a model of
πJ∪{ p }, so J \ { p } includes B(π)+ and it does not contain any atom from H(π)+. Since
we know that J ∪ { p } is a model of πJ∪{ p }, it must be the case that J ∪ { p } contains an
atom from H(π)+. This atom can only be p. Finally, if p were a member of H(π)−, then
πJ\{ p } would coincide with τ , so (J \{ p } , J \{ p }) would be an RE-model of π, contrary
to the assumption.

Now assume that V = F. Then (J \ { p } , J \ { p }) is an RE-model of π although both
(J \ { p } , J ∪ { p }) and (J ∪ { p } , J ∪ { p }) are not. By Proposition F.5 and Lemma E.45
we can conclude that the first three of the properties that we need to prove are satisfied.
It remains to show that H(π) ∩ { p,∼p } = {∼p }, i.e. that p belongs to H(π)− but it does
not belong to H(π)+. To see that the former holds, note that by the assumption J \ { p }
is a model of πJ\{ p } while it is not a model of πJ∪{ p }. Hence, πJ\{ p } must be equal to
τ . We know that B(π)− is disjoint with J ∪ { p }, so it must also be disjoint with J \ { p }.
Thus, there must exist some atom from H(π)− that is not contained in J \ { p } while it
was contained in J ∪{ p }. This atom can only be p. Finally, if p were a member of H(π)+,
then J ∪ { p } would contain an atom from H(π)+, so (J ∪ { p } , J ∪ { p }) would be an
RE-model of π, contrary to the assumption.
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Finally, we show by contradiction that V cannot be equal to U. Suppose that V = U.
Then the following conditions are satisfied:

(J ∪ { p }) 6|= πJ∪{ p } , (F.5)

(J \ { p }) |= πJ∪{ p } , (F.6)

(J \ { p }) 6|= πJ\{ p } . (F.7)

From (F.5) and (F.7) it follows that both πJ\{ p } and πJ∪{ p } are different from τ , so they
must be identical (cf. Lemma F.2) and so (F.6) is in conflict with (F.7).

Lemma F.8. Let π be a rule,M = [[π ]]RE, p an atom, J an interpretation and V a truth value.
ThenMJ(p) = V if the following holds:

1. Neither p nor ∼p belongs to B(π);

2. J is a model of B(π);

3. J is not a model of any literal from H(π) \ { p,∼p };
4. One of the following conditions holds:

(a) V is T and H(π) ∩ { p,∼p } = { p }, or

(b) V is F and H(π) ∩ { p,∼p } = {∼p }.

Proof. Let

XT = (J ∪ { p } , J ∪ { p }) ,

XU = (J \ { p } , J ∪ { p }) ,

XF = (J \ { p } , J \ { p }) .

First suppose that V is T and H(π) ∩ { p,∼p } = { p }. We need to show that XT is an
RE-model of π while both XU and XF are not. The first property follows directly from
the fact that p belongs toH(π)+ andXT is an RE-model of p. The second property follows
from Proposition F.5 and Lemma E.45. To show that the third is also satisfied, note that
since XU is not an RE-model of π, the rule πJ∪{ p } coincides with the rule H(π)+ ←
B(π)+. This implies thatB(π)− is disjoint with J∪{ p } andH(π)− is included in J∪{ p }.
As a consequence, B(π)− is also disjoint with J \ { p }. Moreover, from our assumptions
we know that H(π) ∩ { p,∼p } = { p }, which means that p does not belong to H(π)−.
Thus, H(π)− is included in J \ { p }. As a consequence, the rule πJ\{ p } also coincides
with the rule H(π)+ ← B(π)+. Furthermore, since XU is not an RE-model of π, J \ { p }
is not a model of πJ∪{ p }. Since πJ∪{ p } = πJ\{ p }, we obtain that J \ { p } is not a model
of πJ\{ p }. Hence XF is not an RE-model of π.

Next, suppose that V is F and H(π) ∩ { p,∼p } = {∼p }. We need to show that XF is
an RE-model of π while bothXU andXT are not. The first property follows directly from
the fact that p belongs toH(π)− but does not belong to J \{ p } because in this case πJ\{ p }

coincides with τ . The second property follows from Proposition F.5 and Lemma E.45. To
show that the third is also satisfied, note that since XU is not an RE-model of π, the rule
πJ∪{ p } coincides with the rule H(π)+ ← B(π)+ and J \ { p } is not a model of πJ∪{ p }, i.e.
J \ { p } includes B(π)+ but does not contain any atom from H(π)+. Thus, J ∪ { p } also
includes B(π)+ and from our assumption that H(π)∩ { p,∼p } = {∼p }we can conclude
that p does not belong to H(π)+. Thus, J ∪ { p } does not contain any atom from H(π)+

and, consequently, XT is not an RE-model of π.

268



F. PROOFS: EXCEPTION-BASED UPDATES

Proposition F.9. Let π be a rule, M = [[π ]]RE, p an atom, J an interpretation and V a truth
value. ThenMJ(p) = V if and only if the following holds:

1. Neither p nor ∼p belongs to B(π);

2. J is a model of B(π);

3. J is not a model of any literal from H(π) \ { p,∼p };
4. One of the following conditions holds:

(a) V is T and H(π) ∩ { p,∼p } = { p }, or

(b) V is F and H(π) ∩ { p,∼p } = {∼p }.

Proof. Follows from Lemmas F.7 and F.8.

Proposition F.10. Let π and σ be non-disjunctive rules, M = [[π ]]RE, N = [[σ ]]RE, and J an
interpretation. Then M 1Jp N if and only if for some L ∈ { p,∼p }, H(π) = {L }, H(σ) =
{∼L }, J is a model of both B(π) and B(σ), and B(π), B(σ) do not contain p nor ∼p.

Proof. Follows directly from Proposition F.9.

Corollary F.11. Let π and σ be facts,M = [[π ]]RE, N = [[σ ]]RE and J an interpretation. Then
M 1Jp N if and only if for some L ∈ { p,∼p }, π = (L.) and σ = (∼L.).

Proof. Follows directly from Proposition F.10.

F.1.2 Syntactic Properties of δa-Based Operators

Definition F.12. Let M be a set of three-valued interpretations, S a set of sets of three-
valued interpretations and δ a local exception function. We define

augδ(M,S) =M∪
⋃
N∈S

δ(M,N ) .

We extend this definition to sequences of sets of sets of three-valued interpretations in-
ductively as follows:

augδ(M, 〈〉) =M ,

augδ(M, 〈Si〉i<n+1) = augδ(augδ(M, 〈Si〉i<n),Sn) .

Lemma F.13. LetM be a set of three-valued interpretations, S a set of sets of three-valued inter-
pretations and δ a local exception function. Then,

augδ(M, 〈S〉) = augδ(M,S) .

Proof. It suffices to observe that

augδ(M, 〈S〉) = augδ(augδ(M, 〈〉),S) = augδ(M,S) .

Proposition F.14. Let R = 〈Ri〉i<n be a sequence of rule bases, Si = 〈〈Ri〉〉RE for all i < n, and
⊕ a δ-based rule update operator. Then 〈〈

⊕
R〉〉RE coincides with

{ augδ (M, 〈Si〉j<i<n) | ∃j < n :M∈ Sj } .

Proof. We prove by induction on n.
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1◦ If n = 1, then 〈〈
⊕
R〉〉RE = 〈〈R0〉〉RE and

{ augδ(M, 〈Si〉j<i<n) | ∃j < n :M∈ Sj } = { augδ(M, 〈〉) | M ∈ S0 }
= {M | M ∈ 〈〈R0〉〉RE } = 〈〈R0〉〉RE .

2◦ Assuming that the proposition holds for n, we prove it for n + 1. Let R = 〈Ri〉i<n.
By the inductive assumption we know that 〈〈

⊕
R〉〉RE coincides with the set

{ augδ (M, 〈Si〉j<i<n) | ∃j < n :M∈ Sj } .

Let R′ = 〈Ri〉i≤n. By the definition of
⊕

, 〈〈
⊕
R′〉〉RE can be written as 〈〈(

⊕
R) ⊕

Rn〉〉RE, expanded to{
M∪

⋃
N∈Sn

δ(M,N )

∣∣∣∣∣M∈ 〈〈⊕R′
〉〉

RE

}
∪ 〈〈Rn〉〉RE

and then simplified to{
augδ(M,Sn)

∣∣∣∣M∈ 〈〈⊕R′
〉〉

RE

}
∪ 〈〈Rn〉〉RE .

By using the inductive hypothesis and the definition of augδ(·, ·) we can also write
this as

{ augδ(M, 〈Si〉j<i≤n) | ∃j < n :M∈ Sj } ∪ { augδ(M, 〈〉) | M ∈ Sn }

and then simplify it to

{ augδ(M, 〈Si〉j<i≤n) | ∃j ≤ n :M∈ Sj } .

Corollary F.15. Let R = 〈Ri〉i<n be a sequence of rule bases and ⊕ a δ-based rule update
operator. Then 〈〈

⊕
R〉〉RE coincides with

{ augδ ([[π ]]RE, 〈〈〈Ri〉〉RE〉j<i<n) | ∃j < n : π ∈ Rj } .

Proof. Follows from Proposition F.14 and from the fact that [[ · ]]RE and augδ(·, ·) are func-
tions.

Lemma F.16. LetM be a set of three-valued interpretations, S a sequence of sets of sets of three-
valued interpretations, J an interpretation and p an atom. If (J, J) belongs to augδa(M,S), but
(J \ { p } , J) does not, then (J, J) belongs toM.

Proof. Let S = 〈Si〉i<n. We prove by induction on n.

1◦ If n = 0, then the property follows trivially from the fact that augδa(M,S) =M.

2◦ Suppose that the property holds for n. We will prove it for n + 1. So suppose
that (J, J) belongs to augδa(M, 〈Si〉i<n+1) but (J \ { p } , J) does not. Let M′ =
augδa(M, 〈Si〉i<n) and note that

augδa(M, 〈Si〉i<n+1) = augδa(augδa(M, 〈Si〉i<n),Sn) =M′ ∪
⋃
N∈Sn

δa(M′,N ) .

Thus, either (J, J) belongs toM′ or to δa(M′,N ) for some N ∈ Sn. In the former
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case we can use the inductive assumption to conclude that (J, J) belongs to M.
In the latter case it follows from the definition of δa that δa(M′,N ) also contains
(J \ { p } , J). But this is in conflict with the assumption that (J, \ { p } , J) does not
belong to augδa(M, 〈Si〉i<n+1).

Proposition F.17. Every δa-based rule update operator respects support.

Proof. Let⊕ be some δa-based rule update operator, pick some DLP P = 〈Pi〉i<n, suppose
that J is a stable model of

⊕
P and take some p ∈ J . We need to show that for some rule

π ∈ all(P ), p ∈ H(π) and J |= B(π).
Since J is a stable model of

⊕
P , we know that (J, J) belongs to [[

⊕
P ]]RE and for all

I ( J , (I, J) does not belong to [[
⊕

P ]]RE. In particular, (J \ { p } , J) does not belong to
[[
⊕

P ]]RE. Consequently, there is some set of three-valued interpretations N ∈ 〈〈
⊕

P 〉〉RE
such that (J \ { p } , J) does not belong to N although (J, J) does. According to Proposi-
tion F.14, N is of the form

augδ (M, 〈〈〈Pi〉〉RE〉j<i<n)

whereM ∈ 〈〈Pj〉〉RE for some j < n. Let π be a rule from Pj such that [[π ]]RE = M. Since
(J \ { p } , J) does not belong toN , it cannot belong toM sinceM is a subset ofN . Also,
by Lemma F.16, (J, J) belongs toM. It now follows from Corollary F.6 that p ∈ H(π) and
J |= B(π).

Lemma F.18. Let P be a finite sequence of sets of facts and L a literal. Then,

augδa([[L. ]]RE, 〈〈P 〉〉RE) =

{
X (∼L.) ∈ all(P ) ;

[[L. ]]RE otherwise .

Proof. Let P = 〈Pi〉i<n. We prove by induction on n.

1◦ If n = 0, then the property follows trivially from the fact that augδa([[L. ]]RE, 〈〈P 〉〉RE) =
[[L. ]]RE.

2◦ Suppose that the property holds for n; we prove it for n + 1. Put P ′ = 〈Pi〉i≤n and
note that augδa([[L. ]]RE, 〈〈P

′〉〉RE) is the same as

augδa(augδa([[L. ]]RE, 〈〈P 〉〉RE), 〈〈Pn〉〉RE) .

By the inductive assumption, one of the following cases occurs:

a) (∼L.) ∈ all(P ) and augδa([[L. ]]RE, 〈〈P
′〉〉RE) = augδa(X, 〈〈Pn〉〉RE). Thus, (∼L.) also

belongs to all(P ′) and since X is a subset of augδa(X, 〈〈Pn〉〉RE), we can conclude
that augδa([[L. ]]RE, 〈〈P

′〉〉RE) is equal to X.

b) (∼L.) /∈ all(P ) and augδa([[L. ]]RE, 〈〈P
′〉〉RE) = augδa([[L. ]]RE, 〈〈Pn〉〉RE) which is the

same as
[[L. ]]RE ∪

⋃
N∈〈〈Pn〉〉RE

δa([[L. ]]RE,N ) .

Pick some N ∈ 〈〈Pn〉〉RE. By the definition of δa and by Corollary F.11 we can
conclude that δa([[L. ]]RE,N ) is equal to X if and only ifN = [[∼L. ]]RE; otherwise
it is empty. Thus, augδa([[L. ]]RE, 〈〈P

′〉〉RE) is equal to X if and only if [[∼L. ]]RE
belongs to 〈〈Pn〉〉RE; otherwise it is equal to [[L. ]]RE. It only remains to observe
that since (∼L.) does not belong to all(P ), it belongs to all(P ′) if and only if it
belongs to Pn which is if and only if [[∼L. ]]RE belongs to 〈〈Pn〉〉RE due to the fact
that two different facts are RE-canonical and thus not RE-equivalent.
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Corollary F.19. Let P = 〈Pi〉i<n be a finite sequence of sets of facts and⊕ a δa-based rule update
operator. Then 〈〈

⊕
P 〉〉RE ∪ {X } coincides with

{ [[L. ]]RE | ∃j < n : (L.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼L.) /∈ Pi) } ∪ {X } .

Proof. By Corollary F.15, 〈〈P 〉〉RE coincides with

{ augδ ([[π ]]RE, 〈〈〈Pi〉〉RE〉j<i<n) | ∃j < n : π ∈ Pj }

which can also be written as

{ augδ ([[L. ]]RE, 〈〈〈Pi〉〉RE〉j<i<n) | ∃j < n : (L.) ∈ Pj } .

Furthermore, due to Lemma F.18, we can equivalently write this as

{ X | ∃i, j, L : j < i < n ∧ (L.) ∈ Pj ∧ (∼L.) ∈ Pi }
∪ { [[L. ]]RE | ∃j < n : (L.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼L.) /∈ Pi) } .

Thus, 〈〈P 〉〉RE ∪ {X } is the same as

{ [[L. ]]RE | ∃j < n : (L.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼L.) /∈ Pi) } ∪ {X } .

Proposition F.20. Every δa-based rule update operator respects fact update.

Proof. Let P = 〈Pi〉i<n be a finite sequence of consistent sets of facts, J the interpretation

{ p | ∃j < n : (p.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼p.) /∈ Pi) }

and⊕ a δa-based rule update operator. We need to show that J is the unique stable model
of
⊕

P .
We start by proving that (J, J) belongs to [[

⊕
P ]]RE. Pick some set of three-valued

interpretationsM from 〈〈
⊕

P 〉〉RE. By Corollary F.19 we know thatM is either X, or it is
equal to [[L. ]]RE where

∃j < n : (L.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼L.) /∈ Pi) .

In the former case it trivially holds that (J, J) belongs toM = X. Now suppose that L is
an atom p. Then, by its definition, J contains p, so (J, J) belongs to [[p. ]]RE = M. On the
other hand, if L is a default literal ∼p, then the fact (p.) does not belong to Pj because Pj
is consistent, and it also does not belong to Pi for any i with j < i < n. So p does not
belong to J and, hence, (J, J) belongs to [[∼p. ]]RE =M.

Now suppose that (I, J) belongs to [[
⊕

P ]]RE and take some p ∈ J . Then,

∃j < n : (p.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼p.) /∈ Pi) ,

so, by Corollary F.19, [[p. ]]RE belongs to 〈〈
⊕

P 〉〉RE. Since (I, J) belongs to [[
⊕

P ]]RE, it must
also belong to [[p. ]]RE. Thus, p belongs to I and as the choice of p ∈ J was arbitrary, we
can conclude that I = J . As a consequence, J is indeed a stable model of

⊕
P .

It remains to prove that J is the only stable model of
⊕

P . Suppose that J ′ is a stable
model of

⊕
P and take some p ∈ J . We will show that p belongs to J ′. We know that

∃j < n : (p.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼p.) /∈ Pi) ,
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so, by Corollary F.19, [[p. ]]RE belongs to 〈〈
⊕

P 〉〉RE. Since J ′ is a stable model of
⊕

P ,
(J ′, J ′) belongs to [[

⊕
P ]]RE and, consequently, also to [[p. ]]RE. Thus, p must belong to J ′.

Now take some atom p that does not belong to J . We will show that p does not belong to
J ′ either. There are two cases to consider:

a) If (p.) does not belong to Pj for all j < n, then it can be seen that (J ′ \ { p } , J ′)
belongs to all elements of 〈〈

⊕
P 〉〉RE. Thus, since J ′ is a stable model of

⊕
P , J ′ \

{ p } = J ′ and, consequently, p does not belong to J ′.

b) If (p.) belongs to Pj0 for some j0 < n and whenever (p.) belongs to Pj for some
j, there is some i with j < i < n such that (∼p.) belongs to Pi, then there must
exist some j1 such that (∼p.) belongs to Pj1 and for all i with j1 < i < n, (p.) does
not belong to Pi. Consequently, [[∼p. ]]RE belongs to 〈〈

⊕
P 〉〉RE. Thus, since (J ′, J ′)

belongs to [[
⊕

P ]]RE, it follows that p cannot belong to J ′.

As desired, we have shown that J = J ′.

Proposition F.21. Let P = 〈P,U〉 be a dynamic logic program,⊕ a δa-based rule update operator
and J an interpretation. If J is a stable model of

⊕
P , then J is a justified update model of P .

Proof. From the assumption we can conclude that (J, J) is an RE-model of P ⊕U and for
every I ( J , (I, J) is not an RE-model of P ⊕ U .

We need to show that J is a minimal model of the program

Q = [all(P ) \ rej(P , J)]J .

First we prove that J is a model of Q. Take some rule π′ ∈ Q and let π be a rule from
[all(P ) \ rej(P , J)] such that π′ = πJ . We consider two cases:

a) If π belongs to U , then since (J, J) belongs to [[P ⊕ U ]]RE and 〈〈P ⊕ U〉〉RE contains
[[π ]]RE, (J, J) must also belong to [[π ]]RE. Thus, J is a model of π and consequently
also a model of π′ = πJ .

b) If π belongs to P \ rej(P , J), then since (J, J) belongs to [[P ⊕ U ]]RE and 〈〈P ⊕ U〉〉RE
contains [[π ]]RE ∪

⋃
σ∈U δa([[π ]]RE, [[σ ]]RE), (J, J) must also belong to

[[π ]]RE ∪
⋃
σ∈U

δa([[π ]]RE, [[σ ]]RE) .

Suppose first that for some rule σ ∈ U , (J, J) belongs to the set

δa([[π ]]RE, [[σ ]]RE) .

This implies that [[π ]]RE 1Jp [[σ ]]RE for some atom p and by Proposition F.10 we can
conclude that π belongs to rej(P , J), contrary to the assumption. Thus, (J, J) does
not belong to the set ⋃

σ∈U
δa([[π ]]RE, [[σ ]]RE)

and, consequently, it belongs to [[π ]]RE. Hence, J is a model of π and, consequently,
it is also a model of π′ = πJ .

It remains to prove that J is a minimal model ofQ. Take some model I ofQ such that
I is a subset of J . We need to show that I = J .

In the following we will show that (I, J) is a member of the set [[P ⊕ U ]]RE which,
together with the assumption that J is a stable model of P ⊕ U , implies that I = J .
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So in order to finish the proof, take some set M from 〈〈P ⊕ U〉〉RE. We need to show
that (I, J) belongs toM. Recall that

〈〈P ⊕ U〉〉RE =

{
[[π ]]RE ∪

⋃
σ∈U

δa([[π ]]RE, [[σ ]]RE)

∣∣∣∣∣ π ∈ P
}
∪ 〈〈U〉〉RE .

IfM belongs to 〈〈U〉〉RE, then there is some rule π ∈ U such thatM = [[π ]]RE. Moreover,
πJ belongs to Q, so I is a model of πJ . It then follows that (I, J) is an RE-model of π, i.e.
that (I, J) belongs toM, as we wanted to show.

The remaining case is when for some π ∈ P,

M = [[π ]]RE ∪
⋃
σ∈U

δa([[π ]]RE, [[σ ]]RE) .

Suppose that (I, J) does not belong to [[π ]]RE. Then I is not a model of πJ . Since I is a
subset of J , we can conclude from this that

J |= B(π) . (F.8)

Furthermore, from our assumption that I is a model ofQ it then follows that πJ does not
belong to Q and, consequently, π belongs to rej(P , J). So there must be some rule σ ∈ U
such that H(π) = ∼H(σ) and J |= B(σ). Since we know from the previous part of the
proof that J is a model of Q, we can conclude that J |= H(σ), so J 6|= H(π).

Thus, it follows from (F.8) that J is not a model of π, so (J, J) is not an RE-model of π.
But since J is a stable model of P⊕U , (J, J) must belong to δa([[π ]]RE, [[σ

′ ]]RE) for some σ′ ∈
U and from the definition of δa(·, ·) we obtain that (I, J) also belongs to δa([[π ]]RE, [[σ

′ ]]RE).
This implies that (I, J) belongs toM and our proof is finished.

Proposition F.22. Let P = 〈P,U〉 be a DLP free of local cycles,⊕ a δa-based rule update operator
and J an interpretation. If J is a justified update model of P , then J is a stable model of

⊕
P.

Proof. Suppose that J is a justified update model of 〈P,U〉. Then it is a minimal model of
the program

Q = [all(P ) \ rej(P , J)]J .

We need to prove that (J, J) is an RE-model of P⊕U and for every I ( J , (I, J) is not
an RE-model of P ⊕ U .

In order to show that (J, J) is an RE-model of P ⊕ U , recall that

〈〈P ⊕ U〉〉RE =

{
[[π ]]RE ∪

⋃
σ∈U

δa([[π ]]RE, [[σ ]]RE)

∣∣∣∣∣ π ∈ P
}
∪ 〈〈U〉〉RE .

and take some setM from 〈〈P ⊕ U〉〉RE. IfM belongs to 〈〈U〉〉RE, then there is a rule π ∈ U
such thatM = [[π ]]RE. Also, πJ belongs to Q, so J is a model of πJ . Consequently, (J, J)
belongs toM.

Now suppose that for some π from P,

M = [[π ]]RE ∪
⋃
σ∈Q

δa([[π ]]RE, [[σ ]]RE) .

If (J, J) does not belong to [[π ]]RE, then J is not a model of πJ , so π belongs to rej(P , J).
So there exists a rule σ from U such that H(π) = ∼H(σ) and J |= B(σ). The previous
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conclusions, together with the fact that π and σ are not local cycles, allow us to use Propo-
sition F.10 and conclude that [[π ]]RE 1

J
p [[σ ]]RE holds for some atom p. Hence, (J, J) belongs

to δa([[π ]]RE, [[σ ]]RE), and consequently also toM.
Now suppose that (I, J) belongs to [[π ]]RE. We will show that I is a model ofQ, which

implies that I = J because J is by assumption a minimal model of Q.
Take some rule π′ from Q and suppose that π′ = πJ for some π ∈ [all(P ) \ rej(P , J)].

If π belongs to U , then [[π ]]RE belongs to 〈〈P ⊕U〉〉RE. Consequently, (I, J) belongs to [[π ]]RE,
so I is a model of π′.

The final case to consider is when π belongs to P. We will prove by contradiction that
I is a model of π′. So suppose that I is not a model of π′. Then (I, J) is not an RE-model
of π. However, since by assumption (I, J) belongs to [[P ⊕ U ]]RE, it must also belong to
the set

[[π ]]RE ∪
⋃
σ∈U

δa([[π ]]RE, [[σ ]]RE) .

We have already shown that it is not a member of [[π ]]RE, so there must exist some σ ∈ U
such that (I, J) belongs to δa([[π ]]RE, [[σ ]]RE). Thus, [[π ]]RE 1

J
p [[σ ]]RE holds for some atom p.

We can use Proposition F.10 to conclude that H(π) = ∼H(σ) and J |= B(σ). Hence, π
belongs to rej(P , J), contrary to our assumption.

Theorem 8.6. Every δa-based rule update operator respects support and fact update. Further-
more, it also respects causal rejection and acyclic justified update w.r.t. DLPs of length at most
two.

Proof. Follows from Propositions F.17 and F.20, F.21 and F.22 and the fact that justified
update models satisfy the latter two properties.

F.1.3 Syntactic Properties of δb-Based Operators

Lemma F.23. Let M be an RE-rule-expressible set of three-valued interpretations, S a set of
RE-rule-expressible sets of three-valued interpretations, J an interpretation, p an atom and V0 a
truth value.

If augδb(M,S)J(p) = V0, thenMJ(p) = V0.

Proof. Suppose that augδb(M,S)J(p) = V0. By the definition we then obtain that for all
truth values V,

J [V/p] ∈ augδb(M,S) if and only if V = V0 . (F.9)

If the interpretation J [V0/p] belongs to M, then we can use (F.9) together with the fact
thatM is a subset of augδb(M,S) to conclude thatMJ(p) = V0 and our proof ends.

So suppose that J [V0/p] does not belong toM. Then it follows from (F.9) and from the
fact thatM is a subset of augδb(M,S) that the interpretations J [T/p], J [U/p] and J [F/p]
do not belong toM. Thus, since J [V0/p] belongs to augδb(M,S), there must exist some
N ∈ S such that J [V0/p] = (I,K) belongs to δb(M,N ). In other words, there exists an
atom q and an interpretation J ′ such that I ⊆ J ′ ⊆ K andMJ ′(q) 6= N J ′(q). Note that
J \ { p } ⊆ I ⊆ J ′ ⊆ K ⊆ J ∪ { p }. Thus, (J ′, J ′) = J [V1/p] for some V1 ∈ {T,F }. We
now distinguish three cases:

a) If V1 = T, then by the definition of δb(·, ·) we obtain that both J [T/p] and J [U/p]
belong to δb(M,N ).

b) If V1 = F and p 6= q, then by the definition of δb(·, ·) we obtain that both J [F/p] and
J [U/p] belong to δb(M,N ).
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c) If V1 = F and p = q, then by Proposition F.9 it follows that for J ′′ = J ′ ∪ { p } we
also haveMJ ′′(p) 6= N J ′′(p). Thus, by the definition of δb(·, ·) we obtain that J [F/p],
J [U/p] and J [T/p] belong to δb(M,N ).

In either case, it is not possible that augδb(M,S)J(p) is defined, a conflict with our as-
sumption.

Proposition F.24 (Exception Independence for Rules). Let M be a set of three-valued in-
terpretations that is RE-rule-expressible by a non-disjunctive rule and S, T be sets of RE-rule-
expressible sets of three-valued interpretations. Then the following holds:

augδb(augδb(M,S), T ) = augδb(M,S ∪ T ) .

Proof. By applying the definition of augδb(·, ·) we can see that our goal is to show that the
set

augδb(M,S) ∪
⋃
N∈T

δb(augδb(M,S),N ) (F.10)

is equal to the setM∪
⋃
N∈S∪T δb(M,N ) which can also be written as

augδb(M,S) ∪
⋃
N∈T

δb(M,N ) . (F.11)

First suppose that some three-valued interpretation X = (I, J) belongs to (F.10). If X
belongs to augδb(M,S), then it directly follows that X also belongs to (F.11). So suppose
that X belongs to

δb(augδb(M,S),N )

for some N ∈ T . By the definition of δb(·, ·) we obtain that there exists some atom p and
some interpretation J with certain properties relative to X such that augδb(M,S)J(p) 6=
N J(p). By Lemma F.23 we then conclude that augδb(M,S)J(p) = MJ(p). Thus, X also
belongs to δb(M,N ) and, consequently, also to the set (F.11).

Now suppose that some three-valued interpretationX = (I,K) belongs to (F.11). The
case when X belongs to augδb(M,S) is trivial, so we assume that X belongs to δb(M,N )
for some N ∈ T . This implies that there exists an atom p and some interpretation J such
that I ⊆ J ⊆ K and MJ(p) 6= N J(p). Suppose that MJ(p) = V0. If it also holds that
augδb(M,S)J(p) = V0, then it can be seen that X belongs to (F.10). Otherwise it follows
from the fact thatM is a subset of augδb(M,S) that augδb(M,S)J(p) is undefined and it
contains both J [V0/p] and J [V1/p] = (I ′,K ′) for some V1 6= V0. Thus, for some N ′ ∈ S
it holds that (I ′,K ′) belongs to δb(M,N ′). In other words, there exists an atom q and an
interpretation J ′ such that I ′ ⊆ J ′ ⊆ K ′ andMJ ′(q) 6= N ′J ′(q). SinceM is expressible by
a non-disjunctive rule, it follows from Proposition F.9 that q = p. Also, J and J ′ may only
differ in the valuation of p, so we obtain thatMJ(p) 6= N ′J(p). Consequently, X belongs
to δb(M,N ′), so it also belongs to (F.10).

The previous proposition does not work whenM is a disjunctive rule. For example,
when (p; q.) is updated by {∼p← ∼r.,∼q ← ∼r. }, the interpretation (∅, qr) is introduced
as an exception. However, that same interpretation is not introduced as an exception
when (p; q.) is updated first by (∼q ← ∼r.) and only then by (∼p← ∼r.).

Definition F.25. Let P = 〈Pi〉i<n be a DLP. We define the set afterj(P ) as

afterj(P ) =
⋃

j<i<n

Pi .
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Proposition F.26 (Exception Independence for Programs). Let P = 〈Pi〉i<n be a DLP and
⊕ a δb-based rule update operator. Then 〈〈

⊕
P 〉〉RE coincides with{

augδb (M, 〈〈afterj(P )〉〉RE)
∣∣ ∃j < n :M∈ 〈〈Pj〉〉RE

}
.

Proof. It follows from Proposition F.14 that 〈〈
⊕

P 〉〉RE coincides with{
augδb (M, 〈〈〈Pi〉〉RE〉j<i<n)

∣∣ ∃j < n :M∈ 〈〈Pj〉〉RE
}
.

Take someM∈ 〈〈Pj〉〉RE for some j < n. We will prove by induction on n that

augδb (M, 〈〈〈Pi〉〉RE〉j<i<n) = augδb (M, 〈〈afterj(P )〉〉RE) .

1◦ If n = 1,
augδb (M, 〈〉) = augδb (M, ∅) =M .

2◦ Put P ′ = 〈Pi〉i≤n and suppose that the property holds for n, i.e.

augδb (M, 〈〈〈Pi〉〉RE〉j<i<n) = augδb (M, 〈〈afterj(P )〉〉RE) .

Using Proposition F.26 we can now derive the property for n+ 1:

augδb (M, 〈〈〈Pi〉〉RE〉j<i≤n)

= augδb
(
augδb (M, 〈〈〈Pi〉〉RE〉j<i<n) , 〈〈Pn〉〉RE

)
= augδb

(
augδb (M, 〈〈afterj(P )〉〉RE) , 〈〈Pn〉〉RE

)
= augδb (M, 〈〈afterj(P )〉〉RE ∪ 〈〈Pn〉〉RE)
= augδb

(
M, 〈〈afterj(P

′)〉〉RE
)
.

Proposition F.27. Let P be a dynamic logic program, ⊕ a δb-based rule update operator and J
an interpretation. If J is a stable model of

⊕
P , then J is a justified update model of P .

Proof. Let P = 〈Pi〉i<n. From the assumption we can conclude that (J, J) belongs to
[[
⊕

P ]]RE and for every I ( J , (I, J) does not belong to [[
⊕

P ]]RE.
We need to show that J is a minimal model of the program

P′ = [all(P ) \ rej(P , J)]J .

First we prove that J is a model of P′. Take some rule π′ ∈ P′ and let π be a rule from
all(P ) \ rej(P , J) such that π′ = πJ . Then there is some j < n such that π belongs to Pj
and there is no index i and rule σ with j < i < n and σ ∈ Pi such that H(π) = ∼H(σ)
and J |= B(σ). LetM = [[π ]]RE. Since π belongs to Pj , we know that 〈〈

⊕
P 〉〉RE contains

the set
augδb(M, 〈〈afterj(P )〉〉RE) =M∪

⋃
N∈〈〈afterj(P )〉〉RE

δb(M,N ) . (F.12)

Furthermore, since (J, J) belongs to [[
⊕

P ]]RE, it must also belong to (F.12). If (J, J) be-
longs toM, then J is a model of π, so it is also a model of π′ as desired. So suppose that
(J, J) does not belong toM. Then for some i with j < i < n there exists a member N
of 〈〈Pi〉〉RE such that (J, J) belongs to δb(M,N ). Thus, for some atom p,M 1Jp N , and by
Proposition F.10 we conclude that there is a rule σ in Pi such that H(π) = ∼H(σ) and
J |= B(σ), contrary to our previous assumption.

It remains to prove that J is a minimal model of P′. Take some model I of P′ such that
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I is a subset of J . We need to show that I = J . In the following we will show that (I, J)
is a member of [[

⊕
P ]]RE which, together with the assumption that J is a stable model of⊕

P , implies that I = J . So in order to finish the proof, take some set

augδb(M, 〈〈afterj(P )〉〉RE) =M∪
⋃

N∈〈〈afterj(P )〉〉RE

δb(M,N ) . (F.13)

from 〈〈
⊕

P 〉〉RE such that M = [[π ]]RE and π belongs to Pj . We need to show that (I, J)
belongs to (F.13). This obviously holds if (I, J) belongs to M, so we can assume that
(I, J) does not belong toM. Then, I is not a model of πJ . Thus, πJ is different from τ
and, consequently, J |= B(π)−. Also, B(π)+ is included in I but H(π)+ is not. Since I is
a subset of J , this implies that B(π)+ is included in J , so

J |= B(π) . (F.14)

Moreover, since I is a model of P′, it follows that πJ does not belong to P′, so π must
belong to rej(P , J). Thus, there must exist a rule σ ∈ Pi for some i with j < i < n such
that

H(π) = L and H(σ) = ∼L and J |= B(σ) . (F.15)

Let N = [[σ ]]RE. If the bodies of π and σ do not contain L nor ∼L, then we can use Propo-
sition F.10 to conclude that there is an atom p such thatM 1Jp N . Thus, by the definition
of δb(·, ·), (I, J) belongs to δb(M,N ), which is a subset of augδb(M, 〈〈afterj(P )〉〉RE). It only
remains to consider the case when L or ∼L belongs to the body of π or σ:

• If L belongs to the body of π, then we arrive at a conflict with the assumption that
(I, J) is not an RE-model of π.

• If ∼L belongs to the body of π, then it follows from (F.14) and (F.15) that (J, J) is
not an RE-model of π. At the same time, δb(M,N ) is empty for all N because for
all interpretations J ′ and atoms q, it is impossible forMJ ′(q) to be defined. Thus,
we obtain a conflict with the assumption that (J, J) belongs to [[

⊕
P ]]RE.

• IfL belongs to the body of σ, then it follows from (F.15) that (J, J) is not an RE-model
of σ. At the same time, δb(N ,N ′) is empty for all N ′ because for all interpretations
J ′ and atoms q, it is impossible for N J ′(q) to be defined. Thus, we obtain a conflict
with the assumption that (J, J) belongs to [[

⊕
P ]]RE.

• Finally, if ∼L belongs to the body of σ, then it follows from (F.15) that J |= ∼L
and together with (F.14) we obtain that J is not a model of π. Thus (J, J) is not
an RE-model of π and since (J, J) belongs to [[

⊕
P ]]RE, there must exist some N ′

from 〈〈afterj(P )〉〉RE such that (J, J) belongs to δb(M,N ′). By the definition of δb(·, ·)
we then obtain that (I, J) also belongs to δb(M,N ′), and thus it also belongs to
augδb(M, 〈〈afterj(P )〉〉RE).

Proposition F.28. Let P be a DLP free of local cycles, ⊕ a δb-based rule update operator and J
an interpretation. If J is a justified update model of P , then J is a stable model of

⊕
P.

Proof. Suppose that J is a justified update model of P . Then J is a minimal model of the
program

P′ = [all(P ) \ rej(P , J)]J .

We need to prove that (J, J) belongs to [[
⊕

P ]]RE and for every I ( J , (I, J) does not
belong to [[

⊕
P ]]RE.
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In order to show that (J, J) belongs to [[
⊕

P ]]RE, take some set

augδb(M, 〈〈afterj(P )〉〉RE) =M∪
⋃

N∈〈〈afterj(P )〉〉RE

δb(M,N ) (F.16)

from 〈〈
⊕

P 〉〉RE such thatM = [[π ]]RE and π belongs to Pj . If (J, J) belongs toM, then it
obviously belongs to (F.16). So let’s assume that (J, J) does not belong toM. Then J is
not a model of π. Thus,

J |= B(π) , (F.17)

and we can conclude that π belongs to rej(P , J). As a consequence, there exists a rule σ
from Pj for some j > i such that

H(π) = L and H(σ) = ∼L and J |= B(σ) . (F.18)

LetN = [[σ ]]RE. It can be verified that (F.17) and (F.18), together with the assumption that
π and σ are not local cycles, allow us to use Proposition F.10 and conclude that for some
atom p,M 1Jp N . Thus, (J, J) belongs to δb(M,N ), and consequently also to (F.16).

Now suppose that (I, J) belongs to [[
⊕

P ]]RE. We will show that I is a model of P′,
which implies that I = J because J is by assumption a minimal model of P′. Take some
rule π′ from P′. Then there is a rule π from all(P ) \ rej(P , J) such that π′ = πJ . Suppose
that π belongs to Pj and there is no rule σ ∈ Pi for some i with j < i < n, H(π) = ∼H(σ)
and J |= B(σ).

We will prove by contradiction that I is a model of π′. So suppose that I is not a model
of π′. Then πJ is different from τ and, consequently, J |= B(π)−. Also, B(π)+ is included
in I , so since I is a subset of J , B(π)+ is included in J as well. Hence,

J |= B(π) . (F.19)

Also, (I, J) is not an RE-model of π. However, since by assumption (I, J) belongs to
[[
⊕

P ]]RE, it must also belong to the set

M∪
⋃

N∈〈〈afterj(P )〉〉RE

δb(M,N )

whereM = [[π ]]RE. We have already shown that it is not a member ofM, so there must
a rule σ ∈ Pi for some i with j < i < n such that (I, J) belongs to δb(M,N ) where
N = [[σ ]]RE. Thus, there exists some interpretation K and an atom p such that I ⊆ K ⊆ J ,
M 1Kp N and if p belongs to J \ I , then J = K. By Proposition F.10, there is a literal
L ∈ { p,∼p } such that H(π) = {L } and H(σ) = {∼L }. We now consider two cases:

• If p /∈ J \I , then (I, J)(p) = (J, J)(p). If J is a model of π, then from (F.19) we obtain
that J is a model of H(π). Thus (J, J) is an RE-model of H(π) and consequently
(I, J) is also an RE-model of H(π). But this is in conflict with the assumption that
(I, J) is not an RE-model of π.

The remaining case is when J is not a model of π. In this case, (J, J) does not belong
toM. Furthermore, since (J, J) belongs to [[

⊕
P ]]RE, it also implies that there is a

set N ′ ∈ 〈〈Pi〉〉RE for some i′ with j < i′ < n such that (J, J) belongs to δb(M,N ′).
Thus,M 1Jp N ′, so, by Proposition F.10, π belongs to rej(P , J), contrary to the way
it was picked.

• If p ∈ J \ I , then J = K, so M 1Jp N . Thus, by Proposition F.10, π belongs to
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rej(P , J), contrary to the way it was picked.

F.1.4 Syntactic Properties of δc-Based Operators

Lemma F.29. Let P be a DLP, ⊕β a δb-based rule update operator and ⊕γ a δc-based rule update
operator. IfM belongs to 〈〈

⊕
γ P 〉〉RE, then eitherM = X, orM belongs to 〈〈

⊕
β P 〉〉RE.

Proof. Let P = 〈Pi〉i<n. We prove by induction on n:

1◦ If n = 0, then the condition is vacuously satisfied.

2◦ Assuming that the statement holds for n, we prove it for n + 1. Let P ′ = 〈Pi〉i≤n
and suppose thatM′ belongs to 〈〈

⊕
γ P ′〉〉RE = 〈〈(

⊕
γ P )⊕γ Pn〉〉RE, i.e. it belongs to{

augδc(M, 〈〈Pn〉〉RE)
∣∣∣M∈ 〈〈⊕γ P 〉〉RE

}
∪ 〈〈Pn〉〉RE .

IfM′ belongs to 〈〈Pn〉〉RE, then it also belongs to 〈〈
⊕

β P ′〉〉RE and the proof ends.
In the principal case we know that M′ = augδc(M, 〈〈Pn〉〉RE) for some M from
〈〈
⊕

γ P 〉〉RE. We can use the inductive assumption on M and conclude that either
M = X orM belongs to 〈〈

⊕
β P 〉〉RE. In the former case we immediately conclude

thatM′ = X. In the latter case, ifM belongs to 〈〈Pn〉〉RE, thenM′ = X. Finally, ifM
does not belong to 〈〈Pn〉〉RE, then

M′ = augδc(M, 〈〈Pn〉〉RE) = augδb(M, 〈〈Pn〉〉RE) ,

soM′ belongs to 〈〈
⊕

β P ′〉〉RE because by assumptionM belongs to 〈〈
⊕

β P 〉〉RE.

Lemma F.30. Let P be a DLP, ⊕β a δb-based rule update operator and ⊕γ a δc-based rule update
operator. IfM belongs to 〈〈

⊕
β P 〉〉RE, then for some N from 〈〈

⊕
γ P 〉〉RE, N ⊆M.

Proof. Let P = 〈Pi〉i<n. We will prove a stronger statement: IfM belongs to 〈〈
⊕

β P 〉〉RE,
then for some set of RE-rule-expressible sets of three-valued interpretations S and some
N ∈ 〈〈

⊕
γ P 〉〉RE,

M = augδb(N ,S) .

We prove this by induction on n:

1◦ If n = 0, then the condition is vacuously satisfied.

2◦ Assuming that the statement holds for n, we prove it for n + 1. Let P ′ = 〈Pi〉i≤n
and suppose thatM′ belongs to 〈〈

⊕
β P ′〉〉RE = 〈〈(

⊕
β P )⊕β Pn〉〉RE, i.e. it belongs to{

augδb(M, 〈〈Pn〉〉RE)
∣∣∣M∈ 〈〈⊕β P 〉〉RE

}
∪ 〈〈Pn〉〉RE .

IfM′ belongs to 〈〈Pn〉〉RE, then it also belongs to 〈〈
⊕

γ P ′〉〉RE and our property follows
from the fact thatM′ = augδb(M

′, ∅).
In the principal case we know that M′ = augδb(M, 〈〈Pn〉〉RE) for some M from
〈〈
⊕

β P 〉〉RE. We can use the inductive assumption on M and conclude that there
is some N ∈ 〈〈

⊕
γ P 〉〉RE and some set of RE-rule-expressible sets of three-valued

interpretations such thatM = augδb(N ,S). We now consider two cases:

a) If N belongs to 〈〈Pn〉〉RE, then N belongs to 〈〈
⊕

γ P ′〉〉RE and we are finished.

b) If N does not belong to 〈〈Pn〉〉RE, then

augδc(N , 〈〈Pn〉〉RE) = augδb(N , 〈〈Pn〉〉RE) .
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Let N ′ = augδb(N , 〈〈Pn〉〉RE). From the above we know that N ′ belongs to
〈〈
⊕

γ P ′〉〉RE. Moreover, by Proposition F.24,

M′ = augδb (M, 〈〈Pn〉〉RE) = augδb
(
augδb (N ,S) , 〈〈Pn〉〉RE

)
= augδb (N ,S ∪ 〈〈Pn〉〉RE) = augδb

(
augδb (N , 〈〈Pn〉〉RE) ,S

)
= augδb

(
N ′,S

)
.

Proposition F.31. Let P be a DLP, ⊕β a δb-based rule update operator and ⊕γ a δc-based rule
update operator. Then, [[⊕

β P
]]

SM

=
[[⊕

γ P
]]

SM

.

Proof. It follows from Lemma F.29 that

〈〈
⊕

β P 〉〉RE ∪ {X } ⊇ 〈〈
⊕

γ P 〉〉RE ,

so

[[
⊕

β P ]]RE =
⋂
〈〈
⊕

β P 〉〉RE =
⋂

(〈〈
⊕

β P 〉〉RE ∪ {X }) ⊆
⋂
〈〈
⊕

γ P 〉〉RE = [[
⊕

γ P ]]RE .

Furthermore, it follows from Lemma F.30 that

[[
⊕

β P ]]RE =
⋂
〈〈
⊕

β P 〉〉RE ⊇
⋂
〈〈
⊕

γ P 〉〉RE = [[
⊕

γ P ]]RE .

Thus, [[
⊕

β P ]]RE = [[
⊕

γ P ]]RE. The rest follows from Proposition 7.30.

Theorem 8.9. Let ⊕ be a δb- or δc-based rule update operator. Then ⊕ respects support, fact
update, causal rejection, acyclic justified update.

Proof. This follows from Theorem 8.10 and from the fact that the justified update models
satisfy all of these properties.

Theorem 8.10. Let P be a DLP, J an interpretation and⊕ a δb- or δc-based rule update operator.
Then,

• [[
⊕

P ]]SM ⊆ [[P ]]JU and

• if all(P ) contains no local cycles, then [[P ]]JU ⊆ [[
⊕

P ]]SM.

Proof. Follows from Propositions F.27, F.28 and F.31.

Corollary 8.11. Let P = 〈Pi〉i<n be a DLP such that all(P ) contains no local cycles, ⊕ be
a δb- or δc-based rule update operator and j < n. Then there exists a rule base R such that
[[P ]]JU = [[

⊕
P ′ ]]SM where P ′ = 〈R,Pj+1, . . . ,Pn−1〉.

Proof. It suffices to putR =
⊕
〈Pi〉i≤j and apply Theorem 8.10.

F.1.5 Semantic Properties

Proposition F.32. Let ⊕ be a δ-based rule update operator. Then ⊕ satisfies (Initialisation), (Dis-
jointness), (P1) and (P2.>) with respect to RR, SR, RMR, SMR, RE, SE and SM (where applica-
ble).
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Proof. We prove these properties with respect to RR-equivalence; their satisfaction with
respect to the other notions of program equivalence follows from Proposition 7.30.

To verify that (Initialisation) holds, it suffices to observe that

〈〈∅ ⊕ U〉〉RE = { augδ(M, 〈〈U〉〉RE) | M ∈ ∅ } ∪ 〈〈U〉〉RE = 〈〈U〉〉RE .

Thus, ∅ ⊕ U is RR-equivalent to U .
Turning to (Disjointness), it suffices to observe that 〈〈(R∪ S)⊕ U〉〉RE coincides with

{ augδ (M, 〈〈U〉〉RE) | M ∈ R ∪ S } ∪ 〈〈U〉〉RE
= ({ augδ (M, 〈〈U〉〉RE) | M ∈ R } ∪ 〈〈U〉〉RE) ∪ ({ augδ (M, 〈〈U〉〉RE) | M ∈ S } ∪ 〈〈U〉〉RE)
= 〈〈R ⊕ U〉〉RE ∪ 〈〈S ⊕ U〉〉RE = 〈〈(R⊕ U) ∪ (S ⊕ U)〉〉RE .

Note that we did not need to use the assumption thatR, S are over disjoint alphabets.
In order to prove that (P1) holds, consider that 〈〈U〉〉RE is a subset of 〈〈R⊕U〉〉RE. Conse-

quently,R⊕ U RR-entails U .
Finally, (P2.>) follows from the fact that augδ(M, ∅) =M for allM⊆ X.

Lemma F.33. Let P, Q be programs over disjoint alphabets. Then for allM∈ 〈〈P〉〉RE,

augδa(M, 〈〈Q〉〉RE) = augδb(M, 〈〈Q〉〉RE) =M .

Also, for all non-empty setsM∈ 〈〈P〉〉RE,

augδc(M, 〈〈Q〉〉RE) =M

and

augδc(∅, 〈〈Q〉〉RE) =

{
X ∅ ∈ 〈〈Q〉〉RE ;

∅ otherwise .

Proof. Take some π ∈ P and some σ ∈ Q and putM = [[π ]]RE, N = [[σ ]]RE. We first show
that for all atoms p and interpretations J ,M 1

p
J N does not hold. By definition this holds

if and only ifMJ(p) 6= N J(p). But according to Proposition F.9, this is possible only if p
occurs in the heads of both π and σ, contrary to our assumption.

Consequently, by the definitions of δa and δb,

δa(M,N ) = δb(M,N ) = ∅ ,

so
augδa(M, 〈〈Q〉〉RE) = augδb(M, 〈〈Q〉〉RE) =M .

Furthermore, δc(M,N ) differs from δb(M,N ) if and only if M = N . In this case,
π is RE-equivalent to σ, so canRE(π) = canRE(σ). Also, since π and σ are over different
alphabets, it follows from the definition of canRE(·) that this is possible if and only if either
both π and σ are tautological, or if H(π) = B(π) = H(σ) = B(σ) = ∅. In the former case
we can observe that

augδc(M, 〈〈Q〉〉RE) = augδb(X, 〈〈Q〉〉RE) = X =M .

In the latter case we haveM = N = ∅, and

augδc(M, 〈〈Q〉〉RE) = X .
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Corollary F.34. Let P, Q be programs over disjoint alphabets and δ be either δa, δb or δc. Then
for allM∈ 〈〈P〉〉RE, either augδ(M, 〈〈Q〉〉RE) =M, or augδ(M, 〈〈Q〉〉RE) = X.

Proof. Follows directly from Lemma F.33.

Lemma F.35. LetM be an RE-rule-expressible set of three-valued interpretations, U a program,
p an atom and V0 a truth value.

If augδa(M, 〈〈U〉〉RE)J(p) = V0, then eitherMJ(p) = V0, or p occurs in U .

Proof. Suppose that augδa(M, 〈〈U〉〉RE)J(p) = V0 andMJ(p) 6= V0. Thus, augδa(M, 〈〈U〉〉RE)
contains J [p/V] if and only if V = V0. Since M is a subset of augδa(M, 〈〈U〉〉RE), it fol-
lows thatM contains neither J [T/p] nor J [U/p] nor J [F/p]. Let π be some rule such that
[[π ]]RE = M. We can conclude that p does not occur in π. Furthermore, if V0 = T, then
by the definition of δa we obtain a conflict with the fact that J [U/p] does not belong to
augδa(M, 〈〈U〉〉RE). Consequently, V0 = F. Furthermore, since J [T/p] does not belong to
augδa(M, 〈〈U〉〉RE) but J [F/p] does, there exists someN ∈ 〈〈U〉〉RE and some atom q such that
M 1

J [p/F]
q N but it is not the case thatM 1

J [p/T]
q N . Since p does not occur in π, this is

only possible if p occurs in U .

Proposition F.36. Let ⊕ be a δa-, δb- or δc-based rule update operator. Then ⊕ satisfies (Non-
interference) for non-disjunctive programs with respect to RR, SR, RMR, SMR, RE, SE and SM.

Proof. We prove this property with respect to RR-equivalence; its satisfaction with respect
to the other notions of program equivalence follows from Proposition 7.30.

Suppose that P, U and V are non-disjunctive programs, δ is either δa, δb or δc and ⊕ is
a δ-based rule update operator. Take some set

M0 ∈ 〈〈(P ⊕ U)⊕ V〉〉RE .

We will show thatM0 either belongs to 〈〈(P ⊕ V) ⊕ U〉〉RE orM0 = X. Note that 〈〈(P ⊕
U)⊕ V〉〉RE coincides with

{ augδ (M, 〈〈V〉〉RE) | M ∈ 〈〈P ⊕ U〉〉RE } ∪ 〈〈V〉〉RE .

We need to consider three cases. The first one occurs whenM0 belongs to 〈〈V〉〉RE. Then
M0 also belongs to 〈〈P ⊕ V〉〉RE and since 〈〈(P ⊕ V)⊕ U〉〉RE coincides with

{ augδ(M, 〈〈U〉〉RE) | M ∈ 〈〈P ⊕ V〉〉RE } ∪ 〈〈U〉〉RE ,

it must contain the set augδ(M0, 〈〈U〉〉RE). Furthermore, since U and V are over disjoint
alphabets, it follows Corollary F.34 that augδ(M0, 〈〈U〉〉RE) is eitherM0 or X. In either case,
our proof ends.

The second case occurs whenM0 = augδ(M, 〈〈V〉〉RE) andM belongs to 〈〈U〉〉RE. As in
the previous case, since U and V are over disjoint alphabets, it follows from Corollary F.34
that augδ(M, 〈〈V〉〉RE) is either M or X. In the former case, M0 belongs to 〈〈U〉〉RE, so it
certainly belongs to 〈〈(P ⊕ V)⊕ U〉〉RE.

The last case occurs when

M0 = augδ (augδ (M, 〈〈U〉〉RE) , 〈〈V〉〉RE)

for someM∈ 〈〈P〉〉RE.
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If δ is δb, then it follows directly from Lemma F.23 that

M0 = augδ (M, 〈〈U〉〉RE ∪ 〈〈V〉〉RE)
= augδ (augδ (M, 〈〈V〉〉RE) , 〈〈U〉〉RE) .

Consequently,M0 belongs to 〈〈(P ⊕ V)⊕ U〉〉RE.
If δ is δc, then eitherM0 = X or

M0 = augδb
(
augδb (M, 〈〈U〉〉RE) , 〈〈V〉〉RE

)
.

The rest follows by the previous paragraph.
If δ is δa, then we consider two subcases:

a) If augδa(M, 〈〈U〉〉RE) =M, thenM0 = augδa(M, 〈〈V〉〉RE), soM0 belongs to 〈〈P⊕V〉〉RE.
Take some N ∈ 〈〈U〉〉RE and suppose that M0 1

p
J N . Then, by Lemma F.35, for

some truth value V0 either MJ(p) = V0, or p occurs in V . In the former case we
obtain a conflict with the assumption that augδa(M, 〈〈U〉〉RE) = M while the latter
case is in conflict with the assumption that U and V are over disjoint alphabets.
Thus, no such N exists and augδa(M0, 〈〈U〉〉RE) =M0. Consequently,M0 belongs to
〈〈(P ⊕ V)⊕ U〉〉RE.

b) If augδa(M, 〈〈U〉〉RE) 6=M, then there is someN ∈ 〈〈U〉〉RE such thatM 1
p
J N for some

atom p and interpretation J . Thus since U and V are over disjoint alphabets, it fol-
lows from Proposition F.10 that augδ(M, 〈〈V〉〉RE) = M, so augδ(M, 〈〈U〉〉RE) belongs
to 〈〈(P ⊕ V)⊕ U〉〉RE.
It remains to show that M0 = augδ(M, 〈〈U〉〉RE). Put M1 = augδa(M, 〈〈U〉〉RE) and
suppose that for someN ′ ∈ 〈〈V〉〉RE, some atom q and some interpretationK,M1 1

q
K

N ′. Then, by Lemma F.35, eitherMK(q) = V0 for some truth value V0, or q occurs
in U . In the former case, p = q by Proposition F.10 and we obtain a conflict with the
fact that U and V are over disjoint alphabets. In the latter case, q occurs in both U
and V , so the same conflict follows. Consequently, there is no such N ′ and we can
conclude that

M0 = augδ (augδ (M, 〈〈U〉〉RE) , 〈〈V〉〉RE)
= augδ (M1, 〈〈V〉〉RE)
= augδ (M, 〈〈U〉〉RE) .

The proof of the other inclusion is symmetric.

Example F.37 ((Non-interference) for Disjunctive Programs). Consider the programs

P : p; q; r. U : ∼p← ∼r. V : ∼q.
p← r.

r ← p.

Let the rule in P be denoted by π. By following the definition of δb, we can conclude that

augδb
(
augδb ([[π ]]RE, 〈〈U〉〉RE) , 〈〈V〉〉RE

)
= augδb ([[π ]]RE, 〈〈U〉〉RE)

= [[π ]]RE ∪ { (∅, ∅), (∅, p), (∅, q), (∅, r), (∅, qr) } ,

augδb
(
augδb (π, 〈〈V〉〉RE) , 〈〈U〉〉RE

)
= augδb ([[π ]]RE, 〈〈V〉〉RE)

= [[π ]]RE ∪ { (∅, ∅), (∅, p), (∅, q), (∅, r), (∅, pr) } .
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Thus, (∅, pr) does not belong to [[(P ⊕ U)⊕ V ]]RE although it belongs to [[(P ⊕ V)⊕ U ]]RE.
Also, (pr, pr) is an RE-model of all rules in P, U and V and both (p, p, r) and (r, pr) are
not RE-models of U . The consequence is that although { p, r } is a stable model of (P ⊕
U) ⊕ V , it is not a stable model of (P ⊕ V) ⊕ U . The results are the same when δc is
used instead of δb. So δb-based and δc-based rule update operators do not satisfy (Non-
interference) for disjunctive programs w.r.t. SM-equivalence nor any stronger notion of
program equivalence.

Turning to δa, the above example does not work as it works for δb and δc. But consider
these rules instead:

π0 = (p; q.) , π1 = (∼p← ∼r.) , π2 = (∼q ← s.) .

Let P′ = {π0 }, U ′ = {π1 } and V ′ = {π2 }. It is not hard to verify that

augδ
(
[[π0 ]]RE, 〈〈U ′〉〉RE

)
= [[π0 ]]RE ∪ { (I, J) | J ⊆ { p, s } } ,

augδ
(
augδ

(
[[π0 ]]RE, 〈〈U ′〉〉RE

)
, 〈〈V ′〉〉RE

)
= [[π0 ]]RE ∪ { (I, J) | J ⊆ { p, s } } ∪ { (I, J) | { s } ⊆ J ⊆ { q, r, s } }

while

augδ
(
[[π0 ]]RE, 〈〈V ′〉〉RE

)
= [[π0 ]]RE ∪ { (I, J) | { s } ⊆ J ⊆ { q, r, s } } ,

augδ
(
augδ

(
[[π0 ]]RE, 〈〈V ′〉〉RE

)
, 〈〈U ′〉〉RE

)
= [[π0 ]]RE ∪ { (I, J) | { s } ⊆ J ⊆ { q, r, s } } ∪ { (I, J) | J ⊆ { p } } .

As a consequence, for any δa-based rule update operator ⊕ it holds that while (∅, ps)
belongs to 〈〈(P′⊕U ′)⊕V ′〉〉RE, it does not belong to 〈〈(P′⊕V ′)⊕U ′〉〉RE. This already proves
that (Non-interference) does not hold for δa-based operators for disjunctive programs w.r.t.
RE-equivalence. This counterexample equally applies to SE-equivalence because the set
of three-valued interpretations

augδ
(
augδ

(
[[π0 ]]RE, 〈〈U ′〉〉RE

)
, 〈〈V ′〉〉RE

)
is RE-expressible by the program

p; q;∼r ← ∼s.
p; q;∼p;∼q.

while the set
augδ

(
augδ

(
[[π0 ]]RE, 〈〈V ′〉〉RE

)
, 〈〈U ′〉〉RE

)
is RE-expressible by the program

p; q;∼r ← ∼s.
p; q;∼p;∼q.
p; q;∼p;∼s← ∼r.

and (∅, ps) is an SE-model of the former program but not of the latter (as it is of the rules
in U ′ and V ′). Thus, (Non-interference) does not hold for δa-based operators for disjunctive
programs w.r.t. SE-equivalence or any stronger notion of program equivalence.

However, this still does not prove that it does not hold w.r.t. SM-equivalence. This
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is because (ps, ps) is not an RE-model of π1. It so seems that this cannot be circum-
vented and it is probably possible to prove that δa-based operators satisfy (Non-interference)
w.r.t. SM-equivalence. A proof of this would probably need to start by showing that if
(J, J) /∈ M and (J, J) ∈ augδa(M,S), then (J, J) ∈ augδa(augδa(M, T ),S). This, intu-
itively, proves that by performing an update by T before S, one can only “avoid” in-
troducing interpretations (I, J) for which (J, J) does not belong to

⋂
S (because of the

way conflicts are identified). These differences are then not detectable on the level of
stable models. The correctness of this approach to the proof needs some further work.
However, interestingly, the differences between (P′ ⊕ U ′) ⊕ V ′ and (P′ ⊕ V ′) ⊕ U ′ can be
“revealed” by further updates. For instance, an update by { p← s., s← p. } weakens the
rule π1 and in the former case { p, s } becomes a stable model after this update while in
the latter case it does not.

Proposition F.38. Let ⊕ be a δ-based rule update operator where δ(M,X) ⊆M for allM⊆ X.
Then ⊕ satisfies (Tautology) and (Immunity to Tautologies) with respect to RR, SR, RMR, SMR,
RE, SE and SM.

Proof. For RR-equivalence this can be verified in a straight-forward manner. For the re-
maining notions of program equivalence this follows from Proposition 7.30.

Proposition F.39. Let ⊕ be a δ-based rule update operator. Then ⊕ satisfies (Idempotence) with
respect to RMR, SMR, RE, SE and SM.

Moreover, if ⊕ is δc-based, then it also satisfies (Idempotence) with respect to RR and SR.

Proof. (Idempotence) states the following: R ⊕ R ≡ R. We will show that this is true un-
der RMR-equivalence which, together with Proposition 7.30, implies that it holds under
SMR-, RE-, SE- and SM-equivalence.

So first take someM∈ min〈〈(R⊕R) ∪ { τ }〉〉RE. IfM = X, thenR⊕R is tautological
and since 〈〈R〉〉RE is a subset of 〈〈R ⊕ R〉〉RE, R is itself tautological. Thus, X also belongs
to min〈〈R ∪ { τ }〉〉RE. In the principal case either M belongs to 〈〈R〉〉RE, or it is equal to
augδ(M0, 〈〈R〉〉RE) for someM0 ∈ 〈〈R〉〉RE. In the latter case we have thatM0 is a subset of
M and sinceM0 belongs to 〈〈R⊕R〉〉RE, by the minimality ofMwe obtain thatM =M0,
so M belongs to 〈〈R〉〉RE. Now it follows that M is minimal 〈〈R〉〉RE because 〈〈R〉〉RE is a
subset of 〈〈R ⊕R〉〉RE andM is minimal in the latter set.

Now take some M ∈ min〈〈R ∪ { τ }〉〉RE. If M = X, then R is tautological and it
follows by the properties of ⊕ that R ⊕ R is also tautological. Thus, X also belongs to
〈〈(R⊕R)∪{ τ }〉〉RE. In the principal caseM belongs to 〈〈R〉〉RE. Take someN ∈ 〈〈R⊕R〉〉RE
such that N is a subset ofM. If N belongs to 〈〈R〉〉RE, then it follows by minimality ofM
thatM = N . On the other hand, if N is of the form augδ(N0, 〈〈R〉〉RE) for some N0 from
〈〈R〉〉RE, then

N0 ⊆ N ⊆M ,

so by the minimality ofM, N0 = N = M. Thus, in either caseM is equal to N , which
proves that it is minimal within 〈〈R ⊕R〉〉RE.

Now consider some δc-based rule update operator⊕. Then 〈〈R⊕R〉〉RE ⊆ 〈〈R〉〉RE∪{X },
so obviously 〈〈(R⊕R) ∪ { τ }〉〉RE = 〈〈R ∪ { τ }〉〉RE.

A counterexample showing that (Idempotence) does not hold for δa- and δb-based rule
update operators follows:

Example F.40 ((Idempotence) under ≡SR and ≡RR). Let π = (p ← ∼q.) and σ = (∼p ← r.).
The potential conflict between π and σ is detected the same way by both δa and δb: when
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π is updated by σ, it becomes weakened. In particular, the weakened version of π is
π′ = (p← ∼q,∼r.) (or another RE-equivalent rule) because

[[π′ ]]RE = [[π ]]RE ∪ δa([[π ]]RE, [[σ ]]RE)

= [[π ]]RE ∪ δb([[π ]]RE, [[σ ]]RE) .

Note that (Idempotence) states the following: R ⊕ R ≡ R. Let’s put R = {π, σ } and
consider some δa- or δb-based update operator ⊕. What is the result of R ⊕ R? It will
certainly contain both rules from R because R is the updating rule base. But it will also
contain weakened versions of π and σ because these two rules are in a potential conflict.
In particular, it will contain π′ (or another RE-equivalent rule). This implies that under
SR- and RR-equivalence R ⊕ R is not considered equivalent to R. This is because π′ is
neither SE- nor RE-equivalent to some rule inR, nor is it tautological. Thus, (Idempotence)
does not hold for δa- and δb-based update operators under ≡SR and ≡RR.

This issue is resolved by δc by weakening π all the way to a tautological rule. Thus,
when ⊕ is δc-based, R ⊕ R contains instead of π′ a tautological rule which then gets
ignored by SR- and RR-equivalence.

Lemma F.41. Let M be an RE-rule-expressible set of three-valued interpretations, S a set of
RE-rule-expressible sets of three-valued interpretations and δ be either δb or δc. Then,

augδ(augδ(M,S),S) ∈ { augδ(M,S),X } .

Proof. PutM′ = augδ(M,S) and take some N ∈ S such thatM′ 1pJ N for some atom p
and some interpretation J . ThenM′J(p) = V0 for some truth value V0, so it follows from
Lemma F.23 thatMJ(p) = V0. But this impliesM 1

p
J N , so both (J \ { p } , J \ { p }) and

(J ∪ { p } , J ∪ { p }) belong toM′, a conflict with the assumption thatM′J(p) is defined.
As a consequence, no such N ∈ S exists, so augδb(M

′,S) =M′ = augδb(M,S).
Turning to δc, we can observe that either the previous case applies, or

augδ(augδ(M,S),S) = X .

Proposition F.42. Let ⊕ be a δb- or δc-based rule update operator. Then ⊕ satisfies (Absorption)
with respect to RMR, SMR, RE, SE and SM.

Moreover, if ⊕ is δc-based, then it also satisfies (Absorption) with respect to RR and SR.

Proof. (Absorption) states the following: (R ⊕ U) ⊕ U ≡ R ⊕ U . We will show that this is
true under RMR-equivalence which, together with Proposition 7.30, implies that it holds
under SMR-, RE-, SE- and SM-equivalence.

So suppose that ⊕ is δb- or δc-based. It follows directly from Lemma F.41 that 〈〈((R⊕
U) ⊕ U) ∪ { τ }〉〉RE is a superset of 〈〈(R⊕ U) ∪ { τ }〉〉RE. Thus, wheneverM is minimal in
〈〈((R ⊕ U) ⊕ U) ∪ { τ }〉〉RE, it must also be minimal in 〈〈(R ⊕ U) ∪ { τ }〉〉RE. Furthermore,
the extra elements of 〈〈((R ⊕ U) ⊕ U) ∪ { τ }〉〉RE are never smaller than the elements of
〈〈(R ⊕ U) ∪ { τ }〉〉RE because they are of the form augδ(N , 〈〈U〉〉RE) for some N ∈ 〈〈U〉〉RE ⊆
〈〈(R⊕U) ∪ { τ }〉〉RE. Thus, wheneverM is minimal in 〈〈(R⊕U) ∪ { τ }〉〉RE, it must also be
minimal in 〈〈((R⊕ U)⊕ U) ∪ { τ }〉〉RE.

Furthermore, if ⊕ is δc-based, then it follows from the above that 〈〈((R ⊕ U) ⊕ U) ∪
{ τ }〉〉RE = 〈〈(R⊕ U) ∪ { τ }〉〉RE.

Proposition F.43. Let⊕ be a δb- or δc-based rule update operator. Then⊕ satisfies (Augmentation)
for non-disjunctive programs with respect to RMR, SMR, RE, SE and SM.
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Moreover, if ⊕ is δc-based, then it also satisfies (Augmentation) for non-disjunctive programs
with respect to RR and SR.

Proof. The proof for RMR-equivalence follows from Proposition F.24 and Lemma F.29
and from the the fact that the extra elements of 〈〈((R⊕U)⊕V)∪ { τ }〉〉RE, as compared to
〈〈(R⊕ V) ∪ { τ }〉〉RE are non-minimal in the latter set.

If ⊕ is δc-based, then there are no extra elements and the rest follows from Proposi-
tion F.24 and Lemma F.29.

Example F.44 ((Absorption) and (Augmentation) violated by δa). Consider the same rules as
in Example 8.7, i.e.

π0 = (p.) , π1 = (∼p← ∼q.) , π2 = (q.) .

Put P = {π0 } and U = {π1, π2 } and take some δa-based rule update operator ⊕. Given
the considerations of Example 8.7, it is not difficult to verify that P ⊕ U has the unique
stable model { p, q }while (P⊕U)⊕U admits the stable model { q }. As a consequence,⊕
cannot satisfy (Absorption) nor (Augmentation) w.r.t. SM-equivalence or any stronger notion
of equivalence.

Example F.45 ((Augmentation) for Disjunctive Programs). Consider the programs:

P : p; q; r. U : ∼p← ∼r. V : ∼p← ∼r.
p← r. p← r.

r ← p. r ← p.

∼q.

By reasoning very similar to the one in Example F.37 we can conclude that while (∅, pr)
does not belong to [[(P⊕U)⊕V ]]RE, it belongs to [[P⊕V ]]RE. The consequence is that while
{ p, r } is a stable model of (P ⊕ U) ⊕ V , it is not a stable model of P ⊕ V . Thus, (Aug-
mentation) does not hold for ⊕ under SM-equivalence nor any stronger notion of program
equivalence.

Example F.46 ((Associativity) and δa, δb, δc). The rule π = (∼p.), when updated by σ =
(p← q.), must be weakened, anticipating the potential conflict. In the case of δa-, δb- and
δc-based operators, the resulting rule is π′ = (∼p← ∼q.) (or another RE-equivalent rule).
Consider the following rule bases:

R = { p. } , U = {∼p. } , V = { p← q., q ← p. } .

Note that (Associativity) states the following: R⊕(U⊕V) ≡ (R⊕U)⊕V . However, while in
(R⊕U)⊕V the fact fromR is completely annihilated (i.e. transformed into a tautological
rule) due to the negative fact π in U , this does not happen in R ⊕ (U ⊕ V) because the
π is first weakened into π′. As a consequence, R ⊕ (U ⊕ V) has one extra stable model
comparing to (R ⊕ U) ⊕ V : { p, q }. This implies that (Associativity) does not hold for δa-,
δb- and δc-based rule update operators under SM-equivalence, nor under any stronger
equivalence.

Proposition F.47. Let ⊕ be a δ-based rule update operator. Then ⊕ satisfies (P2.1) and (P5) with
respect to RMR, SMR, RE and SE.

Proof. Under RMR-entailment (P2.1) follows from the fact thatM is a subset of augδ(M,S)
and (P5) follows from the fact that augδ(M,S) is a subset of augδ(M,S ∪ T ). For the re-
maining notions of program entailment this follows from Proposition 7.30.
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A counterexample under RR- and SR-equivalence follows:

Example F.48 ((P2.1) under |=SR and |=RR). Consider again the rules π, σ from Example F.46
and rule basesR = {π }, U = {σ }. Note that (P2.1) states the following: R∪U |= R⊕U .
However, if⊕ is δa-, δb- or δc-based,R⊕U will contain π′ (or another RE-equivalent rule)
which results from weakening of π by σ. Consequently, when SR- or RR-entailment is
used, R∪ U cannot entailR⊕ U simply because π′ (or another equivalent rule) does not
belong toR∪ U .

Example F.49 ((P2.2) and Rule Update Semantics). Consider R = { p. } and U = {∼p. }
and note that (P2.2) states the following: (R∪U)⊕U |= R. In other words, it requires that

{ p.,∼p. } ⊕ {∼p. } |= p .

In the presence of (P1) this amounts to postulating that one can never recover from an
inconsistent state. Such a requirement is out of line with the way these situations are
treated in state-of-the-art approaches to rule update which allow for recovery from an in-
consistent state if all involved conflicts are resolved by the update. Note that, though for
different reasons, (P2.2) has also been subject of harsh criticism in belief update literature
(Herzig and Rifi, 1999).

Proposition F.50. Let ⊕ be a δ-based rule update operator where δ(M,X) ⊆M for allM⊆ X.
Then ⊕ satisfies (P4), (P4.1), (P4.2) and (P8.2) with respect to RR.

Proof. Principles (P4.2) and (P8.2) can be verified straightforwardly and (P4.1) as well as
(P4) are their consequences. The condition on δ is necessary to ensure that

augδ(M, 〈〈U〉〉RE) =M

whenever U is tautological.

For a discussion of these principles under weaker notions of program equivalence see
the end of Section 8.1.

F.2 Belief Updates Using Exception-Based Operators

F.2.1 Model-Based Update Operators

Theorem 8.14. If � is an update operator that satisfies (FO1), (FO2.1) and (FO4), then there exists
an exception function ε such that for every ε-based update operator ⊕ and all finite sequences of
theories T , [[3T ]] = [[

⊕
T ]].

Proof. Let the exception function ε be defined for all sets of interpretationsM⊆ I and all
sets of sets of interpretations S, T ⊆ 2I as

ε(M,S, T ) = [[T � U ]] (F.20)

where T , U are some theories such that [[T ]] =
⋂
S and [[U ]] =

⋂
T . Note that this defi-

nition is unambiguous since the existence of such T and U is guaranteed and regardless
of which pair of theories with these properties we choose, we obtain the same result due
to the assumption that � satisfies (FO4). Take some ε-based operator ⊕. We proceed by
induction on the length n of T = 〈Ti〉i<n.
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1◦ If n = 0, then it immediately follows that

[[3T ]] = [[3〈T0〉 ]] = [[T0 ]] = [[
⊕
〈T0〉 ]] = [[

⊕
T ]] .

2◦ Suppose that the claim holds for n, i.e. for T = 〈Ti〉i<n we have

[[3T ]] = [[
⊕

T ]] . (F.21)

Our goal is to show that it also holds for n+ 1, i.e. for T ′ = 〈Ti〉i<n+1.
It follows that

〈〈
⊕

T ′〉〉 = 〈〈
⊕

T ⊕ Tn〉〉 = { [[φ ]] ∪ ε([[φ ]], 〈〈
⊕

T 〉〉, 〈〈Tn〉〉) | φ ∈
⊕

T } ∪ 〈〈Tn〉〉 .

Furthermore, it follows from (F.20) and (F.21) that

ε([[φ ]], 〈〈
⊕

T 〉〉, 〈〈Tn〉〉) = [[3T � Tn ]] = [[3T ′ ]] .

Consequently,

[[
⊕

T ′ ]] =
⋂
〈〈
⊕

T ′〉〉 =
⋂({

[[φ ]] ∪ [[3T ′ ]]
∣∣ φ ∈⊕T

}
∪ 〈〈Tn〉〉

)
.

In the following we show that this set is equal to [[3T ′ ]]. It can be equivalently
written as follows: (

[[3T ′ ]] ∪
⋂
〈〈
⊕

T 〉〉
)
∩
⋂
〈〈Tn〉〉 .

Substituting [[3T ]] for
⋂
〈〈
⊕

T 〉〉 and distributing ∩ over ∪ yields(
[[3T ′ ]] ∩ [[Tn ]]

)
∪ ([[3T ]] ∩ [[Tn ]]) .

Finally, using (FO1) and (FO2.1) we can rewrite this as

([[3T � Tn ]] ∩ [[Tn ]]) ∪ [[(3T ) ∪ Tn ]] = [[3T � Tn ]] ∪ [[(3T ) ∪ Tn ]]

= [[3T � Tn ]] = [[3T ′ ]] .

F.2.2 Formula-Based Update Operators

The set of possible remainders has a number of important properties from which proper-
ties of specific formula-based operators follow. We start with two auxiliary results which
make it possible to construct a subset of a theory with important properties on the se-
mantic level.

Lemma F.51. Let T , U be theories. Then U is consistent if and only if rem(T ,U) is non-empty.

Proof. First suppose that U is consistent and letR be the set of all subsets T ′ of T such that
T ′ ∪ U is consistent. Rmust be non-empty because ∅ clearly belongs to R. So take some
subset-maximal element T ∗ ofR. It is not difficult to see that T ∗ belongs to rem(T ,U).

On the other hand, if rem(T ,U) is non-empty, then it contains some set T ′ such that
T ′ ∪ U is consistent. Thus it follows directly that U is also consistent.

Lemma F.52. Let T , S be theories such that 〈〈T 〉〉I = 〈〈S〉〉I, T ′ a subset of T and

S ′ =
{
φ ∈ S

∣∣∣ [[φ ]] ∈ 〈〈T ′〉〉I
}

.

Then 〈〈T ′〉〉I = 〈〈S ′〉〉I.
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Proof. Suppose first that M belongs to 〈〈T ′〉〉I. Then it also belongs to 〈〈T 〉〉I, so by our
assumption eitherM = I orM belongs to 〈〈S〉〉. In the former caseM belongs to 〈〈S ′〉〉I
and we are finished. In the latter case there is a sentence φ ∈ S such that [[φ ]] =M and φ
belongs to S ′ by its definition. Consequently,M belongs to 〈〈S ′〉〉I.

As for the other inclusion, if M belongs to 〈〈S ′〉〉I, then either M = I or for some
sentence φ ∈ S ′ we haveM = [[φ ]]. Therefore,M belongs to 〈〈T ′〉〉I by the definition of
S ′.

Lemma F.53. Let T , S , U , V be theories such that 〈〈T 〉〉I = 〈〈S〉〉I and 〈〈U〉〉I = 〈〈V〉〉I, T ′ a subset
of T such that T ′ ∪ U is consistent and

S ′ =
{
φ ∈ S

∣∣∣ [[φ ]] ∈ 〈〈T ′〉〉I
}

.

Then S ′ ∪ V is consistent.

Proof. To verify that S ′ ∪ V is consistent, we only need to use Lemma F.52 and observe
that

[[S ′ ∪ V ]] =
⋂
〈〈S ′ ∪ V〉〉 =

⋂
(〈〈S ′〉〉 ∪ 〈〈V〉〉) =

⋂
(〈〈S ′〉〉I ∪ 〈〈V〉〉)

=
⋂

(〈〈T ′〉〉I ∪ 〈〈U〉〉) =
⋂

(〈〈T ′〉〉 ∪ 〈〈U〉〉) =
⋂
〈〈T ′ ∪ U〉〉

= [[T ′ ∪ U ]] .

The following result pinpoints an important property of the set of possible remain-
ders: their syntax-independence w.r.t. individual sentences in the argument theories.
More formally:

Proposition F.54 (Syntax-Independence of Remainders). Let T , S, U , V be theories such
that 〈〈T 〉〉I = 〈〈S〉〉I and 〈〈U〉〉I = 〈〈V〉〉I. Then,

((rem(T ,U)))I = ((rem(S,V)))I .

Proof. We prove that ((rem(T ,U)))I ⊆ ((rem(S,V)))I, the other inclusion follows by the
same arguments since the formulation of the proposition is symmetric.

Take some T ′ from rem(T ,U) and put

S ′ =
{
φ ∈ S

∣∣∣ [[φ ]] ∈ 〈〈T ′〉〉I
}

.

We need to show that 〈〈T ′〉〉I belongs to ((rem(S,V)))I. Due to Lemma F.52, 〈〈T ′〉〉I = 〈〈S ′〉〉I,
so it suffices to prove that S ′ belongs to rem(S,V). First, note that S ′ is clearly a subset
of S and by Lemma F.53, S ′ ∪ V is consistent. We prove that S ′ is subset-maximal with
these properties by contradiction. Suppose that S∗ is such that S ′ ( S∗ ⊆ S and S∗ ∪V is
consistent and let

T ∗ =
{
φ ∈ T

∣∣∣ [[φ ]] ∈ 〈〈S∗〉〉I
}

.

Clearly, T ∗ is a subset of T and by Lemma F.53, T ∗ ∪ U is consistent. To reach a conflict,
we need to show that T ′ is a proper subset of T ∗. First note that 〈〈S ′〉〉I cannot be equal to
〈〈S∗〉〉I – if it were, then for every sentence φ ∈ S∗ it would hold that φ belongs to S and
[[φ ]] belongs to 〈〈T ′〉〉I, so φ belongs to S ′ by its definition, contrary to the assumption that
S ′ is a proper subset of S∗. This, together with Lemma F.52, implies that

〈〈T ′〉〉I = 〈〈S ′〉〉I ( 〈〈S∗〉〉I = 〈〈T ∗〉〉I . (F.22)
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It now immediately follows that T ′ 6= T ∗. Furthermore, for any sentence φ from T ′, φ
belongs to T and it follows from (F.22) that [[φ ]] belongs to 〈〈S∗〉〉I, so φ belongs to T ∗ by
its definition. This means that T ′ is a proper subset of T ∗, contrary to the assumption
that T ′ belongs to rem(T ,U).

Furthermore, it follows from the maximality of possible remainders that equivalent
sentences are either included in them together, or not at all.

Lemma F.55 (Equivalent Sentences in Remainders). Let T , U be theories, φ, ψ ∈ T sentences
such that [[φ ]] = [[ψ ]] and T ′ ∈ rem(T ,U) a possible remainder. Then φ belongs to T ′ if and only
if ψ belongs to T ′.

Proof. Without loss of generality, assume that φ belongs to T ′ but ψ does not. Then T ′ ∪
{ψ } is a subset of T that is consistent with U . This is in conflict with the maximality of
T ′.

This directly leads to the following identity.

Corollary F.56. Let T , U be theories,R ⊆ rem(T ,U) a set of possible remainders. Then,⋂
((R)) =

〈〈⋂
R
〉〉

.

Proof. First suppose thatM belongs to
⋂

((R)) and take some T ′ ∈ R and some sentence
φ ∈ T ′ such that [[φ ]] = M. Now take an arbitrary T ∗ ∈ R. SinceM belongs to 〈〈T ∗〉〉,
there must exist a sentence ψ ∈ T ∗ such that [[ψ ]] =M. Consequently, [[φ ]] = [[ψ ]] and by
Lemma F.55 we obtain that φ also belongs to T ∗. Thus, φ belongs to

⋂
R andM belongs

to 〈〈
⋂
R〉〉.

On the other hand, ifM belongs to 〈〈
⋂
R〉〉, then there is a sentence φ ∈

⋂
R such that

[[φ ]] = M. Consequently, M belongs to all members of ((R)), thus also belongs to their
intersection.

Corollary F.57. Let T , U be theories,R ⊆ rem(T ,U) a set of possible remainders. Then,⋂
((R))I =

〈〈⋂
R
〉〉I

.

Proof. Follows from Corollary F.56 and from the fact that I belongs to both sides of the
equation.

Proposition F.58 (Properties of the WIDTIO Operator). The WIDTIO operator satisfies (F1),
(F2.1) and (F4).

Proof. By definition U ⊆ T ◦WIDTIO U and (F1) is obtained by applying 〈〈·〉〉 to both sides of
this inclusion.

In order to verify that (F2.1) holds, suppose that M belongs to 〈〈T ◦WIDTIO U〉〉. Then
there is some sentence φ from U ∪

⋂
rem(T ,U) such that [[φ ]] =M. If φ belongs to U , then

it immediately follows that M belongs to 〈〈U〉〉, and consequently also to 〈〈T ∪ U〉〉. If φ
belongs to T ′ for all T ′ ∈ rem(T ,U), then φ also belongs to T . Thus,M is a member of
〈〈T 〉〉, and consequently also of 〈〈T ∪ U〉〉.
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Finally, to verify (F4), suppose that 〈〈T 〉〉I = 〈〈S〉〉I and 〈〈U〉〉I = 〈〈V〉〉I. The following
follows from the definition of the WIDTIO operator, Corollary F.57 and Proposition F.54.

〈〈T ◦WIDTIO U〉〉I =
〈〈
U ∪

⋂
rem(T ,U)

〉〉I
= 〈〈U〉〉I ∪

〈〈⋂
rem(T ,U)

〉〉I
= 〈〈U〉〉I ∪

⋂
((rem(T ,U)))I = 〈〈V〉〉I ∪

⋂
((rem(S,V)))I

= 〈〈V〉〉I ∪
〈〈⋂

rem(S,V)
〉〉I

=
〈〈
V ∪

⋂
rem(S,V)

〉〉I
= 〈〈S ◦WIDTIO V〉〉I .

Proposition F.59 (Properties of Regular Bold Operators). Regular Bold operators satisfy (F1),
(F2.1) and (F4).

Proof. By definition U ⊆ T ◦s
BOLD
U and (F1) is obtained by applying 〈〈·〉〉 to both sides of

this inclusion.
In order to verify that (F2.1) holds, suppose thatM belongs to 〈〈T ◦s

BOLD
U〉〉. Then there

is some sentence φ from U ∪ s(rem(T ,U)) such that [[φ ]] = M. If φ belongs to U , then
it immediately follows that M belongs to 〈〈U〉〉, and consequently also to 〈〈T ∪ U〉〉. If φ
belongs to T ′ = s(rem(T ,U)), then φ also belongs to T . Thus, M is a member of 〈〈T 〉〉,
and consequently also of 〈〈T ∪ U〉〉.

Finally, to verify (F4), suppose that 〈〈T 〉〉I = 〈〈S〉〉I and 〈〈U〉〉I = 〈〈V〉〉I. The following
follows from the definition of the WIDTIO operator, Proposition F.54 and the regularity
property of ◦s

BOLD
.

〈〈T ◦s
BOLD
U〉〉I = 〈〈U ∪ s(rem(T ,U))〉〉I = 〈〈U〉〉I ∪ 〈〈s(rem(T ,U))〉〉I

= 〈〈V〉〉I ∪ 〈〈s(rem(S,V))〉〉I = 〈〈V ∪ s(rem(S,V))〉〉I

= 〈〈S ◦s
BOLD
V〉〉I .

Proposition F.60 (Properties of the Cross-Product Operator). The Cross-Product operator
satisfies (F1), (FO2.1) and (F4) but does not satisfy (F2.1).

Proof. By definition U ⊆ T ◦CP U and (F1) is obtained by applying 〈〈·〉〉 to both sides of this
inclusion.

To see that ◦CP does not satisfy (F2.1), note that

{ p, q } ◦CP {¬p ∨ ¬q } = { p ∨ q,¬p ∨ ¬q }

and [[p ∨ q ]] does not belong to 〈〈{ p, q,¬p ∨ ¬q }〉〉.
In order to verify (FO2.1), take some I from [[T ∪ U ]]. We need to show that I is a

model of T ◦CP U . Obviously, I is a model of U , so it remains to prove that I is a model of
the sentence

ψ =
∨

T ′∈rem(T ,U)

∧
φ∈T ′

φ .

Since I is a model of U , we conclude that U is consistent, so according to Lemma F.51,
rem(T ,U) is non-empty. Take some T ∗ from rem(T ,U). We obtain the following:

[[ψ ]] =
⋃

T ′∈rem(T ,U)

[[T ′ ]] ⊇ [[T ∗ ]] ⊇ [[T ]] .

Hence since I belongs to [[T ]], it also belongs to [[ψ ]].
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Finally, to verify (F4), suppose that 〈〈T 〉〉I = 〈〈S〉〉I and 〈〈U〉〉I = 〈〈V〉〉I and take someM
from 〈〈T ◦CPU〉〉I. In the trivial case whenM = I it immediately follows thatM belongs to
〈〈S ◦CPV〉〉I. Otherwise, there is a sentence φ from U∪{ψ } such that [[φ ]] =M. If φ belongs
to U , thenM belongs to 〈〈U〉〉 and by assumption also to 〈〈V〉〉I. By (F1) we then obtain that
M belongs to 〈〈S ◦CP V〉〉I. On the other hand, if φ is ψ, then due to Proposition F.54,
((rem(T ,U)))I = ((rem(S,V)))I, so

[[φ ]] = [[ψ ]] =
⋃

T ′∈rem(T ,U)

[[T ′ ]] =
⋃

S′∈rem(S,V)

[[S ′ ]] = [[ψ′ ]]

where S ◦CP V = V ∪ {ψ′ }. Therefore, [[φ ]] belongs to 〈〈S ◦CP V〉〉I. The proof of the other
inclusion is symmetric.

Proposition 8.16. The WIDTIO and regular Bold operators satisfy (F1), (F2.1) and (F4). The
Cross-Product operator satisfies (F1), (FO2.1) and (F4) but does not satisfy (F2.1).

Proof. Follows from Propositions F.58, F.59 and F.60.

Proposition F.61. If ◦ is an update operator that satisfies (F1), (F2.1) and (F4), then there exists
an exception function ε such that for every ε-based update operator ⊕ and all finite sequences of
theories T , 〈〈©T 〉〉I = 〈〈

⊕
T 〉〉I.

Proof. Let the exception function ε be defined for all sets of interpretationsM and all sets
of sets of interpretations S, T as

ε(M,S, T ) =

{
∅ M ∈ 〈〈T ◦ U〉〉I ;

I M /∈ 〈〈T ◦ U〉〉I ,

where T , U are some theories such that 〈〈T 〉〉I = S ∪ { I } and 〈〈U〉〉I = T ∪ { I }. Note
that this definition is unambiguous since the existence of such T and U is guaranteed
and regardless of which pair of theories with these properties we choose, we obtain the
same result due to the assumption that ◦ satisfies (F4). Take some ε-based operator⊕. We
proceed by induction on the length n of T = 〈Ti〉i<n.

1◦ If n = 0, then it immediately follows that

〈〈3T 〉〉 = 〈〈3〈T0〉〉〉 = 〈〈T0〉〉 = 〈〈
⊕
〈T0〉〉〉 = 〈〈

⊕
T 〉〉 . (F.23)

2◦ Suppose that the claim holds for n, i.e. for T = 〈Ti〉i<n we have

〈〈3T 〉〉I = 〈〈
⊕

T 〉〉I . (F.24)

Our goal is to show that it also holds for n+ 1, i.e. for T ′ = 〈Ti〉i<n+1.
It follows that

〈〈
⊕

T ′〉〉 = 〈〈
⊕

T ⊕ Tn〉〉 = { [[φ ]] ∪ ε([[φ ]], 〈〈
⊕

T 〉〉, 〈〈Tn〉〉) | φ ∈
⊕

T } ∪ 〈〈Tn〉〉 .

Thus 〈〈
⊕

T ′〉〉I is the same as

{ [[φ ]] ∪ ε([[φ ]], 〈〈
⊕

T 〉〉, 〈〈Tn〉〉) | φ ∈
⊕

T } ∪ 〈〈Tn〉〉 ∪ { I }
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which in turn can be written as{
M
∣∣∣M∈ 〈〈⊕T 〉〉 ∩ 〈〈

⊕
T ◦ Tn〉〉I

}
∪
{
I
∣∣∣M∈ 〈〈⊕T 〉〉 \ 〈〈

⊕
T ◦ Tn〉〉I

}
∪ 〈〈Tn〉〉 ∪ { I }

and simplified into (
〈〈
⊕

T 〉〉I ∩ 〈〈
⊕

T ◦ Tn〉〉I
)
∪ 〈〈Tn〉〉I .

Since ◦ satisfies (F4), it follows from (F.24) that 〈〈
⊕

T ◦ Tn〉〉I = 〈〈©T ◦ Tn〉〉I and thus
we obtain the set (

〈〈©T 〉〉I ∩ 〈〈©T ◦ Tn〉〉I
)
∪ 〈〈Tn〉〉I

and by distributing ∪ over ∩ and using (F1) and (F2.1) we obtain(
〈〈©T 〉〉I ∪ 〈〈Tn〉〉I

)
∩
(
〈〈©T ◦ Tn〉〉I ∪ 〈〈Tn〉〉I

)
= 〈〈©T ∪ Tn〉〉I ∩ 〈〈©T ◦ Tn〉〉I

= 〈〈©T ◦ Tn〉〉I

= 〈〈©T ′〉〉I .

Proposition F.62. If ◦ an update operator that satisfies (F1), (FO2.1) and (F4), then there exists
an exception function ε such that for every ε-based update operator ⊕ and all theories T , U ,
[[T ◦ U ]] = [[T ⊕ U ]].

Proof. Let the exception function ε be defined for all sets of interpretationsM and all sets
of sets of interpretations S, T as

ε(M,S, T ) = [[T ◦ U ]] ,

where T , U are some theories such that 〈〈T 〉〉I = S ∪ { I } and 〈〈U〉〉I = T ∪ { I }. Note that
this definition is unambiguous since the existence of such T and U is guaranteed and
regardless of which pair of theories with these properties we choose, we obtain the same
result due to the assumption that ◦ satisfies (F4).

Take some ε-based operator ⊕. Then [[T ⊕ U ]] is the same as⋂
({ [[φ ]] ∪ ε([[φ ]], 〈〈T 〉〉, 〈〈U〉〉) | φ ∈ T } ∪ 〈〈U〉〉)

which in turn can be written as⋂
{ [[φ ]] ∪ [[T ◦ U ]] | φ ∈ T } ∩

⋂
〈〈U〉〉

and simplified into
([[T ◦ U ]] ∪ [[T ]]) ∩ [[U ]] .

Furthermore, due to (F1) and (FO2.1),

([[T ◦ U ]] ∪ [[T ]]) ∩ [[U ]] = ([[T ◦ U ]] ∩ [[U ]]) ∪ ([[T ]] ∩ [[U ]])

= [[T ◦ U ]] ∪ [[T ∪ U ]]

= [[T ◦ U ]] .

Theorem 8.17. If ◦ is an update operator that satisfies (F1), (F2.1) and (F4), then there exists
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an exception function ε such that for every ε-based update operator ⊕ and all finite sequences of
theories T , [[©T ]] = [[

⊕
T ]].

If ◦ an update operator that satisfies (F1), (FO2.1) and (F4), then there exists an exception
function ε such that for every ε-based update operator⊕ and all theories T , U , [[T ◦U ]] = [[T ⊕U ]].

Proof. Follows from Propositions F.61 and F.62.
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