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Abstract. Over the years, Logic Programming has proved to be a good
and natural tool for expressing, querying and manipulating explicit
knowledge in many areas of computer science. However, it is not so easy
to use in dynamic environments. Evolving Logic Programs (EVOLP)
are an elegant and powerful extension of Logic Programming suitable
for Multi-Agent Systems, planning and other uses where information
tends to change dynamically. In this paper we characterize EVOLP by
transforming it into an equivalent normal logic program written in an
extended language, that serves as the basis of an existing implemen-
tation. Then we prove that the proposed transformation is sound and
complete and examine its computational complexity.

1 Introduction

Construction of intelligent agents is one of the main matters of artificial intelli-
gence. Computational Logic, and Logic Programming in particular, have shown
to be a good tool for both symbolic knowledge representation and reasoning,
with fruitful application in Multi-Agent Systems.

Examples of the success of Computational Logic in Multi-Agent Systems
include IMPACT [1,2], 3APL [3,4], Jason [5], DALI [6], ProSOCS [7], FLUX [8]
and ConGolog [9], to name a few. For a survey on some of these systems, as well
as others, see [10,11,12].

Agents must be capable of operating independently in a partially observable
environment that may change unexpectedly. Therefore, they need to be able to
evolve, both due to self-updates and updates from the environment, and change
their model of the world accordingly.

Much research in the last decade has been devoted to finding a good way of
updating knowledge bases represented by logic programs [13,14,15,16,17,18,19].
A sequence of logic programs where each program represents a supervenient
state of the world was called a Dynamic Logic Program (DLP). Finding a suit-
able semantics for DLPs became the first step on one of the paths to using Logic
Programming in Multi-Agent Systems. Quite a number of semantics with differ-
ent properties were introduced [16,17,18,19]. We will only mention the Dynamic
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Stable Model semantics [17] that was later improved and called Refined Dynamic
Stable Models [19]. This is also the semantics used throughout this work. For a
more comprehensive overview of semantics for DLPs see [18,20,21].

Although Dynamic Logic Programming provides a semantics for a sequence
of states of the world expressed as logic programs, it doesn’t offer a mechanism
for constructing these programs. Update languages like LUPS [22], EPI [23],
KUL and KABUL [18] were developed for the purpose of specifying transitions
between the states of the world. Each of them defines special types of rules
for adding and deleting rules from programs in the sequence. Evolving Logic
Programs (EVOLP) [24] also comes from this line of work, but while its pre-
decessors were becoming more and more complicated as more constructs were
being added, EVOLP is a simple, yet very powerful extension of traditional logic
programming.

Syntactically, evolving logic programs are just generalized logic programs3.
But semantically, they permit to reason about assertions of new rules to the
program. The language of Evolving Logic Programs contains a special predi-
cate assert/1 whose sole argument is a full-blown rule. Whenever an assertion
assert(r) is true in a model, the program is updated with rule r. The process is
then further iterated with the new program. Whenever the program semantics
allows for several possible program models, evolution branching occurs, and sev-
eral evolution sequences are made possible. This branching can be used to specify
the evolution of a situation in the presence of incomplete information. Moreover,
the ability of EVOLP to nest rule assertions within assertions allows rule up-
dates to be themselves updated down the line. The ability to include assert
literals in rule bodies allows for looking ahead on some program changes and
acting on that knowledge before the changes occur. EVOLP also automatically
and appropriately deals with the possible contradictions arising from successive
specification changes and refinements (via Dynamic Logic Programming).

The aim of this work is to provide the basis for an operational semantics for
EVOLP, based on a sound and complete transformational semantics for EVOLP,
i.e. define a transformation that, given an evolving logic program and a sequence
of events, produces an equivalent normal logic program written in an extended
language. Such a transformation, together with an ASP solver, is the basis of our
implementation of EVOLP under the evolution stable model semantics, available
through two frontends, a web form4 and a command line interface5. Currently,
the only somehow similar implementation appears in [25] and only for a limited
constructive view of EVOLP.

We also examine the complexity of the defined transformation. This is per-
formed by inferring both a lower and an upper bound for the size of the trans-
formed program.

The remainder of this work is structured as follows: in Sect. 2 we introduce
the syntax and semantics of EVOLP; in Sect. 3 we define the transformation;

3 logic programs that allow for rules with default negated literals in their heads.
4 runs at http://www.ii.fmph.uniba.sk/∼slota/evolp-prop-prototype/
5 downloadable from http://slotik.medovnicek.sk/2006/thesis/results/



in Sect. 4 we show that the proposed transformation is sound and complete; in
Sect. 5 we examine the complexity of the transformation; in Sect. 6 we conclude
and sketch some possible directions of future work.

2 Background: Concepts and Notation

We start with the usual preliminaries: Let L be a set of propositional atoms.
A default literal is an atom preceded by not. A literal is either an atom or a
default literal. A rule r is an ordered pair (H(r), B(r)) where H(r) (dubbed the
head of the rule) is a literal and B(r) (dubbed the body of the rule) is a finite
set of literals. A rule with H(r) = L0 and B(r) = {L1, L2, . . . , Ln} will simply
be written as

L0 ← L1, L2, . . . , Ln. (1)

If H(r) = A (resp. H(r) = notA) then notH(r) = notA (resp. notH(r) = A).
Two rules r, r′ are conflicting, denoted by r on r′, iff H(r) = notH(r′). We will
say a literal L appears in a rule (1) iff the set {L,notL} ∩ {L0, L1, L2, . . . , Ln}
is non-empty.

A generalized logic program (GLP) over L is a set of rules. A literal appears
in a GLP iff it appears in at least one of its rules.

An interpretation of L is any set of atoms I ⊆ L. An atom A is true in
I, denoted by I |= A, iff A ∈ I, and false otherwise. A default literal notA is
true in I, denoted by I |= notA, iff A /∈ I, and false otherwise. A set of literals
B is true in I iff each literal in B is true in I. Given an interpretation I we
also define I−

def= {notA | A ∈ L \ I} and I∗
def= I ∪ I−. An interpretation M

is a stable model of a GLP P iff M∗ = least(P ∪M−) where least(·) denotes
the least model of the definite program obtained from the argument program by
treating all default literals as new atoms.

Definition 1. A dynamic logic program (DLP) is a sequence of GLPs. Let
P = (P1, P2, . . . , Pn) be a DLP. We use ρ(P) to denote the multiset of all rules
appearing in the programs P1, P2, . . . , Pn and Pi (1 ≤ i ≤ n) to denote the i-th
component of P, i.e. Pi. Given a DLP P and an interpretation I we define

Def(P, I) def= {notA | (@r ∈ ρ(P))(H(r) = A ∧ I |= B(r))} , (2)

Rejj(P, I) def=
{
r ∈ Pj

∣∣ (∃k, r′)
(
k ≥ j ∧ r′ ∈ Pk ∧ r on r′ ∧ I |= B(r′)

)}
, (3)

Rej(P, I) def=
n⋃

i=1

Reji(P, I) . (4)

An interpretation M is a (refined) dynamic stable model of a DLP P iff M∗ =
least([ρ(P) \ Rej(P,M)] ∪Def(P,M)).

Definition 2. Let L be a set of propositional atoms (not containing the predi-
cate assert/1). The extended language Lassert is defined inductively as follows: –
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Fig. 1. Semantics of EVOLP (without events)

All propositional atoms in L are propositional atoms in Lassert; – If r is a rule
over Lassert then assert(r) is a propositional atom in Lassert; – Nothing else is
a propositional atom in Lassert. An evolving logic program over a language L
is a GLP over Lassert. An event sequence over L is a sequence of evolving logic
programs over L.

Definition 3. An evolution interpretation of length n of an evolving pro-
gram P over L is a finite sequence I = (I1, I2, . . . , In) of interpretations
of Lassert. The evolution trace associated with an evolution interpretation
I of P is the sequence of programs (P1, P2, . . . , Pn) where P1 = P and
Pi+1 = {r | assert(r) ∈ Ii} for all i ∈ {1, 2, . . . , n− 1}.

Definition 4. An evolution interpretation M = (M1,M2, . . . ,Mn) of an
evolving logic program P with evolution trace (P1, P2, . . . , Pn) is an evolu-
tion stable model of P given an event sequence (E1, E2, . . . , En) iff for every
i ∈ {1, 2, . . . , n} Mi is a dynamic stable model of (P1, P2, . . . , Pi−1, Pi ∪ Ei).

Example 1. Consider the following evolving logic program:

P : write thesis← not tired. (5)
drink coffee← tired,notno coffee. (6)
make coffee← tired,no coffee. (7)

assert(tired←)← write thesis. (8)
assert(not tired←)← drink coffee. (9)

P could be an initial program of a simple agent (e.g. Mary) who is trying to write
a thesis. Mary can do 3 things: write the thesis, drink coffee or make coffee. She
also relies on a sensor that sends her the fact (no coffee← .) as an event in case
no coffee is available. The meaning of the rules is as follows: Rule (5) says Mary’s
writing the thesis as long as she’s not tired. Rules (6) and (7) tell her what to
do when she’s tired. Rules (8) and (9) specify whether she will be tired in the



Table 1. Evolution of the program in Example 1 (“assert” is shortened to “ass”)

Time Program Event Model

1 P E1

{no coffee, write thesis,

ass(tired←)}
2 {tired← .} E2 {tired, no coffee, make coffee}
3 ∅ E3 {tired, drink coffee, ass(not tired←)}

4 {not tired← .} E4

{write thesis, ass(tired←),

ass(not drink coffee←),

ass(sleep← tired),

ass(ass(not tired←)← sleep)}

5

{tired← .,

not drink coffee← .,

sleep← tired.,

ass(not tired←)← sleep.}

E5 {tired, sleep, ass(not tired←)}

next evolution step. If she’s writing the thesis, she will get tired. Drinking coffee
has an opposite effect. If she’s making coffee, no change will take place. Table 1
shows the evolution of P given the sequence of events E = (E1, E2, E3, E4, E5)
where E1 = E2 = {no coffee← .}, E3 = E5 = ∅ and

E4 : assert(notdrink coffee←)← .

assert(sleep← tired)← .

assert(assert(not tired←)← sleep)← .

We start off with P and E1 and compute the first model. It says there is no
coffee, Mary is writing her thesis and in the next step she will get tired. We infer
the second program from the model, add the second event and compute the
second model. Now Mary is tired and makes coffee. This makes the sensor stop
complaining in the third step (i.e. E3 = ∅) and Mary, still tired, drinks coffee.
In the fourth step Mary is writing her thesis again and she is reprogrammed –
when she gets tired she will take a nap instead of drinking coffee. In the fifth
step the new rules are used – Mary is tired and sleeping.

For more examples see [26].

3 Transformation into a Normal Logic Program

Now we will define a transformation which turns an evolving logic program P
together with an event sequence E of length n into a normal logic program PE
over an extended language. We will prove later that the stable models of PE are
in one-to-one correspondence with the evolution stable models of P given E .

The transformation is essentially a multiple parallel usage of a similar trans-
formation for DLPs introduced in [27]. First we need to define the extended



language over which we will construct the resulting program:

Ltrans
def=
{
Aj , Aj

neg

∣∣ A ∈ Lassert ∧ 1 ≤ j ≤ n
}

∪
{
rej(Aj , i), rej(Aj

neg, i)
∣∣ A ∈ Lassert ∧ 1 ≤ j ≤ n ∧ 0 ≤ i ≤ j

}
∪{u} .

Atoms of the form Aj and Aj
neg in the extended language allow us to compress

the whole evolution interpretation (consisting of n interpretations of Lassert, see
Def. 3) into just one interpretation of Ltrans. Atoms of the form rej(Aj , i) and
rej(Aj

neg, i) are needed for rule rejection simulation. The atom u will serve to
formulate constraints needed to eliminate some unwanted models of PE .

To simplify the notation in the transformation’s definition, we’ll use the fol-
lowing conventions: Let L be a literal over Lassert, body a set of literals over
Lassert and j a natural number. Then:

– If L is an atom A, then Lj is Aj and Lj
neg is Aj

neg.
– If L is a default literal notA, then Lj is Aj

neg and Lj
neg is Aj .

– bodyj = {Lj | L ∈ body}.

Definition 5. Let P be an evolving logic program and E = (E1, E2, . . . , En)
an event sequence. By a transformational equivalent of P given E we mean the
normal logic program PE = P 1

E ∪P 2
E ∪. . .∪Pn

E over Ltrans, where each P j
E consists

of these six groups of rules:

1. Rewritten program rules. For every rule (L← body .) ∈ P it contains the
rule

Lj ← bodyj ,not rej(Lj , 1).

2. Rewritten event rules. For every rule (L ← body .) ∈ Ej it contains the
rule

Lj ← bodyj ,not rej(Lj , j).

3. Assertable rules. For every rule r = (L ← body .) over Lassert and all i,
1 < i ≤ j, such that (assert(r))i−1 is in the head of some rule of P i−1

E it
contains the rule

Lj ← bodyj , (assert(r))i−1,not rej(Lj , i).

4. Default assumptions. For every atom A ∈ Lassert such that Aj or Aj
neg

appears in some rule of P j
E (from the previous groups of rules) it also contains

the rule
Aj

neg ← not rej(Aj
neg, 0).

5. Rejection rules. For every rule of P j
E of the form

Lj ← body ,not rej(Lj , i).6

6 It can be a rewritten program rule, a rewritten event rule or an assertable rule
(default assumptions never satisfy the further conditions). The set body contains all
literals from the rule’s body except the not rej(Lj , i) literal.



it also contains the rules

rej(Lj
neg, p)← body . (10)

rej(Lj , q)← rej(Lj , i). (11)

where:
(a) p ≤ i is the largest index such that P j

E contains a rule with the literal
not rej(Lj

neg, p) in its body. If no such p exists, then (10) is not in P j
E .

(b) q < i is the largest index such that P j
E contains a rule with the literal

not rej(Lj , q) in its body. If no such q exists, then (11) is not in P j
E .

6. Totality constraints. For all i ∈ {1, 2, . . . , j} and every atom A ∈ Lassert

such that P j
E contains rules of the form

Aj ← bodyp,not rej(Aj , i).

Aj
neg ← bodyn,not rej(Aj

neg, i).

it also contains the constraint

u← notu,notAj ,notAj
neg.

Each P j
E contains rules for simulating the DLP (P, P2, P3, . . . , Pj−1, Pj ∪Ej)

from the definition of evolution stable model (Definition 4). For the simulation
we use the transformational semantics from [27]. We also rewrite all atoms from
the original rules as a new set of j-indexed atoms.

The first two groups of rules in P j
E (rewritten program rules and rewritten

event rules) contain the rewritten forms of rules from P and Ej . However, we
don’t know the exact contents of P2, P3, . . . , Pj , so the group of assertable rules
contains all rules that can possibly occur in those programs. Each of these rules
also has an atom of the form (assert(r))i−1 in its body. It assures the rule is only
used in case it was actually asserted. These atoms are also the only connection
between the rules of P j

E and the rules in P 1
E ∪ P 2

E ∪ . . . ∪ P j−1
E .

The default assumptions are defined similarly as in [27], and they have the
same function – they simulate the set of defaults defined in Def. 1.

Rewritten program rules, rewritten event rules, assertable rules and default
assumptions also contain a default literal of the form not rej(Lj , i) in their bod-
ies. Together with the rejection rules, this literal provides a means of rejecting
a rule by a higher level rule, similarly as in the set of rejected rules (4).

Rejection rules are responsible for inferring the correct rej(Lj , i) atoms. The
first kind of rules introduces the rejection of the next less or equally preferred
rule with a conflicting literal in its head. The second kind of rules takes care of
propagating the rejection to even less preferred rules with the same head.

Totality constraints are important in the case that equally preferred rules
reject each other and no rule with higher priority resolves their conflict. An
interpretation causing such situation is not a refined dynamic stable model (more
details can be found in [19]) and totality constraints are needed to eliminate the
superfluous stable models of PE originating from such situations.

The following example illustrates how the transformation works:



Example 2. Let’s take the evolving logic program

P : assert(a←)← not a.

assert(not a←)← a.

and a sequence of two empty events E . The defined transformation would produce
the following transformed program:

PE : (assert(a←))1 ← a1
neg,not rej((assert(a←))1, 1). (12)

(assert(not a←))1 ← a1,not rej((assert(not a←))1, 1). (13)

a1
neg ← not rej(a1

neg, 0). (14)

(assert(a←))2 ← a2
neg,not rej((assert(a←))2, 1). (15)

(assert(not a←))2 ← a2,not rej((assert(not a←))2, 1). (16)

a2 ← (assert(a←))1,not rej(a2, 2). (17)

a2
neg ← (assert(not a←))1,not rej(a2

neg, 2). (18)

a2
neg ← not rej(a2

neg, 0). (19)

rej(a2
neg, 2)← (assert(a←))1. (20)

rej(a2, 2)← (assert(not a←))1. (21)

rej(a2
neg, 0)← rej(a2

neg, 2). (22)

u← notu,not a2,not a2
neg. (23)

The rules (12) to (14) simulate the first evolution step – they are 2 rewritten
program rules and one default assumption. Rules (15) and (16) are rewritten
program rules for the second evolution step. In this step, two new rules can be
asserted – (17) and (18) are the corresponding assertable rules. (19) is a default
assumption, (20) to (22) are rejection rules and (23) is a totality constraint.

PE has exactly one stable model

M = {a1
neg, (assert(a←))1, a2, (assert(not a←))2, rej(a2

neg, 2), rej(a2
neg, 0)} .

It directly corresponds to the single evolution stable modelM = (M1,M2) of P
given E where M1 = {assert(a←)} and M2 = {a, assert(not a←)}.

4 Soundness and Completeness

The following 2 theorems show how the stable models of the transformed pro-
gram correspond to the evolution stable models of the input program. Only
sketches of proofs are provided, their full versions can be found in [28].

Theorem 1 (Soundness). Let P be an evolving logic program, E =
(E1, E2, . . . , En) an event sequence, N a stable model of PE ,

Mi = {A ∈ Lassert | Ai ∈ N} for all i ∈ {1, 2, . . . , n} .

Then (M1,M2, . . . ,Mn) is an evolution stable model of P given E.



Proof (sketch). Let (P1, P2, . . . , Pn) be the evolution trace associated with the
evolution interpretation M = (M1,M2, . . . ,Mn). According to Def. 4, M is an
evolution stable model of P given E iff for every i ∈ {1, 2, . . . , n}Mi is a dynamic
stable model of (P1, P2, . . . , Pi−1, Pi ∪ Ei). Hence we choose one arbitrary but
fixed j ∈ {1, 2, . . . , n} and show that Mj is a dynamic stable model of P =
(P1, P2, . . . , Pj−1, Pj ∪ Ej).

Mj contains exactly those atoms that have their corresponding j-indexed
counterpart inferred by rules in P j

E as defined in Def. 5. What we need to show
is that each rule of P j

E either corresponds to some rule in P1, P2, . . . , Pj , Ej , or
has no effect on the model, or is used to simulate the rule-rejection mechanism
behind Dynamic Logic Programming.

It can be seen quite easily that rewritten program rules and rewritten event
rules correspond to rules in P1 = P and Ej , respectively. They just contain one
extra literal in their body that is used to block them in case they are rejected.

An assertable rule, added as a rewritten form of an original rule r, can only
be fired in case an atom of the form (assert(r))i−1 is true in N . But then
assert(r) is true in Mi−1 and thus r ∈ Pi. On the other hand, if r ∈ Pi for
some i ∈ {2, 3, . . . , j}, then assert(r) ∈ Mi−1 and hence (assert(r))i−1 ∈ N .
So each rewritten program rule, rewritten event rule and assertable rule either
corresponds to some rule in the dynamic logic program P, or has no effect on
the resulting model because it cannot be fired.

Default assumptions in P j
E are present for all atoms of the program. They

simulate the set of defaults from Def. 1 and contain, just like all the other rules
before, a literal in their body that can block their usage in case a higher-level
rule rejects them by having an opposite literal in its head and its body satisfied
in N .

The rejection rules together with the totality constraints can be proved to
behave as follows:

1. For each atom Aj appearing in P j
E they force exactly one of Aj and Aj

neg to
be a member of N .

2. They infer an atom rej(Lj , i) with i > 0 iff some rule r ∈ Reji(P,Mj) has L
in its head.

3. They infer an atom rej(Lj , 0) iff L is notA for some atom A ∈ Lassert and
notA /∈ Def(P, I).

The first point implies that the resulting model will be consistent w.r.t. the
rewritten versions of original literals. Correct simulation of the rule-rejection
mechanism is a consequence of the second point. The third point ensures that
only the appropriate subset of default assumptions is used.

Using the propositions from the previous paragraphs, it can be proved (by
induction on the number of applications of the immediate consequence operator)
that Mj is indeed a dynamic stable model of P.

Theorem 2 (Completeness). Let P be an evolving logic program, E =
(E1, E2, . . . , En) an event sequence, M = (M1,M2, . . . ,Mn) an evolution stable



model of P given E, (P1, P2, . . . , Pn) the evolution trace associated with M and

Pi = (P1, P2, . . . , Pi−1, Pi ∪ Ei) for all i ∈ {1, 2, . . . , n} .

Furthermore, let

N = {Li | i ∈ {1, 2, . . . , n} ∧Mi |= L ∧ Li appears in PE}
∪ {rej(Li, k) | 1 ≤ k ≤ i ≤ n ∧ (∃r ∈ Rejk(Pi,Mi))(H(r) = L)}
∪ {rej(Ai

neg, 0) | i ∈ {1, 2, . . . , n} ∧ notA /∈ Def(Pi,Mi)} .

Then N is a stable model of PE .

Proof (sketch). Let R = least(PE ∪N−). We need to prove that N∗ = R. This
can be proved in three steps:

1. In the first step we must prove for every literal L of Lassert and all j ∈
{1, 2, . . . , n} that Lj ∈ N ⇐⇒ Lj ∈ R. This can be proved by complete
induction on j, using similar ideas as in the proof of soundness.

2. The second step is to prove that N and R are identical on the set of atoms
of the form rej(Lj , i) for all L ∈ Lassert, every j ∈ {1, 2, . . . , n} and every
i ∈ {0, 1, . . . , j}. If rej(Lj , i) ∈ N , then some rule r ∈ Reji(Pj ,Mj) has
L in its head. This rule must have been rejected by some other rule r′.
P j
E must contain a rule corresponding to r′ that will cause the presence of

appropriate rejection rules. Consequently, rej(Lj , i) will eventually be added
to R. A similar idea can be used to prove the converse implication.

3. The last matter that needs to be proved is that none of the totality con-
straints in PE has been broken, i.e. that u /∈ R. This can be proved by
contradiction: consider one of the constraints if broken. Then for some atom
A ∈ Lassert we have notAj ,notAj

neg ∈ R and also that both Aj and Aj
neg

appear in PE . Furthermore, notAj ,notAj
neg ∈ N− and hence Aj , Aj

neg /∈ N .
But then we have both Mj 6|= A and Mj 6|= notA – a contradiction.

5 Complexity of the Transformation

The computational complexity of the proposed transformation is interesting from
multiple viewpoints:

– it directly influences the computational complexity of the implementation of
EVOLP that is based on it [29],

– it allows to identify the most time-consuming parts of the transformation
which can in turn be optimized to perform better,

– it reveals the branching factor that EVOLP is capable of, i.e. it demonstrates
the expressivity of EVOLP.

The rules for generating the transformed program are quite simple, so the algo-
rithm performing the transformation will also be reasonably simple. What really



matters is the size and number of rules of the transformed program. The big-
ger the transformed program will be, the longer it will take to generate it and
perform any further processing. We are also interested in which group of rules
is the biggest and how it can be made smaller.

The size of each generated rule is either constant (default assumptions, to-
tality constraints and propagating rejection rules) or just constantly bigger than
the corresponding original rule. Therefore, we will concentrate on the number of
generated rules. First we will derive both a lower and an upper bound for the
number of rules of the transformed program. After we have the bounds, we will
draw some conclusions. For the rest of this section we will assume P is a finite
evolving logic program and E = (E1, E2, . . . , En) is a sequence of finite events.

5.1 Lower Bound

We know the transformed program PE contains n|P | rewritten program rules
and

∑n
j=1 |Ej | rewritten event rules. So a very simple lower bound for |PE | is:

|PE | ≥ n|P |+
n∑

j=1

|Ej | . (24)

Equality can be achieved only if P = E1 = E2 = . . . = En = ∅. Otherwise, PE
will also contain some default assumptions and rejection rules.

5.2 Number of Assertable Rules

In order to derive an upper bound for |PE |, we will first need to make an ap-
proximation of the number of assertable rules. Let A be the set of all assertable
rules in PE . In Appendix A it is shown that

|A| ≤ |P |n
3 − n

6
+

n∑
j=1

|Ej |
(n− j)3 + 5(n− j)

6
. (25)

It is also shown that in case we disallow nested asserts (i.e. a rule within an
assert atom must not contain another assert atom in its head), we have

|A| ≤ |P |n
2 − n

2
+

n∑
j=1

(n− j)|Ej | . (26)

5.3 Upper Bound

We already know the number of rewritten program rules and rewritten event
rules in the transformed program and an upper bound for the number of as-
sertable rules. Now we need to deal with the default assumptions, rejection rules
and totality constraints.



How many default assumptions can there be? Both P and the events are
finite so only a finite set of atoms from Lassert can be used in them. Let this set
be LP,E . Each atom in this set can generate up to n default assumptions.

Each rewritten program rule, rewritten event rule and assertable rule can
generate at most 2 rejection rules. Two of these rules are needed to generate a
totality constraint.

Taken together, we have

|PE | ≤
7
2

n|P |+
n∑

j=1

|Ej |+ |A|

+ n| LP,E | . (27)

If we use the approximation of |A| (25), we get the following inequality:

|PE | ≤
7
2

n|P |+
n∑

j=1

|Ej |

+ |P |n
3 − n

6
+

n∑
j=1

|Ej |
(n− j)3 + 5(n− j)

6

+ n| LP,E |

which can be further simplified to

|PE | ≤
7
2

|P |n3 + 5n

6
+

n∑
j=1

|Ej |
(

(n− j)3 + 5(n− j)
6

+ 1
)+ n| LP,E | .

When n is large and program sizes are considered as parameters, we can use the
big-oh notation to get

|PE | = |P | · O
(
n3
)

+
n∑

j=1

|Ej | · O
(
(n− j)3

)
+ n| LP,E | . (28)

In case of programs without nested asserts we can use (26) to derive

|PE | ≤
7
2

|P |n2 + n

2
+

n∑
j=1

(n− j + 1)|Ej |

+ n| LP,E | ,

or, for large n,

|PE | = |P | · O
(
n2
)

+
n∑

j=1

|Ej | · O(n− j) + n| LP,E | . (29)

5.4 Conclusion

The lower bound (24) for |PE | implies that the transformed program grows with
n, no matter how big the events are. For large values of n and many empty events



this can be a problem. The main reason for this is that the expressivity EVOLP
encompasses and the possibility of arbitrary branching based on the intermediate
models makes it difficult to share rules among evolution steps. However, sharing
is possible in many situations and it could significantly reduce the number of
rules. The current transformation also generates a number of unnecessary default
assumptions and rejection rules. This was useful because it made its definition
and proofs of soundness and completeness simpler. But now that these proofs
are ready, it should be easy to prove the extra rules can be removed.

One possibility of using the current transformation efficiently is to disallow
large values of n, i.e. use it for bounded lookahead of up to n steps forward and
then choose only one of the possible evolutions. A special case of this approach
with lookahead of length 1 was also used in the implementation used in [25].

The good news regarding the transformation is that, according to (28), the
size of the transformed program depends on the size of the input program, size
of events and n only polynomially. So the transformation can be performed in
polynomial time and for small values of n the transformed program will be of
reasonable size (comparing to the size of input). Furthermore, if we use only (or
mostly) rules without nested asserts, (29) implies that we can lower the power
of n that |PE | grows with.

6 Conclusion and Future Work

We have defined a transformational semantics for Evolving Logic Programs and
proved that it is sound and complete. We also examined the computational com-
plexity of the transformation and identified situations in which it is practically
applicable.

Future work can be devoted to optimizations and extensions of the current
transformation. In particular, the current transformation can generate a number
of default assumptions and rejection rules that are actually not needed. In many
situations we can also share the rules among evolution steps which can result in
a much smaller transformed program. The definition can also be extended to a
language with classical negation.
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A Upper bound for the number of assertable rules

In this Appendix we derive an upper bound for the number of assertable rules
in the transformed program. We will assume P is a finite evolving logic program
and E = (E1, E2, . . . , En) is a sequence of finite events. Let A be the set of all
assertable rules in the transformational equivalent PE of P given E . We will need
some more declarative characterization of the rules in A in order to work with its
cardinality. The following Definition and Theorem provide such characterization:

Definition 6. Let E0 = ∅. We define

A1
def= {r | (∃r1 ∈ P )(H(r1) = assert(r))} , (30)

for all i ∈ {2, 3, . . . , n− 1}

Ai
def= {r | (∃r1 ∈ Ai−1)(H(r1) = assert(r))}
∪ {r | (∃r2 ∈ Ei−1)(H(r2) = assert(r1) ∧H(r1) = assert(r))}

(31)

and for all j ∈ {1, 2, . . . , n− 1} also

Aj
def=

j⋃
i=1

Ai ∪ {r | (∃r1 ∈ Ej)(H(r1) = assert(r))} . (32)

Theorem 3. Let j ∈ {1, 2, . . . , n− 1} and let r be a rule over Lassert. P j
E con-

tains a rule with (assert(r))j in its head iff r ∈ Aj.



The proof of the theorem is not included because of limited space, but it can
be found in [28]. As a consequence of the theorem we have

|A| =
n∑

j=1

(n− j)
∣∣Aj

∣∣ (33)

because each rule r ∈ Aj will generate n − j assertable rules, one in each of
P j+1
E , P j+2

E , . . . , Pn
E . Now we can make an approximation of |A|. According to

(30), (31) and (32) we have for all j ∈ {1, 2, . . . , n− 1}

|Aj | ≤ |P |+
j−1∑
i=1

|Ei| ,
∣∣Aj

∣∣ ≤ j|P |+ |Ej |+
j∑

i=1

(j − i)|Ei| .

Furthermore, by (33) we have

|A| =
n∑

j=1

(n− j)
∣∣Aj

∣∣ ≤ n∑
j=1

(n− j)

(
j|P |+ |Ej |+

j∑
i=1

(j − i)|Ei|

)

= |P |
n∑

j=1

j(n− j) +
n∑

j=1

(n− j)|Ej |+
n∑

j=1

(n− j)
j∑

i=1

(j − i)|Ei| .

(34)

First let’s solve the first sum:
n∑

j=1

j(n− j) = n

n∑
j=1

j −
n∑

j=1

j2 =
n3 − n

6
. (35)

The third sum can be simplified as follows:

n∑
j=1

(n− j)
j∑

i=1

(j − i)|Ei| =
n∑

i=1

|Ei|
n−i∑
j=1

j((n− i)− j)

=
n∑

i=1

|Ei|
(n− i)3 − (n− i)

6
.

(36)

By (34), (35) and (36) we now have

|A| ≤ |P |n
3 − n

6
+

n∑
j=1

|Ej |
(n− j)3 + 5(n− j)

6
.

We can also put some extra restrictions on the input program and then look
at the number of assertable rules. For example, if we disallow nested asserts (i.e. a
rule within an assert atom must not contain an assert atom in its head), then we
have |A1| ≤ |P | and |Aj | = 0 for all j ∈ {2, 3, . . . , n− 1}. Hence

∣∣Aj

∣∣ ≤ |P |+ |Ej |
for all j ∈ {1, 2, . . . , n− 1} and

|A| ≤
n∑

j=1

(n− j)(|P |+ |Ej |) = |P |n
2 − n

2
+

n∑
j=1

(n− j)|Ej | .


