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1 Introduction 

Recommender systems have become an essential tool for 
finding the needle in the haystack of the World Wide  
Web (WWW) – the information or item one is searching for 
(Resnick and Varian, 1997). Finding the desired item is a 
daunting task considering the amount of information that is 
present in the WWW and its databases, and almost every  
e-commerce application will provide the user with the help 
of a recommender system to suggest products or 
information that the user might want or need (Schafer et al., 
2001). 

Recommender systems are employed to recommend 
products in online stores, news articles in news subscription  
 

sites or financial services. Common techniques for selecting 
the right item for recommendation are: collaborative 
filtering (e.g., Resnick et al., 1994; Goldberg et al., 1992) 
where user ratings for objects are used to perform an  
inter-user comparison and then propose the best rated items; 
content-based recommendation (e.g., Balabanović and 
Shoham, 1997; Pazzani and Billsus, 2007) where 
descriptions of the content of items is matched against user 
profiles, employing techniques from the information 
retrieval field; knowledge-based recommendation (e.g., 
Burke, 2000; Felfernig and Kiener, 2005) where knowledge 
about the user, the objects and some distance measures 
between them, i.e., relationships between users and objects 
are used to infer the right selections; and, as always, hybrid  
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versions of these (e.g., Burke, 1999; Smyth and Cotter, 
2001) where two or more of these techniques (collaborative 
filtering being usually one of them) are used to overcome 
their individual limitations. For further details on this 
subject the reader is referred to Burke (2002). 

Recommender systems can also be categorised 
according to the way they interact with the user (Kelly and 
Bridge, 2006) as being either single shot systems where for 
each request the system makes its interpretation of 
information and proposes recommendations to the user 
without taking into account any previous interaction or 
conversational systems where recommendations are made 
on the basis of the current request of the user and some 
feedback provided as a response to previously proposed 
items. 

The extent to which users find the recommendations 
satisfactory is, ultimately, the key feature of a recommender 
system and the accuracy of the user models that are 
employed is of significant importance to this goal. Such user 
models represent the user’s taste and can be implicit (e.g., 
constructed from information about the user behaviour) or 
explicit (e.g., constructed from direct feedback or input by 
the user, like ratings). The accuracy of a user model greatly 
depends on how well short-term and long-term interests are 
represented (Billsus and Pazzani, 2000), making it a 
challenging task to include both sensibility to changes of 
taste and maintenance of permanent preferences. While 
implicit user modelling disburdens the user of providing 
direct feedback, explicit user modelling may be more 
confidence inspiring to the user since recommendations are 
based on a conscious assignment of preferences. 

Though most of the recommender systems are very 
efficient from a large-scale perspective, the effort in user 
involvement and interaction is calling for more attention. 
Moreover, problems concerning trust and security in 
recommender systems could be approached with a better 
integration of the user and more control over the user 
model. For more details on the subject about security and 
manipulation in recommender systems the reader is referred 
to Lam et al. (2006). 

In this paper, we will concentrate on explicit user 
modelling for recommender systems, guided by the 
following three claims: 

1 Recommender systems should provide users with a way 
(language) to specify their models and preferences. 
This language should be expressive enough to allow for 
specifications that exceed the mere assignment of 
ratings to products. It should allow for the usage of 
existing concepts (e.g., product characteristics) as well 
as for the definition of new concepts (e.g., own 
qualitative classifications based on product 
characteristics). The language should allow for the 
specification of rules that use these concepts to define 
the policies regarding the recommendations made by 
the system. The language should also include some 
form of negation to allow for the specification of both 
positive as well as negative information. 

2 Users should be able to update their models by 
specifying new rules. The system must take into 
account that users are not consistent along time, i.e., 
some newer rules may directly contradict previously 
specified ones, possibly representing an evolution of 
the user’s tastes and needs, and these ‘contradictions’ 
should be dealt with by the system, relieving the user 
from any consistency requirements, always difficult to 
impose and often a discouraging factor. 

3 Recommender systems should not depend solely on the 
model specified by the user. Other approaches and 
existing systems that do not require the user 
specification should be used as complement. Their 
outputs should be taken into consideration since they 
may already encode large amounts of data that should 
not be disregarded, and would be particularly useful in 
the absence of user specified knowledge. At the same 
time, the output of the recommender system should take 
into strict consideration the user specifications which, if 
violated, would turn the user away from the 
recommender system. 

In this paper, we borrow concepts from the area of 
knowledge representation and non-monotonic reasoning to 
address these three issues. Specifically, we will employ the 
paradigm of Dynamic Logic Programming (Alferes et al., 
2000, 2005; Leite, 2003) to set forth a proposal that aims at 
extending existing recommender systems with the 
possibility of allowing users to specify their individual 
models and preferences, while taking into account the three 
claims above. 

Dynamic logic programming (DLP) is an extension of 
answer-set programming (ASP) (Gelfond and Lifschitz, 
1990) introduced to deal with knowledge updates. ASP is a 
form of declarative programming that is similar in syntax to 
traditional logic programming and close in semantics to 
non-monotonic logic that is particularly suited for 
knowledge representation1. In contrast to Prolog, where 
proofs and substitutions are at its heart, the fundamental 
idea underlying ASP, due to its model-theoretic semantics, 
is to describe a problem declaratively in such a way that 
models of the description provide solutions to problems. 
Enormous progress concerning both the theoretical 
foundations of the approach and implementation issues has 
been made in recent years. The existence of very efficient 
ASP solvers [e.g., DLV2 (Leone et al., 2006) and 
SMODELS3 (Niemelä and Simons, 1997)] make it finally 
possible to investigate some serious applications in the area 
of e.g., data integration (Eiter, 2005), data source selection 
(Eiter et al., 2002) and also the semantic web (Schindlauer, 
2006). 

An extension of ASP, where knowledge is specified in a 
single theory, is DLP where knowledge is given by a series 
of theories, encoded as generalised logic programs4 (or 
answer-set programs), each representing distinct states of 
the world. Different states, sequentially ordered, can 
represent different time periods, thus allowing DLP to 
represent knowledge undergoing successive updates. As 
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individual theories may comprise mutually contradictory as 
well as overlapping information, DLP employs the mutual 
relationships among different states to determine the 
declarative semantics for the combined theory comprised of 
all individual theories at each state. Intuitively, one can add 
newer rules to the end of the sequence and DLP 
automatically ensures that these rules are in force and that 
the older rules are kept for as long as they are not in conflict 
with the newly added ones. 

DLP can provide an expressive framework for users to 
specify rules encoding their model, preferences and their 
updates, while enjoying several properties, some discussed 
below, such as: 

• a simple extendable language, thus allowing for the 
specification of simple relations as well as the 
introductions of new concepts 

• a well defined semantics, thus allowing for the formal 
study of properties of the system 

• the possibility to use default negation to encode  
non-deterministic choice, thus generating more than 
one set of recommendations, facilitating diversity each 
time the system is invoked 

• the combination of both strong and default negation to 
reason with the closed and open world assumptions, 
thus allowing for reasoning with incomplete 
information 

• easy connection with relational databases (ASP can also 
be seen as a query language, more expressive than 
SQL), thus allowing easy integration with existing 
systems 

• support for explanations, thus improving the interaction 
with the user. 

Since we are providing users with a way to express 
themselves by means of rules, we can also provide the same 
rule-based language to the owners of the recommender 
system, enabling them to specify some policies that may not 
be captured by the existing recommender system (e.g., 
preference for recommending certain products). Even 
though this was not at the heart of our initial goal, it is an 
extra feature provided by our proposal, with no added cost. 

In a nutshell, we want to propose a system, with a 
precise formal specification and semantics, composed of 
three modules, namely the output of an existing 
recommender system, a set of rules specified by the owner 
of the recommender system and a sequence of sets of rules 
specified by the user, for which we provide an expressive 
language. The modules are combined in such a way that 
they produce a set of recommendations that obeys certain 
properties such as obedience to the rules specified by the 
user, removal of contradictions specified by the user along 
time and keeping the result of the initial recommendation 
module as much as possible in the final output, among 
others. 

The proposed system can work as an add-on for existing 
recommender systems. Owners of such systems should be 

able to plug in the application as a recommendation 
enhancer, offering users the possibility of explicit 
preference creation, for defining specific system rules or 
both. A rule-based language like DLP can empower owners 
of recommender systems with the necessary tools to employ 
marketing strategies with precision, while keeping the 
diversity of recommendations and following user’s 
preferences. Moreover, it can be used as a query tool to 
extract information from the database using a more 
sophisticated language than for example SQL, allowing the 
system to be used on its own without the need of previously 
existing recommender systems. 

The remainder of this paper is organised as follows. In 
Section 2 we briefly recap the notion of DLP, establishing 
the language used throughout. In Section 3 we define our 
framework and its semantics while in Section 4 we present a 
short illustrative example. Section 5 is devoted to the 
discussion of some properties of the proposed system and 
their proofs are presented. In Section 6 we describe the 
implementation and present some performance results. 
Further in Section 7, we discuss possible optimisations of 
our system, in Section 8 we compare our work to related 
systems and we conclude in Section 9. 

2 Dynamic logic programming 

For self containment, in this section we briefly recap the 
notion and semantics of DLP needed throughout. More 
motivation regarding all these notions can be found in 
Alferes et al. (2000) and Leite (2003). 

Let A  be a set of propositional atoms. An objective 
literal is either an atom A or a strongly negated atom A¬ . A 
default literal is an objective literal preceded by not. A 
literal is either an objective literal or a default literal. A rule 
r is an ordered pair ( ) ( )←H r B r  where ( )H r  (dubbed the 
head of the rule) is a literal and ( )B r  (dubbed the body of 
the rule) is a finite set of literals. A rule with 0( ) =H r L  and 

{ }1( ) ,...,= nB r L L  will simply be written as 

0 1,..., .← nL L L  

A tautology is a rule of the form ←L Body  with 
∈L Body.  A generalised logic program (GLP) P  

over A  is a finite or infinite set of rules. A normal  
logic program is a GLP that does not contain a default 
literal in the head of any rule. If 

( ) (resp. ( ) ),= =H r A H r not A  then ( ) =not H r not A  
(resp.  ( ) ).=not H r  A  Similarly, if ( ) (resp. ( )=H r A H r  

),= ¬A  then ( )  (resp. ( ) ).A¬ = ¬ ¬ =H r H r  A  By the 
expanded GLP corresponding to the GLP P, denoted by P, 
we mean the GLP obtained by augmenting P with a rule of 
the form ( ) ( )¬ ←not H r B r  for every rule, in P, of the 
form ( ) ( ),←H r B r  where ( )H r  is an objective literal. 

An interpretation M of A  is a set of objective literals 
that is consistent, i.e., M does not contain both A and .A¬  
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an objective literal L is true in M, denoted by ,M LB  iff 
,L M∈  and false otherwise. A default literal Lnot   

is true in M, denoted by ,M LBnot  iff ,L M∉  and false 
otherwise. A set of literals B is true in M, denoted  
by ,M BB  iff each literal in B is true in M. An 
interpretation M of A  is an answer set of a GLP P  
iff { }( ) ,= ∉M least not A A M′ ∪P  where =M M′ ∪   

{ },not_A A M∉  A is an objective literal, and least(.) 

denotes the least model of the definite program obtained 
from the argument program, replacing every default literal 
not A by a new atom not_A. Let AS(P) denotes the set of 
answer-sets of P. 

A dynamic logic program (DLP) is a sequence of GLPs. 
Let ( )1,...,= sP PP  and ( )1 ,...,= sP PP ′ ′′  be DLPs. We use 

( )ρ P  to denote the multiset of all rules appearing  
in the programs 1,..., ,sP P  and P P∪ ′  to denote 

( )1 1 ,..., s sP P P P′ ′∪ ∪  and ( ), ,Pi jP P′ ′  to denote 

( )1, , ,..., .i j sP P P P′ ′  We can now set forth the definition of 

semantics, based on causal rejection of rules, for DLPs. We 
start by defining the notion of conflicting rules as follows: 
two rules r  and r ′  are conflicting, denoted by r ⋈r ′ , iff 

( ) ( ) ,=H r not H r ′  used to accomplish the desired 
rejection of rules: 

Definition 1 (rejected rules): .Let ( )1,...,=P sP P  be a DLP 
and M an interpretation. We define: 

( ),PRej M  

)( ({ | , ,= ∈ ∃ ∈ ≤i jr r r i j rP P′ ⋈ ( ))}Br M B r′, ′  

We also need the following notion of default assumptions. 

Definition 2 (default assumptions): Let ( )1,...,=P sP P  be a 
DLP and M an interpretation. We define (where A is an 
objective literal): 

( )
( ) ( )( ( ) ( )){ }

,

, ,A M Bρ= ∈ =

Def M

not A r H r r

P

� P B|
 

We are now ready to define the semantics for DLPs based 
on the intuition that some interpretation is a model iff it 
obeys an equation based on the least model of the multi-set 
of all the rules in the (expanded) DLP, without the rejected 
rules, together with the set of default assumptions. The 
semantics is dubbed (refined) dynamic stable model 
(RDSM) semantics. 

Definition 3 (semantics of DLP): Let ( )1,...,=P sP P  be a 
DLP and M an interpretation. M is an RDSM of P  iff 

( ) ( ) ( )( )\ , ,ρ= ⎡ ⎤⎣ ⎦P P PM least Rej M Def M′ ∪  

where ( ), .ρM ′  and least(.) are as before. Let RDSM ( )P  
denote the set of all RDSMs of .P� 

3 Framework and semantics 

In this section, we introduce our framework and its 
semantics. 

Our goal is to take the strengths of DLP as a knowledge 
representation framework with the capabilities of allowing 
for the representation of updates, and put it at the service of 
the user and the company, while at the same time ensuring 
some degree of integration with the output of other 
recommendation modules, possibly based on distinct 
paradigms (e.g., statistical, etc.). 

To make the presentation of our ideas simpler, we will 
make some assumptions and simplifications that, in our 
opinion, do not compromise our proposal and can be  
subsequently lifted (not in this paper though). 

We start by assuming a layered system where the output 
of the existing recommendation module is simply used as 
the input to our system, and where no feedback to the initial 
module exists. We are aware that allowing for feedback 
from our system to the existing module could benefit its 
output, but such process would greatly depend on such 
existing module and we want to make things as general as 
possible, and concentrate on other aspects of the system. 
This takes us to the next assumption, that of the output of 
such existing module. We consider it to be an interpretation, 
i.e., a consistent set of objective literals representing the 
recommendations. For simplicity, we can assume that the 
language contains a reserved predicate rec/1 where the 
items are the argument terms of the predicate and the 
interpretation will contain atoms corresponding to the 
recommended items. For example, the interpretation 

( ) ( )
( )
( ) ( )

{ , ,
,

, }

=M rec "Godfather" rec "Underground"

rec "The Köln Concert"

rec "Paris, Texas" rec "Takk"

 

encodes the recommendations for the films ‘Godfather’, 
‘Underground’ and ‘Paris, Texas’, as well as for the music 
albums ‘The Köln Concert’ and ‘Takk’. It would be 
straightforward to extend this case to one where some value 
would be associated with each recommendation, e.g., using 
a predicate of the form rec(item, value). However, to get our 
point across, we will keep to the simplified version where 
the output of the existing module is simply a set of 
recommendations. An outline is given in Figure 1. 

What we have then, is an initial interpretation 
representing the output of the initial module, which we dub 
the initial model, a GLP representing the owner’s policy and 
a DLP representing the rules (and their evolution) specified 
by the user. The product database is, typically, a relational 
database5 that can easily be represented by a set of facts in a 
logic program. For simplicity, without loss of generality, we 
assume such database to be a part of the GLP representing 
the owner’s policy. 
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Figure 1 Outline of the system (see online version for colours) 

 

To formalise this notion, we introduce the concept of 
dynamic recommender frame (DRF) defined as follows: 

Definition 4 (dynamic recommender frame): Let A  be a set 
of propositional atoms. A DRF, over ,A  is a triple 

0, ,PM P  where M is an interpretation of ,A  0P  a GLP 
over ,A  and P  a DLP over .A  

The semantics of a DRF is given by the set of stable 
models of its transformation into a DLP. This 
transformation is based on a few underlying assumptions 
concerning the way these three modules should interact and 
be combined. In particular, we want the rules specified by 
the user to be the most relevant and be able to supersede 
both those issued by the owner and the recommendation 
issued by the existing module. This is a natural principle as 
users would not accept a recommender system that would 
explicitly violate their rules (e.g., recommend a horror 
movie when the user said that no horror movies should be 
recommended, just because the owner wants to push horror 
movies). This limits the impact of recommendations made 
by the initial module and the company to those not directly 
constrained by the user or to those for which the rules 
specified by the user allow for more than one alternative. 
The other principle concerns the relationship between the 
initial model and the policy specified by the owner. Here, 
we will opt for giving a prevailing role to the rules specified 
by the owner. The rational for this is also rather obvious and 
natural: the owner must be given the option/power to 
supersede the initial recommendation module (e.g., specify 
preference to specify products of a given brand over those 
of another because of higher profit margins), and it may be 
impossible to have such control directly inside the initial 
module (e.g., if it is a sub-symbolic system such as a neural 
network). 

With these principles in mind, we first define a 
transformation from a DRF into a DLP: 

Definition 5 ( )ϒ : Let 0, ,=R PM P  be a DRF. Then 

( )Rϒ  is the DLP ( )0, ,PMP P  where 

{ }.= ← ∈MP A A M:  
Intuitively, we construct a DLP where the initial 

knowledge is the program obtained from the initial model. 
Such initial program is followed (updated with) the owner’s 

policy specification (P0), which is then followed by the 
sequence of specifications provided by the user ( ).P  This 
is illustrated in Figure 2. We define the semantics of a DRF 
as follows: 

Definition 6 (stable recommendation semantics): Let 
0, ,=R � PM P  be a DRF and RM  an interpretation. RM  

is a stable recommendation iff RM  is a dynamic stable 
model of ( ).Rϒ  Let ( )RSR  denote the set of all stable 
recommendations. 

Figure 2 The ( )Rϒ  operator (see online version for colours) 

 

4 Illustrative example 

In this section, we present an example with the purpose of 
illustrating some features of our proposal. 

Let us consider an online movie recommender, with 
some existing recommender system based on statistical 
analysis performed over the years. We consider the output 
of such module to be a set of recommended items, that, for 
our purposes, we will consider constant throughout this 
example. Let the interpretation M represent such output, i.e., 
the initial model, and be: 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( )}

497 , 527 , 551 , 589 ,

1249 , 1267 , 1580 , 1608 ,

1912 , 2396

=M rec rec rec rec

rec rec rec rec

rec rec

 

The properties of those recommended movies can be seen in 
Table 1. 

Table 1 Initial recommendations 

ID Title Year Genres 

497 Much Ado About 
nothing 

1993 Comedy, romance 

527 Schindler’s List 1993 Drama, war 
551 Nightmare Before 

Christmas, The 
1993 Children’s, comedy 

589 Terminator 2: 
Judgment Day 

1991 Action, sci-fi 

1249 Nikita 1990 Thriller 
1267 Manchurian Candidate, 

The 
1962 Film-noir, thriller 

1580 Men in Black 1997 Action, adventure 
1608 Air Force One 1997 Action, thriller 
1912 Out of Sight 1998 Action, crime 
2396 Shakespeare in Love 1998 Comedy, romance 
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The owner can, on top on this, define some further 
recommendation policies, such as: 

• The system should, non-deterministically, recommend 
at least one of movies 12 and 156: 

( ) ( )12 15 .←rec not rec  (1) 

( ) ( )15 12 .←rec not rec  (2) 

• The system should always recommend the movies with 
the genre Musical from the year 1998 if there are initial 
recommendations of movies with the genre Romance 
from the same year: 

( ) ( ) ( )
( ) ( )
( )

, 1998 ,
, 1998 ,

.

←rec X genre X,"Musical" year X,

rec Y year Y,

genre Y, "Romance"

 (3) 

These previous rules will be contained by the owner 
program P0. Without any rules specified by the user, the 
frame ( )0, ,M P  has two stable recommendations 

resulting from the effect of the owner’s rules on top of the 
initial model, namely7: 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )}

1 12 , 497 , 527 , 551 ,

589 , 1249 , 1267 , 1580 ,
1608 , 1856 , 1912 , 2394 ,

2396

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )}

2 15 , 497 , 527 , 551 ,

589 , 1249 , 1267 , 1580 ,
1608 , 1856 , 1912 , 2394 ,

2396

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec

 

The properties of the movies of these models can be seen in 
Tables 2 and 38. 

Table 2 Movies of model 1RM  

ID Title Year Genres
12 Dracula: Dead and Loving 1995 Comedy, horror
497 Much Ado About Nothing 1993 Comedy, romance 
527 Schindler’s List 1993 Drama, war 
551 Nightmare Before 

Christmas, The 
1993 Children’s, 

comedy
589 Terminator 2: Judgment 

Day 
1991 Action, sci-fi 

1249 Nikita 1990 Thriller 
1267 Manchurian Candidate, The 1962 Film-noir, thriller 
1580 Men in Black 1997 Action, adventure 
1608 Air Force One 1997 Action, thriller 
1856 Kurt & Courtney 1998 Documentary, 

musical
1912 Out of Sight 1998 Action, crime 
2394 Prince of Egypt, The 1998 Animation, 

musical
2396 Shakespeare in Love 1998 Comedy, romance 

Table 3 Movies of model 2RM  

ID Title Year Genres 

15 Cutthroat Island 1995 Action, adventure 
497 Much Ado About 

Nothing 
1993 Comedy, romance 

527 Schindler’s List 1993 Drama, war 
551 Nightmare Before 

Christmas, The 
1993 Children’s, comedy 

589 Terminator 2: 
Judgment Day 

1991 Action, sci-fi 

1249 Nikita 1990 Thriller 
1267 Manchurian 

Candidate, The 
1962 Film-noir, thriller 

1580 Men in Black 1997 Action, adventure 
1608 Air Force One 1997 Action, thriller 
1856 Kurt & Courtney 1998 Documentary, 

musical 
1912 Out of Sight 1998 Action, crime 
2394 Prince of Egypt, The 1998 Animation, musical 
2396 Shakespeare in Love 1998 Comedy, romance 

When taking a closer look at the two stable 
recommendations, we can observe that the first rule 
specified by the owner introduced either movie 12 or movie 
15. The second rule introduced the movie 2394 since there 
was an initial recommendation for a Romance from year 
1998. The recommender system would, e.g., randomly, 
choose one of these stable recommendations to present to 
the user and thus adding diversity to the recommender 
system which, otherwise, would only have one set of 
recommendations to present in case of consecutive equal 
requests. 

Let us now consider the user. Initially, the user specifies 
that he does not want any recommendations of Animation 
movies: 

( ) ( ).←not rec X genre X, "Animation"  (4) 

This rule alone will override all the initial recommendations 
for Animations and also all the rules of the owner specifying 
those recommendations such as rule (3). In this case, the 
only Animation rejected will be the one introduced by the 
owner policy. If ( )1 1 ,P=P  where P1 contains rule (4), the 

two stable recommendations of the frame 0 1, ,PM P  are: 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )}

3 12 , 497 , 527 , 551 ,

589 , 1249 , 1267 , 1580 ,

1608 , 1856 , 1912 , 2396

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )}

4 15 , 497 , 527 , 551 ,

589 , 1249 , 1267 , 1580 ,

1608 , 1856 , 1912 , 2396

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

 

As one can see, the recommendation for the movie 2394, 
The Prince of Egypt, is not anymore present in the two 
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models. Later on, the user decides to obtain some 
recommendations for some specific movies. For this, he 
decides to define the concept of what good movies are. 
Initially, he considers a good movie to be one with the 
genres Action, Adventure and Fantasy. So he writes the 
following rule: 

( ) ( )
( )
( )

,
,

.

←good X genre X, "Action"

genre X, "Adventure"

genre X, "Fantasy"

 (5) 

Furthermore, the user wants to obtain at least one 
recommendation for a good movie9: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

, .
, .
, .

←

←

←

←

rec X good X not n_rec X

n_rec X good X not rec X

rec_at_least_one good X rec X

not rec_at_least_one

 (6) 

If ( )2 1 2, ,=P P P  where P2 contains the rules (5) and (6), the 

stable recommendations of the frame 0 2, ,PM P  are: 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )}

5 12 , 497 , 527 , 551 ,

558 , 589 , 1249 , 1267 ,
1580 , 1608 , 1856 , 1912 ,

2396

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )}

6 15 , 497 , 527 , 551 ,

558 , 589 , 1249 , 1267 ,
1580 , 1608 , 1856 , 1912 ,

2396

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec

 

Since there is only one movie with those three genres in the 
database, we still have two models, both of them with a 
newly introduced recommendation for the movie 558, The 
Pagemaster. The user comes back at a later stage and 
refines the notion of a good movie: 

( ) ( ) ( )3 : , 2000 .←P good X genre X, "War" year X,  (7) 

The rule on getting at least one recommendation of a good 
movie is still in force. So, with ( )3 1 2 3, , ,= P P PP  the stable 

recommendations of the frame 0 3, ,PM P  are: 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )}

7 12 , 497 , 527 , 551 ,

558 , 589 , 1249 , 1267 ,
1580 , 1608 , 1856 , 1912 ,

2396

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )}

8 15 , 497 , 527 , 551 ,

558 , 589 , 1249 , 1267 ,
1580 , 1608 , 1856 , 1912 ,

2396

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )}

9 12 , 497 , 527 , 551 ,

589 , 1249 , 1267 , 1580 ,
1608 , 1856 , 1912 , 2396 ,

3746

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )}

10 15 , 497 , 527 , 551 ,

589 , 1249 , 1267 , 1580 ,
1608 , 1856 , 1912 , 2396 ,

3746

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )}

11 12 , 497 , 527 , 551 ,

558 , 589 , 1249 , 1267 ,
1580 , 1608 , 1856 , 1912 ,

2396 , 3746

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec rec

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )}

12 15 , 497 , 527 , 551 ,

558 , 589 , 1249 , 1267 ,
1580 , 1608 , 1856 , 1912 ,

2396 , 3746

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

rec rec

 

Table 4 Movies of model 11RM  

ID Title Year Genres 

12 Dracula: Dead and 
Loving It

1995 Comedy, horror 

497 Much Ado About 
Nothing

1993 Comedy, romance 

527 Schindler’s List 1993 Drama, war 
551 Nightmare Before 

Christmas, The 
1993 Children’s, 

comedy
558 Pagemaster, The 1994 Action, adventure, 

fantasy 
589 Terminator 2: Judgment 

Day 
1991 Action, sci-fi 

1249 Nikita 1990 Thriller 
1267 Manchurian Candidate, 

The 
1962 Film-noir, thriller 

1580 Men in Black 1997 Action, adventure 
1608 Air Force One 1997 Action, thriller 
1856 Kurt & Courtney 1998 Documentary, 

musical 
1912 Out of Sight 1998 Action, crime 
2396 Shakespeare in Love 1998 Comedy, romance 
3746 Butterfly 2000 Drama, war 
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The movie properties of the model 11RM  can be seen in 
Table 4. One can see that in all models there is at least one 
good movie recommendation. There is again just one movie 
in the database that fulfills the rule of having genre war and 
being from year 2000 [rule (7)]. The old rule (5) defining 
the concept of a good movie is still in effect because it is not 
in conflict with the new one. This results in six models, each 
one containing at least one of the two good movies and 
either movie 12 or 15. 

In the next update, the user decides to write a rule 
stating that he does not want any more recommendations for 
Adventure movies: 

( ) ( )4 : .←P not rec X genre X, "Adventure"  (8) 

Let ( )4 1 2 3 4, , , .=P P P P P  Then the only stable 

recommendation of the frame 0 4, ,PM P  is: 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )}

13 12 , 497 , 527 , 551 ,

589 , 1249 , 1267 , 1608 ,

1856 , 1912 , 2396 , 3746

=RM rec rec rec rec

rec rec rec rec

rec rec rec rec

 

The movie 15 cannot be recommended anymore since it is 
of genre Adventure. The same holds for the movie 
introduced by rule (5): the new rule (8) causes a direct 
contradiction with that rule for a good movie. The semantics 
based on the causal rejection of rules deals with this issue. 
The movies of that model can be seen in Table 5. 

Table 5 Movies of model 13RM  

ID Title Year Genres 

12 Dracula: Dead and 
Loving It 

1995 Comedy, horror 

497 Much Ado about 
Nothing 

1993 Comedy, romance 

527 Schindler’s List 1993 Drama, war 
551 Nightmare Before 

Christmas, The 
1993 Children’s, comedy 

589 Terminator 2: 
Judgment Day 

1991 Action, sci-fi 

1249 Nikita 1990 Thriller 
1267 Manchurian 

Candidate, The 
1962 Film-noir, thriller 

1608 Air Force One 1997 Action, thriller 
1856 Kurt & Courtney 1998 Documentary, 

musical 
1912 Out of Sight 1998 Action, crime 
2396 Shakespeare in Love 1998 Comedy, romance 
3746 Butterfly 2000 Drama, war 

Worth noting is that for each recommendation there is an 
explanation based on user rules, or on owner rules if not 
overridden by those of the user or, if there is nothing 
overriding it, on an initial recommendation. This and other 
properties are explored in the next section. 

5 Properties 

One of the good features of using a formal system is that it 
makes it possible to state and prove some of its properties, 
allowing for a better understanding of its behaviour. In this 
section we discuss some properties of the stable 
recommendation semantics and provide their proofs. 

We start with conservation, a property that states that if 
the recommendation of the initial module is a dynamic 
stable model of the DLP consisting of the owner rules 
followed by the user DLP, then the initial recommendation 
is a stable recommendation. This ensures that the semantics 
will keep the results of the initial module if they agree with 
the specification of the owner and user. Formally: 

Proposition 1 (conservation): Let 0, ,=R� PM P  be a 
DRF. Then 

( )( ) ( ) { }0 ,∈ P RM RDSM P SR M⇒ ⊇  

Proof: Let ( )1 0 , ,=P PP  M be an interpretation  

such that ( ) { }1 ,∈ = ← ∈P MM RDSM P A A M|  and 

( ) ( )2 0, , .= =P R PMP Pϒ  Following definition 6, 

( ) { }RSR M⊇  holds iff M is a stable recommendation 
which in turn holds iff M is a dynamic stable model of 2.P  
Hence we need to show that ( )2 ,∈ PM RDSM  or, more 
formally: 

( ) ( ) ( )( )2 2 2\ , ,ρ′ = ⎡ ⎤⎣ ⎦M least Rej M Def MP P P∪  (9) 

Since M belongs to ( )1 ,PRDSM  we have 

( ) ( ) ( )( )1 1 1\ , ,ρ′ = ⎡ ⎤⎣ ⎦M least Rej M Def MP P P∪  (10) 

As can be seen from definition 2, adding more rules to a 
DLP can only reduce the set of default assumptions. If 

( )1,∈ Pnot A Def M  for some ∈A M,  then the right hand 
side of (10) would contain not A  while the left hand side 
wouldn’t. So for any ∈A M  we have ( )1, .Pnot A Def M∉  
Hence adding the rules in MP  to 1,P  obtaining 2 ,P  will not 
eliminate any default assumptions. More formally, 

( ) ( )1 2, ,=P PDef M Def M  (11) 

Apart from that, we know that the set ( ) ( )2 2\ ,ρ P PRej M  

is a superset of ( ) ( )1 1\ ,ρ P PRej M  because 

( ) ( )2 1ρ ρP P⊇  and the rules in PM cannot cause rejection 
of other rules. Moreover, the extra rules in the former set all 
belong to PM. So 

( ) ( )( ) ( ) ( )2 2 1 1, ,ρ ρ=P P P PMRej M P Rej M\ \ \  (12) 

From (12), (11) and (10) we can conclude that 
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( ) ( )( ) ( )( )
( ) ( ) ( )( )

2 2 2

1 1 1

, ,

, ,

ρ

ρ

⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦
′=

Mleast Rej M P Def M

least Rej M Def M

M

P P P

P P P

∪

∪

\ \

\  

Furthermore, adding the rules from PM to the set 
( ) ( )( ) ( )2 2 2, ,ρ⎡ ⎤⎣ ⎦P P PMRej M P Def M∪\ \  will not 

change the result of the least(.) operator because each atom 
∈A M  is inferred anyway. Hence (9) also holds. 

The property of conservation is very valuable for owners 
of recommender systems since it guarantees the presence of 
each initial recommendation that does not conflict with any 
of the specifications. 

It is also important to establish the relationship between 
the stable recommendation semantics and DLP for the case 
where there is no initial recommendation module. This 
ensures the proper transfer of all properties of DLP and 
ASP, namely expressiveness results, to our system. It also 
ensures that the system can be used without having any 
initial recommendations and even when no owner rules are 
present. 

We will need the following Lemma: 

Lemma 2: Let 1 2, ,..., nP P P  be GLPs, 0 ≤ ≤i n,  

( )1 2, ,...,=P nP P P and ( )1 2 1, ,..., , , ,..., .φ +=Q i i nP P P P P  
Then 

( ) ( )=P QRDSM RDSM  

Proof: M is a dynamic stable model of P  iff 

( ) ( ) ( )( ), ,ρ= ⎡ ⎤⎣ ⎦P P PM least Rej M Def M′ ∪\  (13) 

We can immediately see that 

( )
( )

1 2 1

1 2

. . . . . .
. . .

ρ

ρ
+= φ

= =

Q

P
i i n

n

P P P P P

P P P

∪ ∪ ∪ ∪ ∪ ∪ ∪

∪ ∪ ∪
 

Furthermore, since there are no rules in ,φ  it does not affect 
the set of rejected rules ( ),PRej M  and we obtain 

( ) ( ), , .=Q PRej M Rej M  Similarly, the empty program 
does not affect the set of default assumptions, so 

( ) ( ), , .=Q PDef M Def M  Hence 

( ) ( ) ( )( )
( ) ( ) ( )( )

, ,

, ,

ρ

ρ

⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

Q Q Q

P P P

least Rej M Def M

least Rej M Def M

∪

∪

\

\
 

Together with (13) this implies that M is a dynamic stable 
model of P  iff it is a dynamic stable model of .Q� Hence 

( ) ( ).=P QRDSM RDSM  

Proposition 3 (generalisation of DLP): Let P0 be a GLP and 
P  a DLP. Then 

( ) ( )
( ) ( )( )0 0

, ,

, , ,

DSM

DSM

φ φ

φ

=

=

P P

P P

SR R

SR P R P
 

Proof: According to definition 6 we have that 

( ) ( )( )
( ) ( )( )0 0

, , , ,

, , , ,

DSM

DSM

φ φ φ φ

φ φ

=

=

P P

P P

SR R

SR P R P
 

By applying Lemma 2 (with 0=i ) three times we obtain: 

( )( ) ( ) ( )( )
( )( ) ( )( )0 0

, , ,

, , ,

DSM DSM DSM

DSM DSM

φ φ φ

φ

= =

=

P P P

P P

R R R

R P R P
 

Hence the proposition holds. 
Not only does this property show the possible usage of 

the system as a query tool, but one can also think of the 
system as secured against a possible failure of the initial 
recommendation mechanism. The owner could specify rules 
that, in any case, would output a set of recommendations. 

A very important issue in recommender systems is that 
of providing the user (and the owner) with explanations 
regarding the recommendations made. The fact that the 
stable recommendation semantics is well defined already 
provides a formal basis to support its results. However, we 
can state stronger results concerning the justification for the 
existence and absence of a particular recommendation. If a 
recommendation belongs to a stable recommendation, then 
either there is a user rule supporting it or there is an owner 
rule supporting it and no user rule overriding it or it is in the 
output of the initial module and no rules are overriding it. In 
other words, there is always an explanation for 
recommendations. 

Proposition 4 (positive supportiveness): Let 0, ,=R� PM P  

be a DRF and ( ).∈ ∈R RA M SR  Then one of these three 
cases must occur: 

a ( ) ( ) ( ):ρ∃ ∈ = RP Br H r A,M B r  

b ( ) ( )
( ) ( ) ( )

0 :

:ρ

∃ ∈ =

∈ =
R

R

B

� P B

r P H r A,M B r and

r H r not A,M B r

 

c 

( )( ) ( ) ( )0 , :ρ
∈

∈ = R� P B

A M and

r P H r not A,M B r

 

Proof: Let ( )0, , .=Q� PMP P  Since we know  

that ( ) ,∈ ∈R RA M SR  we also know that 

( ).∈ ∈R QA M RDSM  Hence there must be a rule r in the 
set 

( ) ( ) ( ), ,ρ⎡ ⎤⎣ ⎦R RQ Q QRej M Def M∪\  

such that ( ) =H r A  and ( ).R BM B r  Since the set 

( ), RQDef M  does not contain any rules with positive 
literals in their heads, we have 

( ) ( ),ρ∈ RQ Qr Rej M\  (14) 

Let’s assume (b) and (c) do not hold. We consider three 
cases: 
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1 If ( ) ,ρ∈ Pr  then (a) holds. 

2 If ( )ρ Pr ∉  and 0 ,r P∈  then, since (b) does not hold, 

we can conclude that there exists a rule ( )ρ∈r P′  

such that ( ) =H r not A′  and ( ).R BM B r ′  So r ′  

rejects r  and hence ( ) ( ), ,ρ RQ Qr Rej M∉ \  which 
is in conflict with (14). 

3 If ( )ρ Pr ∉  and 0r P∉  and ,∈ Mr P  then r  is a fact 

( )←A  and ∈A M.  Since (c) does not hold, we have 

that there exists a rule ( )( )0 ,ρ∈ Pr P′  such that 

( ) =H r not A′  and ( ).R BM B r ′  This means that r ′  

rejects r  and hence ( ) ( ), .ρ RQ Qr Rej M∉ \  This is 
in conflict with (14). 

So, for each item in the set of final recommendations 
presented to the user, we exactly know why it is there. 
Likewise, for the absence of recommendations, if a 
recommendation belongs to the output of the initial system 
and is not part of a stable recommendation, then there must 
be an owner or user rule overriding it. 

Proposition 5 (negative supportiveness): Let 
0, ,=R PM P  be a DRF, ( )∈R RM SR  be a stable 

recommendation and A be an atom such that ∈A M  and 

RA M∉  Then there exists some rule ( )( )0 ,ρ∈ Pr P  such 

that ( ) =H r not A  and ( ).R BM B r  

Proof: From RA M∉  it follows that every rule 

( )( )0, ,ρ∈ PMr P P′  such that ( ) =H r A′  and 

( )R BM B r ′  must be rejected by some other rule in 

( )( )0 , .ρ PP  Further, from ∈A M  it follows that there  

is a rule Ar  such that ( ) ( ) φ= =A AH r A,B r  and 

( )( )0, , .ρ∈ PA M Mr P P P⊆  Hence the rule Ar  must be 

rejected by some other rule from ( )( )0 , .ρ PP  More 

formally, there exists a rule ( )( )0 ,ρ∈ Pr P  such that 

( ) =H r not A  and ( ).R BM B r  
As with all logic programming based semantics, it is 

important to ensure that tautological (irrelevant) rules do not 
cause any effect. 

Proposition 6 (immunity to tautologies): Let 
0, ,=R PM P  be a DRF, 0 ,. . ., sE E  sets of tautologies, 

( )1,. . .,=E � sE E  and 0 0, , .=R P EM P E′ ∪ ∪  Then 

( ) ( )=R RSR SR ′  

 
 

Proof: Proposition 3.5 from Alferes et al. (2005): Let Sem 
be a semantics for generalised programs, P a GLP and τ  a 
tautology. If Sem complies with the refined extension 
principle then ( ) ( ).Sem P Sem P∪ ⊆τ  

Proposition 3.6. from Alferes et al. (2005): Let P be any 
given GLP, P E∪  be a refined extension of P and M a 
stable model of P E.∪  Then M is also a stable model of P. 

The addition to tautologies to a GLP does not introduce 
new stable models nor eliminate stable models. 

Theorem 4.3. from Alferes et al. (2005): Let P  be any DLP 
and E  a sequence of sets of tautologies. M is a  
refined dynamic stable model of P  iff M is a  
refined dynamic stable model of .P E∪  So, 

( )( ) ( )0 0 0, , , ,=P E PM MRDSM P P E RDSM P P∪ ∪  and 

( ) ( )=R RSR SR ′  (by definition 6). 
Going back to the property of conservation, stating that 

when the output of the existing module is a dynamic stable 
model of the DLP ( )0 , ,PP  then it is a stable 
recommendation, it could be desirable to have a stronger 
result, namely that the semantics obeys a notion of strong 
conservation according to which it would be the only stable 
recommendation. It turns out that the stable 
recommendation semantics does not obey such property: 

Proposition 7 (strong conservation): Let 0, ,=R� PM P  be 
a DRF. Then 

( )( ) ( ) { }0 ,∈ =P i RM RDSM P SR M  

This may, however, be also seen as an advantage of the 
system. The owner and user policy may introduce 
interesting new sets of recommendations, facilitating 
diversity and non-determinism. Consider the following 
simple example: Let 0, ,=R PM P  be a DRF where 

{ } { } ( )0 1, ,= = ← =PM a P not a P  and 

1 : ←
←

P a not b.

b not a.
 

R  has two stable recommendations: { }a  and { }.b  Here, 
the owner rule overrides the initial recommendation and the 
user rules introduce two possibilities, one of the being 
identical to the initial recommendation { }.a  But given that 
the owner rules should prevail over the initial 
recommendations, one might even expect the stable set 
{ }b to be preferred to { } ,a  not the other way around. So the 
strong conservation property may not always be desirable. 

But for case that some specific system needs to obey the 
strong conservation property, we also introduce an 
alternative semantics that only keeps the models closest to 
the initial recommendation. In order to define it, we first 
need to introduce the notion of distance between 
interpretations: 
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Definition 7 (distance between interpretations): Let A  be a 
set of propositional atoms and M, M1 and M2 interpretations 
of .A� We say that M1 is closer to M than M2, denoted by 

1 2MM M  iff 

( ) ( )1 1 2 2M M M M M M M M\ \ \ \∪ ⊂ ∪  

Now we can define the minimal change semantics and 
prove that it obeys the strong conservation property: 

Definition 8 (minimal change SR semantics): Let 
0, ,=R PM P  be a DRF and RM  an interpretation. RM  

is a minimal change stable recommendation iff 
( )∈R RM SR  and ( )( ) : .∈ MM RDSM M MR R R� R′ ′ϒ  

( )RmSR  denotes the set of all minimal change stable 
recommendations. 

Proposition 8 (strong conservation): Let 0, ,=R PM P  
be a DRF. Then 

( )( ) ( ) { }0 ,∈ =P RmM RDSM P SR M⇒  

Proof: From definitions 8 and 7 it follows that M is the only 
stable recommendation, since ( )( )0 ,∈ PM RDSM P  and 

′MM M  for all other stable recommendations M ′  (there 
cannot be a model closer to M than M itself). 

As for the remaining properties, the minimal change 
stable recommendation semantics obeys conservation, 
positive and negative supportiveness, and immunity to 
tautologies. As expected, it no longer generalises DLP as it 
is well known that DLP accepts non-minimal dynamic 
stable models that would be eliminated e.g., in the case of 
an empty output of the initial module. 

6 Implementation and results 

6.1 Description of the implementation 

The system was implemented as an online application10 

using a PHP-based initial collaborative filtering 
recommender system11. Figures 3 and 4 present two 
screenshots of ERASP. The product database consists of the 
complete MovieLens12 dataset of 3883 movies plus their 
genre and year information. After the user of the system 
rates some movies and receives some initial 
recommendations, he can edit his preferences in form of a 
DLP using an interface that also provides some automatised 
rule creation. Together with the initial recommendations, 
the facts from the product database and the owner 
specifications, the user program gets processed by an 
Smodels-based solver, where the following steps occur: 

1 First, the whole input gets parsed, an object 
representation of the corresponding logic programming 
rules is created and a DLP is formed from it. 

 

2 We use Smodels as our external answer set solver and it 
can only work with variable-free programs. So the next 
step is to produce an equivalent DLP without variables. 
This process is called grounding and is mainly 
performed by the program Lparse. But since Lparse can 
only ground normal logic programs, we first need to 
transform our DLP into a normal logic program. 
Intuitively, this involves remembering which program 
of the DLP each rule belongs to and getting rid of 
default negation in the heads. The former is achieved 
by adding an extra atom to the body of every rule, 
while the latter is achieved by deleting all default nots 
from the program and prepending p_ or n_ to the name 
of every atom, indicating whether it was a positive or 
negative literal. Apart from this, we need to prevent 
Lparse from throwing away instantiations of rules just 
because the formerly negative literals in their bodies, 
now transformed into positive atoms with  
n_ prepended, cannot be derived by the program. This 
is achieved by adding a fact for every such atom. 

3 After the grounded DLP 1 2( , ,. . ., )P P=P� nP  is parsed 
and an object representation is created, it gets 
transformed into an equivalent normal logic program 

RP . This transformation is described in detail in Banti 
et al. (2005). The stable models of RP  directly 
correspond to the dynamic stable models of .P� 

4 The transformed program is again passed to Lparse in 
order to be given to Smodels with the according input 
format. 

5 Smodels then computes all the stable models and our 
program writes the recommendations for each model 
into an SQL database. 

Figure 3 ERASP user model interface (see online version for 
colours) 
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Figure 4 ERASP recommendation interface (see online version 
for colours) 

 

6.2 Benchmarks 

For the performance testing of the system in terms of time, 
we ran each of the DLPs of the example in Section 4. The 
programs were run 100 times and an average value for each 
of the steps was calculated. Six different input databases 
were used in order to investigate the importance of the size 
of the input: 

• all: 3883 movies with all concepts (17406 atoms) 

• no title: 3883 movies with all concepts except title(ID, 
Title) (9640 atoms) 

• 1000: 1000 movies with all concepts (4428 atoms) 

• 1000 no title: 1000 movies with all concepts except 
title(ID, Title) (3440 atoms) 

• 500: 500 movies with all concepts (2249 atoms) 

• 500 no title: 500 movies with all concepts except 
title(ID, Title) (1752 atoms). 

The concepts in the complete database are title(ID, Title), 
genre(ID, GenreName) and year(ID, Year). We chose to 
exclude the concept title(ID, Title) in some of the testing 
databases, since it seems to be the concept that would be 
used most rarely. Recommender systems usually 
recommend items that the user does not know about and 
employing a concept that pinpoints the item itself can be 
seen as redundant. 

In the following, we will present the performance results 
of each program from the example in Section 4. The 
machine used for testing has the following specifications: 
Intel Pentium D 3.4 Ghz (2 Mb cache) processor and  
1 Gbyte of RAM. 

As one can see, the times in seconds for parsing (PA), 
grounding (GR), transformation (TR) and for the stable 
models computation (SM) are included. The total time 
(Total) is the sum of the previous times. Clearly, decreasing 
input size means less time, as can also be seen by looking at 
the results of the remaining programs. It is important to note 
that we are testing with the owner policy P0, which is 
updated by the user programs. 

Table 6 Performance results of program 1P  

Input PA GR TR SM Total
All 0.1953 1.5956 0.4985 1.2886 3.5779
No title 0.1507 1.1553 0.3050 0.9187 2.5296 
1000 0.0946 0.4676 0.1312 0.3075 1.0010 
1000 no title 0.0812 0.3285 0.1344 0.2184 0.7625 
500 0.0756 0.2737 0.0879 0.2066 0.6438 
500 no title 0.0603 0.2108 0.0679 0.1266 0.4656 

Table 7 Performance results of program 2P  

Input PA GR TR SM Total 

All 0.1962 1.5960 0.5026 1.2939 3.5887 
No title 0.1496 1.1588 0.3103 0.9223 2.5411 
1000 0.0957 0.4699 0.1332 0.3095 1.0083 
1000 no title 0.0844 0.3300 0.1370 0.2195 0.7709 
500 0.0734 0.2742 0.0889 0.2087 0.6453 
500 no title 0.0598 0.2176 0.0690 0.1279 0.4743 

Table 8 Performance results of program 3P  

Input PA GR TR SM Total 

All 0.1985 1.5977 0.5023 1.3123 3.6108 
No title 0.1492 1.1540 0.3190 0.9634 2.5856 
1000 0.0956 0.4749 0.1332 0.3262 1.0300 
1000 no title 0.0831 0.3320 0.1365 0.2351 0.7866 
500 0.0761 0.2806 0.0893 0.2251 0.6711 
500 no title 0.0603 0.2172 0.0692 0.1424 0.4891 

Table 9 Performance results of program 4P  

Input PA GR TR SM Total 

All 0.1966 1.6389 0.5042 1.3201 3.6597 
No title 0.1503 1.1813 0.4069 0.8588 2.5973 
1000 0.0960 0.4760 0.1352 0.3101 1.0173 
1000 no title 0.0845 0.3385 0.1381 0.2226 0.7837 
500 0.0743 0.2777 0.0903 0.2101 0.6524 
500 no title 0.0598 0.2164 0.0705 0.1253 0.4720 

While the parsing step is linear, the grounding can be 
exponential in worst case, depending on the number of 
atoms in the input, the number of rules and the different 
variables appearing in them. More specifically, the 
instantiation of a rule is exponential in the number of 
different variables occurring in that rule. The upper bound 
of number of rules created by the transformation depends on 
the total number of rules and the initial language. The 
transformation is linear and the worst case upper bound is 
2m + l rules after the transformation, where m is the number 
of rules in ( )ρ P  and l is the number of input predicates.13 

The computation of (dynamic) stable models can take a 
lot of time, since the task of finding a stable model is  
NP-hard. This means that in the worst case it is extremely 
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difficult to find a solution. The brute force way to compute 
stable models is to generate all subsets of the set of atoms of 
the whole program (which includes almost all of the input in 
our case) and then test for each subset whether it satisfies 
the condition of being a stable model. This is the most 
costly way of finding stable models and the algorithms that 
are employed have the main task to decrease the search 
space. Smodels employs a bottom-up backtracking search 
with a pruning method that can be very efficient. For more 
on that topic the reader is referred to Niemelä and Simons 
(1997). The main idea is to decrease the search space as 
soon as some evidence can be found that this part of the 
space is not needed anymore. This makes it also obvious 
how the size of the grounded and hence the transformed 
program influences the task of finding stable models, as can 
be seen in the test results. 

Table 10 All test results ordered by input and program 

Input P PA GR TR SM Total 

All 1 0.1953 1.5956 0.4985 1.2886 3.5779 
All 2 0.1962 1.5960 0.5026 1.2939 3.5887 
All 3 0.1985 1.5977 0.5023 1.3123 3.6108 
All 4 0.1966 1.6389 0.5042 1.3201 3.6597 

No title 1 0.1507 1.1553 0.3050 0.9187 2.5296 
No title 2 0.1496 1.1588 0.3103 0.9223 2.5411 
No title 3 0.1492 1.1540 0.3190 0.9634 2.5856 
No title 4 0.1503 1.1813 0.4069 0.8588 2.5973 

1000 1 0.0946 0.4676 0.1312 0.3075 1.0010 
1000 2 0.0957 0.4699 0.1332 0.3095 1.0083 
1000 3 0.0956 0.4749 0.1332 0.3262 1.0300 
1000 4 0.0960 0.4760 0.1352 0.3101 1.0173 

1000 no title 1 0.0812 0.3285 0.1344 0.2184 0.7625 
1000 no title 2 0.0844 0.3300 0.1370 0.2195 0.7709 
1000 no title 3 0.0831 0.3320 0.1365 0.2351 0.7866 
1000 no title 4 0.0845 0.3385 0.1381 0.2226 0.7837 

500 1 0.0756 0.2737 0.0879 0.2066 0.6438 
500 2 0.0734 0.2742 0.0889 0.2087 0.6453 
500 3 0.0761 0.2806 0.0893 0.2251 0.6711 
500 4 0.0743 0.2777 0.0903 0.2101 0.6524 

500 no title 1 0.0603 0.2108 0.0679 0.1266 0.4656 
500 no title 2 0.0598 0.2176 0.0690 0.1279 0.4743 
500 no title 3 0.0603 0.2172 0.0692 0.1424 0.4891 
500 no title 4 0.0598 0.2164 0.0705 0.1253 0.4720 

How methods of search space pruning can positively 
influence the time it takes to compute stable models can be 
seen when looking at programs 3P  and 4.P  From the input 
size of 1000 movies, one can notice that the stable models 
computation of program 4P  takes less time than of 3.P  The 
program update rules out the occurrence of certain atoms in 
the stable models of the programs and this is used to 
minimise the search space as soon as possible. This is also 

reflected in the number of stable models which is six in the 
case of 3P  and only one in the case of 4.P  

While we have not so fast results for a big input 
database, the times for programs with a smaller input can be 
more than six times faster. 

7 Optimisations 

7.1 Performance 

One of the major drawbacks of the system is its 
performance when dealing with a too large input database. 
One way to improve performance drastically is to decrease 
the size of the input. With an iteration mechanism, stable 
models could be computed in a step-wise manner, offering 
the user already some results, while processing the 
following input iteratively. The input database could as well 
be iteratively fed to the solver by first choosing the items 
that are ranked highest after some criteria of the initial 
recommender system, like e.g., the rating of the nearest 
neighbours in a collaborative filtering recommender system. 
This would, of course, at best be an approximation since the 
stable models cannot be computed incrementally. For every 
incrementation step of the input the models can change. The 
number n of items chosen in each step could be dependent 
on the demands of the domain. For example, if 
recommendations have to be presented very quickly as 
advertising products, n would be set very low, while n could 
be higher if the domain is one where the recommendation 
time is secondary, like e.g., in the area of financial advisory 
(Felfernig and Kiener, 2005). 

Another way to improve the system in terms of speed 
would be to select the input according to the rules. 
Analysing the rules for appearing concepts could provide a 
mechanism for choosing the according input where e.g., the 
concepts that are not used are absent. Similar to our tests, 
where we used an input database where the concept of 
title(ID, Title) was missing, the system could have several 
databases prepared, where each one would be used with an 
according set of rules. 

7.2 User interface 

An often criticised point of the system is the task of the user 
to write rules. It was shown that such kind of interaction can 
be burdening for the user (Claypool et al., 2001) and one 
might assume that the idea of recommender systems is to 
automatically provide recommendations without any need 
for direct user interaction. To tackle this issue, we first need 
to consider the following motivations: 

1 the system could be used as an optional add-on for a 
user of an existing recommender system 

2 the system could be used by experts of specific domains 
that demand higher accuracy and more important, 
reliability of recommendations 
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3 the system could be employed directly by owners of 
recommender systems to define rules concerning 
policies. 

Obviously, the rule-based character of the system does not 
appeal to every user that searches for products or 
information, but it might be appealing for those who are 
interested in the properties and advantages of a rule-based 
system, like in the cases mentioned above. 

But there are also possibilities of making rule creation 
easier for the user, not demanding that he has to learn 
answer-set programming. This would mean that a way has 
to be found that avoids the requirement of knowing how to 
program and that avoids the usage of a simplification 
mechanisms (like e.g., choosing predefined concepts). There 
has been work on transforming natural language sentences 
into logic programs (Fuchs and Schwitter, 1995) and 
creating natural language interfaces for databases 
(Androutsopoulos et al., 1995). It would be a challenging 
and interesting way to complement a recommender system 
with rule-based user models. This could preserve 
expressibility to a major extent and provide a more  
user-friendly way of defining rules. 

Further, rules could be created by suggestion or 
learning. Imagining a system that is started by experts that 
understand logic programming and that know how to 
program rules with high expressibility, we could provide 
new users that are not familiar with answer set 
programming, with suggestions. Experts can tag their rules, 
an idea seen very much established in Amazon where items 
are tagged. This tagging can provide some basic entry for 
users that do not want to or do not know how to deal with 
rules. While experts could tag each others rules, novice 
users could search for tags and receive tag suggestions. Of 
course, it would take some time to start up such a system, 
but it is well known that many recommender systems need 
such start up time as well, e.g., where items have to be 
rated, like it is the case in a collaborative filtering 
recommender system. The power of tagging, which is also 
seen as providing meaning, is widely exploited in the  
Web 2.014 paradigm. There has also been significant work 
on learning rules by induction (e.g., Aitken, 2002), which 
could be another way to make the system more user friendly 
by suggesting learned rules. 

8 Related work 

In our system we use a rule-based approach for modelling 
knowledge about the user, and hence it can be categorised 
as a knowledge-based system. The architecture is not 
considered to be a stand-alone system, but a complement to 
existing recommender systems. The functionality of the idea 
includes the use of an (external) input module that offers 
valuable recommendations, such as e.g., a collaborative 
filtering recommender system. A complemented system 
would therefore form a cascade hybrid recommender system 
(Burke, 2002), using the output of one system to feed our 
module which then optimises the results. While e.g., in 

Burke (1999) collaborative filtering is used to improve the 
recommendations of the knowledge-based system, we 
propose the opposite direction. A further difference to the 
majority of recommender systems is the use of an explicit 
user model. Though not being fully comparable to most of 
the traditional recommender systems, there are related 
approaches that we consider similar in some characteristics. 

For example, in Chesñevar and Maguitman (2004) 
defeasible logic programming (DeLP) is employed in a 
website recommender system. The system ArgueNet is 
proposed where the user can formulate his preferences in 
the form of a defeasible logic program. DeLP is a defeasible 
argumentation formalism that is based on logic 
programming and the underlying logical language is that of 
extended logic programming. Classical and default negation 
are allowed. The ArgueNet system classifies relevant search 
results according to the preferences of the user. While our 
system receives results from a recommender system, 
ArgueNet requests information from a search engine. In 
both approaches, a form of logic programming is used to 
define the user model. In the DLP approach though, the user 
can update his model according to changes in preferences 
without worrying if the proposed specification is free of 
contradiction or tautological information. In the DeLP 
approach it is assumed that all the defined rules are 
consistent and no updates in the sense of DLP are possible. 
Both approaches are offering something that is desirable in 
most recommender systems, and that is the intrinsic ability 
to provide justifications. While ArgueNet is a recommender 
system on its own, our approach falls into the category of a 
complementary system. Since there are already efficient and 
data rich recommender systems that improved over the 
years, their recommender capability should be harvested. 
The main purpose of the DLP system is to improve the 
results and to add a user controlled personalisation to 
existing systems. 

Another system that can be considered related from a 
user interaction point of view is the novel type of hybrid 
recommender system presented in Schafer et al. (2002), 
dubbed meta-recommender system. The idea behind the 
approach is to integrate recommendations from more than 
one source with diverse information, while giving the users 
the possibility to modify their requirements. This kind of 
user control is somehow similar to our proposal of defining 
a user model, and not usual for traditional recommender 
systems. The meta-recommender system MetaLens regards 
the results of an existing recommender module and allows 
the user to specify weights for certain fixed criteria. While 
this system helps to find interconnected information  
on-the-fly, our proposal is more focused on an elaborated 
user model that includes long-term and short-term 
properties, as well as an expressive modelling language. Our 
system only receives information from one source and 
therefore does not include a data integration layer like the 
meta-recommender system MetaLens. In the following 
dynamic version, DynamicLens (Schafer, 2005), a dynamic 
query interface is introduced, making it easier for the user to 
observe the importance of certain requirements and giving 
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him more control over the results. Both systems create, 
among others, an on-top refinement of already existing 
recommendations and also provide a high degree of 
interactive user personalisation. 

Our system can be summarised as a complementary 
module for existing recommender systems allowing for an 
improvement of results by means of explicit user modelling. 
In most of the large-scale systems, performance and 
effectiveness are of high importance and therefore, implicit 
user model creation is essential. That might lead to 
imperfect results which can be refined using the DLP idea 
of letting the user define a more specific user model. 

9 Conclusions and future work 

In this paper we proposed what can be seen as part of a 
knowledge based (or hybrid) recommender system, with 
several characteristics, namely: 

• allowing user personalisation with complex and 
expressive rules, improving the quality of 
recommendations 

• allowing for interaction with the user by means of 
updates to those rules, automatically removing 
inconsistencies 

• taking into account the output of other recommendation 
modules 

• allowing for customisation by the owner of the system 

• providing a semantics with multiple recommendation 
sets, facilitating diversity and non-determinism in 
recommendations 

• enjoying a formal, well defined semantics which 
supports justifications 

• enjoying all the other formal properties mentioned in 
the previous section, and many more inherited from 
DLP and ASP such as the expressiveness of the 
language and the efficient implementations. 

Inspired by the idea of a meta-recommender system that 
integrates diverse information, we will consider a more 
developed architecture that receives input from more than 
one source. Data integration and information source 
selection has already been a trial application for ASP and in 
our system design this will be regarded. The main 
motivation is to move away from the idea of a recommender 
system being limited to one product domain and to embrace 
the integration of interconnected information. 

We believe that our proposal encodes some important 
concepts that can bring an added value to existing systems. 
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Notes 
1 The main difference between traditional logic programming 

(e.g., Prolog) and ASP is how negation as  
failure is interpreted. In traditional logic programming, 
negation-as-failure indicates the failure of a derivation; in 
ASP, it indicates the consistency of a literal. In contrast to 
Prolog, the semantics of ASP do not depend on a specific 
order of evaluation of the rules and of the atoms within each 
rule. For more on ASP, namely its semantics and applications, 
the reader is referred to Baral (2003). 

2 Available at http://www.dlvsystem.com/. 
3 Available at http://www.tcs.hut.fi/Software/smodels/. 
4 LPs with default and strong negation both in the body and 

head of rules. 
5 Recent redevelopments have formalised an extension of 

answer-set programming that allows for the interface with 
ontologies specified in Description Logics (Eiter et al., 2004), 
making our work easily extensible to the case where product 
information is available in the semantic web instead of a local 
relational database. 

6 This encoding uses the classic even loop through negation 
which, in ASP, produces two models, each with one of the 
propositions belonging to it. 

7 We restrict the listings of models to propositions of the form 
rec(Id). 

8 IDs of newly introduced movies are written in italics. 
9 These rules are, again, a classic construct of ASP. The first 

two rules state that each good item X is either recommended 
[rec(X)] or not recommended [n_rec(X)]. Then the third rule 
makes the proposition rec_at_least_one true if at least one 
good item is recommended. Finally, the fourth rule, an 
integrity constraint, eliminates all models where 
rec_at_least_one is not true. The actual recommender system 
would, like most answer-set solvers, have special syntactical 
shortcuts for this kind of specifications, since we cannot 
expect the user to write this kind of rules. 
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10 The prototype can be found at 
http://ssdi.di.fct.unl.pt/~a21451. 

11 The collaborative filtering algorithm can be found at 
www.vogoo-api.com. 

12 The MovieLens dataset can be found at 
http://www.grouplens.org/. 

13 Banti et al. (2005) Theorem 2. 
14 There are many references concerning this topic; the reader is 

referred to Vossen and Hagemann (2007) for an introduction. 


