
Explicit Dynamic User Profiles for a
Collaborative Filtering Recommender System

M. Ilic, J. Leite, and M. Slota?

CENTRIA, Universidade Nova de Lisboa, Portugal

Abstract. User modelling and personalisation are the key aspects of
recommender systems in terms of recommendation quality. While being
very efficient and designed to work with huge amounts of data, present
recommender systems often lack the facility of user integration when it
comes to feedback and direct user modelling. In this paper we describe
ERASP, an add-on to existing recommender systems which uses dynamic
logic programming – an extension of answer set programming – as a
means for users to specify and update their models, with the purpose of
enhancing recommendations. We present promising experimental results.

1 Introduction

Nowadays, almost every e-commerce application provides a recommender system
to suggest products or information that the user might want or need [19].

Common techniques for selecting the right item for recommendation are: col-
laborative filtering (e.g. [15]) where user ratings for objects are used to perform
an inter-user comparison and then propose the best rated items; content-based
recommendation (e.g.[8]) where descriptions of the content of items are matched
against user profiles, employing techniques from the information retrieval field;
knowledge-based recommendation (e.g. [9]) where knowledge about the user, the
objects, and some distance measures between them are used to infer the right
selections; and hybrid versions of these where two or more techniques (collabo-
rative filtering being usually one of them) are used to overcome their individual
limitations. For further details on this subject the reader is referred to [10].

The extent to which users find the recommendations satisfactory is the key
feature of a recommendation system, and the accuracy of the user models that
are employed is of significant importance to this goal. Such user models represent
the user’s taste and can be implicit (e.g. constructed from information about the
user behavior), or explicit (e.g. constructed from direct feedback or input by the
user, like ratings). The accuracy of a user model greatly depends on how well
short-term and long-term interests are represented [7], making it a challenging
task to include both sensibility to changes of taste and maintenance of permanent
preferences. While implicit user modelling disburdens the user of providing direct
feedback, explicit user modelling may be more confidence inspiring to the user
since recommendations are based on a conscious assignment of preferences.
? Partially supported by FCT Scholarship SFRH/BD/38214/2007

Though most recommender systems are very efficient from a large-scale per-
spective, the effort in user involvement and interaction is calling for more at-
tention. Moreover, problems concerning trust and security could be approached
with a better integration of the user and more control over the user model [16].

This calls for more expressive ways for users to express their wishes. The
natural way to approach this is through the use of symbolic knowledge rep-
resentation languages. They provide the necessary tools for representing and
reasoning about users, while providing formal semantics that make it possible
to reason about the system, thus facilitating trust and security management.

However, we want to keep the advantages of the more automated recom-
mendation techniques such as collaborative filtering and statistical analysis, and
benefit from using large amounts of data collected over the years by existing sys-
tems that use these techniques. Unfortunately, the use of these methods makes
it impossible to have the explicit user models we seek. A tight combination
between expressive (logic based) knowledge representation languages and sub-
symbolic/statistical approaches is still the Holy Grail of Artificial Intelligence.

One solution to tackle this problem is through the use of a layered archi-
tecture, as suggested in [17], where expressive knowledge based user models,
specified in Dynamic Logic Programming (DLP) [2, 18, 3], are used to enhance
the recommendations provided by existing recommender systems.

In a nutshell, DLP is an extension of Answer-set Programming (ASP) [14]
introduced to deal with knowledge updates. ASP is a form of declarative pro-
gramming that is similar in syntax to traditional logic programming and close in
semantics to non-monotonic logic, that is particularly suited for knowledge rep-
resentation. Enormous progress concerning the theoretical foundations of ASP
(c.f. [6] for more) have been made in recent years, and the existence of very
efficient ASP solvers (e.g. DLV and SMODELS) make it possible to investigate
some serious applications. Whereas in ASP knowledge is specified in a single the-
ory, in DLP knowledge is given by a sequence of theories, each representing an
update to the previous ones. The declarative semantics of DLP ensures that any
contradictions that arise due to the updates are properly handled. Intuitively,
one can add newer rules to the end of the sequence and DLP automatically en-
sures that these rules are in force and that the older rules are kept for as long
as they are not in conflict with the newly added ones (c.f. [18] for more).

In this paper we describe the architecture, implementation and preliminary
performance results of ERASP (Enhancing Recommendations with Answer-Set
Programming), the system that resulted from following this path. Specifically,
ERASP takes the output of an existing recommender algorithm (in this paper
we used collaborative filtering, but it could be another) and enhances it taking
into account explicit models and preferences specified both by the user and the
owner of the system, represented in DLP. The main features of ERASP include:

– Providing the owner and user with a simple but expressive and extensible
language to specify their models and preferences, by means of rules and em-
ploying existing (e.g. product characteristics) as well as user defined (e.g. own
qualitative classifications based on product characteristics) concepts.

– Facilitating the update of user models by automatically detecting and solv-
ing contradictions that arise due to the evolution of the user’s tastes and needs,
which otherwise would discourage system usage.

– Taking advantage of existing recommender systems which may encode large
amounts of data that should not be disregarded, particularly useful in the ab-
sence of user specified knowledge, while giving precedence to user specifications
which, if violated, would turn the user away from the recommendation system.

– Enjoying a well defined semantics which allows the formal study of proper-
ties and provides support for explanations, improving interaction with the user.

– Having a connection with relational databases (ASP can be seen as a query
language, more expressive than SQL), easing integration with existing systems.

– Allowing the use of both strong and default negation to reason with closed
and open world assumptions, thus allowing to reason with incomplete informa-
tion, and to encode non-deterministic choice, thus generating more than one set
of recommendations, facilitating diversity each time the system is invoked;

The remainder of this paper is organised as follows: In Sect. 2, for self con-
tainment, we recap the notion of Dynamic Logic Programming, establishing the
language used throughout. In Sect. 3 we present ERASP architecture, semantics
and implementation. In Sect. 4 we present a short illustrative example and some
experimental results. In Sect. 5 we discuss the results and conclude.

2 Dynamic Logic Programming

Let A be a set of propositional atoms. An objective literal is either an atom A
or a strongly negated atom ¬A. A default literal is an objective literal preceded
by not . A literal is either an objective literal or a default literal. A rule r is an
ordered pair H(r) ← B(r) where H(r) (dubbed the head of the rule) is a literal
and B(r) (dubbed the body of the rule) is a finite set of literals. A rule with
H(r) = L0 and B(r) = {L1, . . . , Ln} will simply be written as L0 ← L1, . . . , Ln.
A generalised logic program (GLP) P , in A, is a finite or infinite set of rules.
If H(r) = ¬A (resp. H(r) = not A), then ¬H(r) = A (resp. not H(r) = A).
By the expanded generalised logic program corresponding to the GLP P ,
denoted by P, we mean the GLP obtained by augmenting P with a rule of the
form not ¬H(r) ← B(r) for every rule, in P , of the form H(r) ← B(r), where
H(r) is an objective literal. An interpretation M of A is a set of objective
literals that is consistent, i.e. M does not contain both A and ¬A. An objective
literal L is true in M , denoted by M |= L, iff L ∈ M , and false otherwise. A
default literal not L is true in M , denoted by M |= not L, iff L /∈ M , and false
otherwise. A set of literals B is true in M , denoted by M |= B, iff each literal
in B is true in M . An interpretation M of A is an answer set of a GLP P iff
M ′ = least(P ∪ {not A | A /∈ M}), where M ′ = M ∪ {not A | A /∈ M}, A is an
objective literal, and least(.) denotes the least model of the program obtained
from the argument program by replacing every not A by not A.

A dynamic logic program (DLP) is a sequence of generalised logic pro-
grams. Let P = (P1, . . . , Pn) be a DLP and P, P ′ be GLPs. We use ρ(P) to denote

Fig. 1. ERASP System Architecture

the multiset of all rules appearing in the programs P1, . . . ,Pn and (P, P ′,P) to
denote the DLP (P, P ′, P1, . . . , Pn). We can now set forth the definition of a
semantics, based on causal rejection of rules, for DLPs. We start by defining the
notion of conflicting rules as follows: two rules r and r′ are conflicting, denoted
by r on r′, iff H(r) = not H(r′). Let P = (P1, . . . , Pn) be a DLP and M and
interpretation. M is a (refined) dynamic stable model of P iff

M ′ = least([ρ(P) \Rej(P,M)] ∪Def(P,M)) where:
Rej(P,M) = {r | r ∈ Pi, ∃r′ ∈ Pj , i ≤ j, r on r′,M |= B(r′)}
Def(P,M) = {not A | @r ∈ ρ(P),H(r) = A,M |= B(r)}

3 Framework and its Implementation

In this Section, we introduce the architecture, its semantics and describe the
implementation. ERASP’s goal is to take the strengths of DLP as a framework
for the representation of evolving knowledge, and put it at the service of both
the user and owner of a recommender system, while at the same time ensuring
some degree of integration with other recommendation modules, possibly based
on distinct paradigms (e.g. statistical).

Fig. 1 depicts the system architecture, representing the information flow. To
facilitate presentation, we assume a layered system where the output of an exist-
ing recommendation module is simply used as input to our system. We are aware
that allowing for feedback from our system to the existing module could benefit
its output, but such process would greatly depend on the particular module and
we want to keep our proposal as general as possible, and concentrate on other
aspects of the framework. The output of the initial module is assumed to be an
interpretation, i.e. a consistent set of atoms representing the recommendations.
We assume that our language contains a reserved predicate of the form rec/1
where the items are the terms of the predicate1. The owner policy, possibly used
to encode desired marketing strategies (e.g. introduce some bias towards some

1 It would be straightforward to also have some value associated with each recommen-
dation, e.g. by using a predicate of the form rec(item, value). However, to get our
point across, we will keep to the simplified version.

products), is encoded as a generalised logic program. The user model (including
its updates) is encoded as a dynamic logic program. The Product Database is
a relational database that can easily be represented by a set of facts in a logic
program. For simplicity, we assume such database to be part of the generalised
logic program representing the owner’s policy. A formalization of the system is
given by the concept of Dynamic Recommender Frame:

Definition 1 (Dynamic Recommender Frame). Let A be a set of propo-
sitional atoms. A Dynamic Recommender Frame (DRF), over A, is a triple
〈M, P0,P〉 where M is an interpretation of A, P0 a generalised logic program
over A, and P a DLP over A.

The semantics of a Dynamic Recommender Frame is given by the set of dy-
namic stable models of its transformation into a DLP. This transformation is
based on two natural principles: – the user’s specification should prevail over
both the initial recommendations and the owner’s rules, since users would not
accept a recommendation system that explicitly violates their rules; – the owner
should be able to override the recommendations in the initial interpretation,
e.g. to specify preference among products according to the profit. Intuitively, we
construct a DLP with the initial program obtained from the initial recommen-
dations, which is then updated with the owner’s policy specification (P0) and
the user’s specification (P). A formal definition follows:

Definition 2 (Stable Recommendation Semantics). Let R = 〈M,P0,P〉
be a DRF and MR an interpretation. MR is a stable recommendation iff MR is
a dynamic stable model of (PM , P0,P) where PM = {A ←| A ∈ M}.
According to this semantics, a Dynamic Recommender Frame can have more
than one Stable Recommendation, each corresponding to one particular set of
products that could be recommended to the user. This immediately represents
a nice feature since it allows for the system to present the user with a different
set of recommendations each time the user invokes the system adding diversity.

ERASP is implemented as an online application2 using a PHP-based ini-
tial collaborative filtering recommender system. The product database consists
of the complete MovieLens (http://www.grouplens.org/) dataset (3883 movies
with title, genre and year). After rating some movies and receiving some initial
recommendations (using the collaborative filtering algorithm), the user can edit
his preferences encoded as a dynamic logic program using an interface which pro-
vides some help in rule creation. This program P, the initial recommendations
M , the product database and the owner specifications P0 are given to a SMOD-
ELS -based solver. The solver computes the corresponding DLP Q = (PM , P0,P)
and, using Lparse, produces an equivalent DLP QG without variables.

After the grounded dynamic logic program QG is parsed, it gets transformed
into an equivalent normal logic program QR

G. This transformation is described
in detail in [5]. The stable models of QR

G directly correspond to the dynamic
stable models of Q. The transformed program is then passed to Lparse and
2 Available at http://centria.di.fct.unl.pt/erasp/

Fig. 2. ERASP Screenshots: a) User Model Interface b) Recommendations

Smodels in order to compute its stable models. Our program then writes the
recommendations into an SQL database and presents them to the user. Fig. 2
presents two screen-shots of ERASP.

4 Illustrative Example and Experimental Results

In this Section, we show an example that illustrates some features of our pro-
posal, and present the results of benchmark tests based on the example.

Let’s consider a typical on-line movie recommender. Its product database
contains information about a number of movies and its recommendations are
based on some kind of statistical analysis performed over the years. The owner of
the recommender system may want to explicitly influence the recommendations
of the system in a certain way. She may also want to give the users the ability to
specify some explicit information about their tastes in order to correct or refine
the recommendations of the existing system. Below we will illustrate how our
framework can help achieve both these goals in a simple way. A list of the movies
involved in the example together with their relevant properties can be found in
Table 1. We will also consider the initial interpretation M obtained from the
statistical system to be constant throughout the example:

M = {rec(497), rec(527), rec(551), rec(589), rec(1249),
rec(1267), rec(1580), rec(1608), rec(1912), rec(2396)}

Let’s consider the following owner specification:

P0 : rec(12) ← not rec(15). (1)
rec(15) ← not rec(12). (2)
rec(X) ← rec(Y), year(Y, 1998), genre(Y, “Romance”),

genre(X, “Musical”), year(X, 1998). (3)

ID Title Year Genres

12 Dracula: Dead and Loving It 1995 Comedy, Horror
15 Cutthroat Island 1995 Action, Adventure
497 Much Ado About Nothing 1993 Comedy, Romance
527 Schindler’s List 1993 Drama, War
551 Nightmare Before Christmas, The 1993 Children’s, Comedy
558 Pagemaster, The 1994 Action, Adventure, Fantasy
589 Terminator 2: Judgment Day 1991 Action, Sci-Fi
1249 Nikita 1990 Thriller
1267 Manchurian Candidate, The 1962 Film-Noir, Thriller
1580 Men in Black 1997 Action, Adventure
1608 Air Force One 1997 Action, Thriller
1856 Kurt & Courtney 1998 Documentary, Musical
1912 Out of Sight 1998 Action, Crime
2394 Prince of Egypt, The 1998 Animation, Musical
2396 Shakespeare in Love 1998 Comedy, Romance
3746 Butterfly 2000 Drama, War

Table 1. Movies used in the example with some of their properties

Rules (1) and (2) specify that the system should non-deterministically recom-
mend either movie 12 or 153. Rule (3) encodes that the system should rec-
ommend all movies with the genre Musical from 1998 if any movie with the
genre Romance from the same year is recommended. Adding an empty set of
user specifications P0 = (), the recommender frame 〈M, P0,P0〉 has two sta-
ble recommendations: MR1 = M ∪ {rec(12), rec(1856), rec(2394)} and MR2 =
M ∪ {rec(15), rec(1856), rec(2394)}. The reader can easily check that each of
these two stable recommendations extend the results from the initial recommen-
dation to reflect the wishes of the owner. We now turn to the user specifications:

P1 : not rec(X) ← genre(X, “Animation”). (4)
P2 : good(X) ← genre(X, “Action”), genre(X, “Adventure”),

genre(X, “Fantasy”). (5)
rec(X) ← good(X),not n rec(X). (6)
n rec(X) ← good(X),not rec(X). (7)
rec at least one ← good(X), rec(X). (8)
← not rec at least one. (9)

P3 : good(X) ← genre(X, “War”), year(X, 2000). (10)
P4 : not rec(X) ← genre(X, “Adventure”). (11)

In the single rule (4) of program P1, the user simply overrides any previous rule
that would recommend an Animation movie. In program P2, she introduces the
notion of a good movie in rule (5) and rules (6) – (9) make sure there is always
at least one good movie recommended4. Program P3 extends the definition of a
good movie and program P4 avoids recommendations of Adventure movies.

With P1 = (P1), P2 = (P1, P2), P3 = (P1, P2, P3), P4 = (P1, P2, P3, P4), the
recommender frames 〈M, P0,P1〉, 〈M, P0,P2〉, 〈M, P0,P3〉 and 〈M, P0,P4〉 have
3 The even loop through default negation is used in ASP to generate two models.
4 These rules are a classic construct of ASP. The actual recommendation system would,

like most answer-set solvers, have special syntactical shortcuts for this kind of spec-
ifications, since we cannot expect the user to write them from scratch.

Input All No title 1000 1000 no title

User DLP P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4
Parsing 195 196 199 197 151 150 149 150 95 96 96 96 81 84 83 85
Grounding 1596 1591 1598 1639 1156 1159 1154 1181 468 470 475 476 329 330 332 339
Transformation 496 503 502 504 305 310 320 407 131 133 133 135 134 137 136 138
Stable models 1289 1294 1312 1320 919 922 963 859 308 310 326 310 218 220 235 223

Total 3576 3584 3611 3660 2531 2541 2586 2597 1002 1009 1030 1017 762 771 786 785

Table 2. All test results ordered by input and program (time in milliseconds)

2, 2, 6 and 1 stable recommendations, respectively, which, for lack of space we
cannot list here. Instead, we list only the final one and invite the reader to see
how it complies with the user rules, how contradictory user rules are solved (e.g.
adventure movies that are good, such as movie 558), as well as those between
user and owner rules (e.g. movie 15 is no longer recommended).

M = {rec(12), rec(497), rec(527), rec(551), rec(589), rec(1249), rec(1267),
rec(1608), rec(1856), rec(1912), rec(2396), rec(3746)}

We now turn our attention to time performance. To investigate the impor-
tance of the size of the input, we tested using the programs specified above but
with the following four databases with varying number of movies and concepts:

– All: 3883 movies, all concepts (17406 atoms)
– No title: 3883 movies, all concepts except title(ID, T itle) (9640 atoms)
– 1000: 1000 movies, all concepts (4428 atoms)
– 1000 no title: 1000 movies, all concepts except title(ID, T itle) (3440 atoms)

For each database and each recommender frame we computed all the stable rec-
ommendations 100 times using an Intel Pentium D 3.4 GHz processor with 2
MB cache and 1 GB of RAM. The average times for each step of the implemen-
tation are shown in Table 2. As can be seen from the table, the time it takes to
compute the recommendations varies with the size of the database. As expected,
the parsing time grows linearly. The size of the database directly determines the
number of terms substituted for the variables in the grounding phase hence the
number of generated rules. The transformation is then linear and the worst case
upper bound is 2m + l rules after the transformation, where m is the number
of rules in the grounded DLP and l is the number of atoms in the grounded
DLP. The last phase, computation of stable models, is known to be NP-hard
although, as usual, SMODELS performs quite well in keeping the computation
time low, making ERASP look quite promising. Apart from that, it can be run
on computers much faster than the one we had at our disposal. It is also worth
noting that the addition of common user rules has little effect on performance.

5 Concluding Remarks

In this paper we proposed ERASP, a system that can work as an add-on for
existing recommender systems. Owners of such systems should be able to plug in

the application as a recommendation enhancer, for offering users the possibility
of explicit preference creation, for defining specific system rules, or both. A rule-
based language like DLP can empower owners of recommender systems with the
necessary tools to employ marketing strategies with precision, while keeping the
diversity of recommendations and following user’s preferences. Moreover, it can
be used as a query tool to extract information from the database using a more
sophisticated language than for example SQL, allowing the system to be used on
its own without the need of a previously existing recommender systems. Users
of ERASP can find a rich language to interact with the recommender system,
gaining control, if they so desire, over the recommendations provided.

ERASP has a formal declarative semantics based on ASP and DLP, thus
inheriting many of their theoretical properties and efficient implementations.

ERASP also enjoys other formally provable properties, e.g. the property of
both positive and negative supportiveness which insures there always exists an
explanation for each recommended item. The provided semantics makes multi-
ple recommendation sets possible, facilitating diversity and non-determinism in
recommendations.

ERASP has been implemented and preliminary tests are very encouraging.
For databases of some reasonable size (few thousand products) often found in
specialised e-commerce applications, the system is readily applicable. For larger
databases, not only there is still room for implementation optimizations, but
we can drastically improve its performance with an iteration mechanism which
would first try to compute the stable models only with a part of the database, of
fixed size, chosen according to some criteria of the initial recommender system,
e.g. according to the rating of the nearest neighbors in a collaborative filtering
recommender system. If recommendations are found, they are presented to the
user. If there are no recommendations, then they are recomputed with a bigger
(or different) part of the database. The number of items chosen in each step
and control over whether and how the iterative approach is being used could
depend on the demands of the domain, it could even be controlled directly by the
owner and/or user or change dynamically according to some immediate external
changes, like the load of the server or similar.

Another way to improve the system in terms of speed would be to restrict
the database used to concepts explicitly appearing in the rules, as shown in
our tests when we used an input database without the concept title(ID, T itle).
Furthermore, the grounding and transformation phase of the implementation
still have room for optimizations.

One issue that needs to be tackled is that of the user interface, namely
the task of writing rules, burdening for the user [12]. Without addressing this
issue, ERASP can still provide added value for experts of specific domains that
are willing to learn how o write such rules to satisfy their demand of higher
accuracy and, more important, reliability of recommendations. Even for less
demanding users, there are still some easy to write rules that provide some basic
interaction with the recommender system that is of great help. Dealing with this
issue includes transforming natural language sentences into logic programs [13],

creating natural language interfaces for databases [4], creating rules by tagging
and suggestion and learning rules by induction [1].

As for related work, in [11] Defeasible Logic Programming is employed in
the ArgueNet website recommender system. Lack of space prevents us from
comparing both architectures. To the best of our knowledge, ArgueNet has not
been implemented yet.

References

1. J.S. Aitken. Learning information extraction rules: An inductive logic programming
approach. In Procs. of ECAI’02. IOS Press, 2002.

2. J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and T. Przymusinski. Dynamic
updates of non-monotonic knowledge bases. J. Logic Programming, 45(1-3), 2000.

3. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1), 2005.

4. I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural language interfaces to
databases–an introduction. Journal of Language Engineering, 1(1):29–81, 1995.

5. F. Banti, J. J. Alferes, and A. Brogi. Operational semantics for DyLPs. In Procs.
of EPIA’05, 2005.

6. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

7. D. Billsus and M. J. Pazzani. User modeling for adaptive news access. User Model.
User-Adapt. Interact, 10(2-3):147–180, 2000.

8. D. Billsus and M. J. Pazzani. Content-based recommendation systems. In The
Adaptive Web, volume 4321 of LNCS, pages 325–341. Springer, 2007.

9. R. Burke. Knowledge-based recommender systems. In Encyclopedia of Library and
Information Systems, volume 69. M. Dekker, 2000.

10. R. D. Burke. Hybrid recommender systems: Survey and experiments. User Model.
User-Adapt. Interact, 12(4):331–370, 2002.

11. C. Chesñevar and A. Maguitman. ArgueNet: An argument-based recommender
system for solving web search queries. In Procs. of the 2nd. International IEEE
Conference on Intelligent Systems, pages 282–287. IEEE Press, June 2004.

12. M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators. In
Intelligent User Interfaces, pages 33–40, 2001.

13. N. E. Fuchs and R. Schwitter. Specifying logic programs in controlled natural
language. Technical Report ifi-95.17, 1, 1995.

14. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Procs. of
ICLP’90. MIT Press, 1990.

15. D. Goldberg, D. Nichols, B. M Oki, and D. Terry. Using collaborative filtering
to weave an information tapestry. Communications of the ACM, 35(12):61–70,
December 1992. Special Issue on Information Filtering.

16. S. K. Lam, D. Frankowski, and J. Riedl. Do you trust your recommendations? An
exploration of security and privacy issues in recommender systems. In Procs. of
ETRICS’06, 2006.

17. J. Leite and M. Ilic. Answer-set programming based dynamic user modeling for
recommender systems. In Procs. of EPIA’07, volume 4874 of LNAI, pages 29–42.
Springer, 2007.

18. J. A. Leite. Evolving Knowledge Bases. IOS press, 2003.
19. J. Ben Schafer, J. A. Konstan, and J. Riedl. E-commerce recommendation appli-

cations. Data Min. Knowl. Discov, 5(1/2):115–153, 2001.

