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Abstract. In this paper we introduce a logic programming based frame-
work which allows the representation of conditional non-monotonic tem-
poral beliefs and goals in a declarative way. We endow it with stable
model like semantics that allows us to deal with conflicting goals and
generate possible alternatives. We show that our framework satisfies
some usual properties on goals and that it allows imposing alternative
constraints on the interaction between beliefs and goals. We prove the
decidability of the usual reasoning tasks and show how they can be im-
plemented using an ASP solver and an LTL reasoner in a modular way,
thus taking advantage of existing LTL reasoners and ASP solvers.

1 Introduction

Mental attitudes such as beliefs, goals, and intentions are well-known to be
fundamental for representing autonomous rational agents [4,12,13,5]. Roughly,
beliefs represent the agent’s knowledge about the state of the world, goals rep-
resent states the agent aims at achieving, and intentions are the goals that the
agent commits to pursue. We focus on the representation and reasoning about
declarative beliefs and goals.

One fundamental ingredient when modeling goals is the notion of time. Goals
usually refer to some state of affairs that the agent aims to maintain or achieve
sometime in the future. For example, an agent might have the goal to maintain a
positive balance on her bank account during the entire month to avoid fines, or to
study before the next week’s exam. Temporal logic has been shown to be flexible
and expressive for representing different goal types [7,10,2], and several works in
the literature modeling mental attitudes of agents are based on (extensions of)
temporal logic. Namely, [5,10,16,2] are based on Linear Temporal Logic (LTL),
while [12] is based on Computational Tree Logic (CTL*).

Another fundamental ingredient is the possibility to model defeasible and
conflicting information. As argued in [2], it is quite common that goals have a
conditional form and admit exceptions, so the adoption of new beliefs or goals
may cause the retraction of some of the agent’s current goals. In particular, we
may encounter conflicting goals that cannot be pursued at the same time, in
which case we have to consider alternative sets of goals. For example, an agent
may want to go to Paris for the weekend, but also to London. These goals are
conflicting and cannot be achieved together.

Therefore, representation and reasoning about goals would greatly benefit
from an approach combining the temporal and non-monotonic aspects. However,



most of the work on beliefs and goal is monotonic [12,5,10,16], and therefore does
not allow us to represent defeasible beliefs and goals. The work in [15] introduces
a non-monotonic logic for conditional goals based on default logic, but it does
not consider temporal formulas. In [2], a non-monotonic extension of LTL is
defined that allows for expressing goals with exceptions, but it does not handle
conflicting goals nor does it consider beliefs, therefore not allowing us to model
the interaction between these and goals.

In this paper, we bridge the gap between temporal and non-monotonic goal
languages by introducing a general non-monotonic goal framework. The lan-
guage obtained is expressive enough to represent conditional beliefs and goals
over complex temporal formulas, and it also allows reasoning about conflicting
goals. The semantics defined in the spirit of stable models/answer set program-
ming (ASP) [8] not only endows it with a purely declarative semantics, but also
supports a novel perspective on dealing with alternative sets of goals in which
each stable model can be seen as a possible consistent set of goals that an agent
might adopt. Besides satisfying some usual properties on goals, our framework
is also general and flexible enough to represent different constraints on the in-
teraction between beliefs and goals in a simple way. We show decidability and
how to implement our framework using existing LTL and ASP solvers.

The paper is structured as follows. In Sect. 2, we introduce the basic language
for reasoning about beliefs and goals over a temporal logic. Then, in Sect. 3, we
define a non-monotonic framework for representing defeasible beliefs and goals,
along with its semantics, and prove some properties of our framework in Sect. 4.
We discuss decidability and implementation in Sect. 5, compare with related
work in Sect. 6, and conclude in Sect. 7.

2 Logic of beliefs and goals

In this section we introduce the language for representing beliefs and goals, which
is based on temporal logic. Temporal logic has been shown to be quite flexible
and expressive for representing different goal types [7,10,2]. Since our approach
is modular on the temporal component, and in order to ease the presentation,
we follow [5,10,16,2] and work in this paper with Linear Temporal Logic [11].

2.1 Linear temporal logic

Here, we introduce Linear Temporal Logic (LTL). The language of LTL, LLTL, is
built from a set of propositional symbols P using the usual classical connectives
t,∼,u,t,⇒, the unary temporal operator © (next) and the binary temporal
operator U (until). Other temporal operators can be defined by abbreviation:
♦ϕ := tUϕ (eventually), �ϕ := ∼♦∼ϕ (always), ϕBψ := ∼(∼ϕUψ) (before).

The semantics for LLTL is given as interpretation sequences of classical valua-
tions. Formally, an LTL interpretation is a sequence m = (mi)i∈N where mi ⊆ P
for each i ∈ N. The satisfaction of an LTL formula by an LTL interpretation
m = (mi)i∈N at a point i is defined inductively as follows:



– m, i  t for every i ∈ N;

– m, i  p if p ∈ mi, for p ∈ P;

– m, i  ∼ϕ if m, i 1 ϕ;

– m, i  ϕ1 u ϕ2 if m, i  ϕ1 and m, i  ϕ2;

– m, i  ϕ1 t ϕ2 if m, i  ϕ1 or m, i  ϕ2;

– m, i  ϕ1⇒ ϕ2 if m, i 1 ϕ1 or m, i  ϕ2;

– m, i ©ϕ if m, i+ 1  ϕ;

– m, i  ϕ1Uϕ2 if m, j  ϕ2 for some j ≥ i and m, k  ϕ1 for every i ≤ k < j.

We say that an LTL interpretation m is a model of an LTL formula ϕ,
denoted by m LTL ϕ, if m, 0  ϕ. This is the so-called anchored version of
LTL. Given a set Φ of LTL formulas, we denote by Mod(Φ) the set of LTL
models of all formulas in Φ. An LTL formula ϕ is valid if m LTL ϕ for every
LTL interpretation m. The consequence relation �LTL is defined as usual, i.e.,
Φ �LTL ϕ if, for every interpretation m, m  ϕ whenever m  ψ for every ψ ∈ Φ.
A set of LTL formulas Φ is an LTL theory if, for every δ ∈ LLTL, if Φ � δ, then
δ ∈ Φ. We denote by ThLTL the set of all theories over the language LLTL. Given
a set Φ of LTL formulas, we denote by Φ�LTL the least LTL theory containing
Φ, i.e., the deductive closure of Φ. As it is usual for monotonic logics [19], an
important property of ThLTL is the fact that 〈ThLTL,⊆〉 is a complete lattice,
i.e., 〈ThLTL,⊆〉 is a partial order and for every A ⊆ ThLTL the set

⋂
T∈A T is

again a theory over LLTL.

2.2 Logic of beliefs and goals

We now define the language for specifying beliefs and goals. We start by defining
the syntax, which is built on top of the LTL language.

Definition 1. The language of beliefs and goals, denoted by LBG, is defined as:

δ := B(ϕ) | G(ϕ) | ¬δ | δ ∧ δ

where ϕ is an LTL formula. A formula of the form B(ϕ) is called a belief atom
and one of the form G(ϕ) is called a goal atom.

Note that the other usual classical connectives can be obtained as abbreviation
δ1 ∨ δ2 := ¬(¬δ1 ∧ ¬δ2) and δ1 → δ2 := ¬δ1 ∨ δ2. We denote by LB the set
of formulas of LBG that only contain the belief operator B, i.e., those formulas
which are built from belief atoms using the classical connectives. We call LB the
belief language and its elements the belief formulas. In the same way, we define
the goal language, LG, as the set of formulas of LBG that only contain the goal
operator G. Its elements are called goal formulas. Also note that, for simplicity,
we follow [7,10,15] and do not allow temporal operators outside the scope of a
belief or goal operator, nor nesting of belief and goal operators.



Since the language LBG is built over belief and goal atoms, we define its
semantics based on an interpretation T = 〈Tb, Tg〉, i.e., a pair of LTL theories.
The first element of the pair is used to interpret belief atoms and the second
element to interpret goal atoms. An interpretation T = 〈Tb, Tg〉 is consistent if
both Tb and Tg are different from LLTL. We define the satisfaction of a formula
in LBG with respect to a pair 〈Tb, Tg〉 of LTL theories as follows:

〈Tb, Tg〉  B(ϕ) if Tb �LTL ϕ
〈Tb, Tg〉  G(ϕ) if Tg �LTL ϕ
〈Tb, Tg〉  ¬δ if 〈Tb, Tg〉 1 δ
〈Tb, Tg〉  δ1 ∧ δ2 if 〈Tb, Tg〉  δ1 and 〈Tb, Tg〉  δ2

Note that we do not impose any constraints on the relation between the LTL
theories Tb and Tg, unlike [7,10] where Tg �LTL Tb is assumed. Our aim here is
to be as general as possible, which is witnessed in Section 4 where we show that
our framework is flexible enough to impose such constraints in a simple way.

We can now define the consequence relation over the language LBG.

Definition 2. Given δ ∈ LBG and Γ ⊆ LBG, the consequence relation over
LBG is defined as Γ � δ iff, for interpretation 〈Tb, Tg〉, we have that 〈Tb, Tg〉  δ
whenever 〈Tb, Tg〉  ψ for every ψ ∈ Γ . We say that δ is valid if ∅ � δ.

3 Non-monotonic belief and goal specification

In this section, we present a non-monotonic framework for specifying conditional
non-monotonic temporal beliefs and goals. The framework is based on logic pro-
grams built over the language LBG introduced in the previous section.

3.1 Belief and goal bases

Belief bases and goal bases represent the agent’s beliefs and goals respectively,
and are usually defined as sets of formulas from which we can deduce the beliefs
and goals of the agent. For example, in [10], sets of LTL formulas are used.

In this work we generalize this assumption by representing belief and goal
bases as sets of non-monotonic rules over LBG, similar to those in Logic Pro-
gramming, making it possible to represent conditional and defeasible goals.

A rule r is of the form

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm (1)

where the head of r, ϕ, and each element of its body, ψ1, . . . , ψn, δ1, . . . , δm,
is either a goal atom or a belief atom. Like in a logic programming rule, the
symbol ← represents rule implication, the symbol “,” represents conjunction
and the symbol not represents default negation. Thus, r represents that ϕ holds
whenever ψ1, . . . , ψn hold and δ1, . . . , δm are not known to hold. A rule is called
positive if it does not contain any occurrence of not, and fact if its body is empty.



A belief rule is a rule of the form (1) where the head ϕ and all elements of
the body are belief atoms. A goal rule is a rule of the form (1) where the head ϕ
is a goal atom. A belief base B is a set of belief rules and a goal base G is a set of
goal rules. A belief base (goal base) is called positive if all its rules are positive.

Definition 3. An agent configuration is a pair C = 〈B,G〉 where B is a belief
base and G is a goal base. An agent configuration C = 〈B,G〉 is said to be positive
if both the belief base B and the goal base G are positive.

Example 4. Consider the simple example about choosing a means of transport.

B(♦strike)← B(strikeInNews) (2)

G(♦work)← not G(♦beach) (3)

G(♦beach)← not G(♦work) (4)

G(♦bike)← G(♦beach) (5)

G(♦car)← G(♦work),B(♦strike) (6)

G(♦(train t bus))← G(♦work), not B(♦strike) (7)

G(ticket B (train t bus))← G(♦(train t bus)) (8)

G(money B ticket)← G(♦ticket) (9)

Informally, an agent believes that there will be a strike if she sees that in the
news (2). Rules (3) and (4) represent conflicting goals, i.e., either the agent has
the goal to go to the beach or the goal to go to work, not both. In the former case
the agent also has the goal to take the bike (5). In the latter case, depending on
whether the agent believes that there will be a strike or not, she has the goal to
to go by car (6) or the goal to go by train or by bus (7). Moreover, if the agent
has the goal to go by train or by bus, then she also has the goal to buy a ticket
before that (8). Finally, if the agent has the goal to buy a ticket, then she has
the goal to withdraw money first (9).

3.2 Semantics

The definition of a semantics for belief and goal bases is not straightforward due
to their complex language. Recall that belief and goal atoms in the rules may con-
tain arbitrary LTL formulas. Thus, unlike, e.g., first-order atoms, belief or goal
atoms may not be independent; for example, the goal atoms G(�(p∨q)), G(♦¬p)
and G(♦q) are not. To overcome this difficulty, our notion of interpretation ac-
counts for interdependence between such atoms: since {�(p ∨ q),♦¬p} �LTL ♦q
and since any LTL theory is closed under logical consequence, any interpretation
〈Tb, Tg〉 satisfying both G(�(p ∨ q)) and G(♦¬p) must also satisfy G(♦q).

Satisfaction of rules in interpretations and the notion of model for agent
configurations can thus be defined in a standard way.

Definition 5. An interpretation T = 〈Tb, Tg〉 satisfies a rule of the form (1),
if T  ϕ whenever T  ψi for every i ∈ {1, . . . , n} and T 1 δj for every
j ∈ {1, . . . ,m}. An interpretation is a model of an agent configuration C = 〈B,G〉
if it satisfies every rule of B ∪ G. We denote by Mod(C) the set of models of C.



The ordering over interpretations can easily be defined component-wise: given
two interpretations T = 〈Tb, Tg〉 and T ′ = 〈T ′b, T ′g〉 we write T ≤ T ′ if Tb ⊆ T ′b and
Tg ⊆ T ′g. Using this ordering, the notions of minimal and least interpretations
can be defined in the usual way.

We are particularly interested in such minimal interpretations and obtain
them in a way similar to the stable model semantics. For that purpose, we start
by considering positive agent configurations and adapt a well-known result from
logic programs saying that every positive agent configuration has a least model.

Theorem 6. Every positive agent configuration has a least model.

Based on the semantics for positive agent configurations, we now define the
stable model semantics of an agent configuration that can have default negation.

Definition 7. Let C = 〈B,G〉 be an agent configuration and T = 〈Tb, Tg〉 an
interpretation. The agent configuration C

T is obtained from C by:

– removing from B and G all rules which contain not ϕ such that T  ϕ;
– removing not ϕ from the remaining rules of B and G.

Since C
T is a positive agent configuration, it has a unique least model T ′. We

define ΓC(T ) = T ′.
An interpretation T = 〈Tb, Tg〉 is a stable model of an agent configuration

C = 〈B,G〉 if it is consistent and ΓC(T ) = T . We denote by SM (C) the set of all
stable models of C.

Each stable model can be thought of as a possible consistent set of goals an
agent might adopt, which is why Tb and Tg are required to be consistent. Thus,
from the point of view of multi-agent systems, each such stable model represents
a possible consistent alternative that the agent can adopt as her set of intentions,
i.e., those goals that the agent commits to. We note that choosing a particular
set of intentions is out of the scope of this paper since, as common in agent
architectures, this is dealt with on a meta-level. Still, the following (well-known)
entailment relations can be defined.

Definition 8. Let C be an agent configuration. A formula δ is true under the
stable model semantics of C, denoted by C �SM δ, if it is satisfied by every stable
model of C. A formula δ is true under the credulous stable model semantics of
C, denoted by C �CSM δ, if it is satisfied by some stable model of C.

From the agent’s perspective, skeptical entailment �SM represents the goals
which she will have independently of the particular set of goals she commits to,
while credulous entailment �CSM can be used if an agent needs to know whether
it is possible that she might adopt that goal.

Example 9. Recall the agent configuration of Ex. 4. Rules (3) and (4) represent
the conflicting goals of going to the beach or going to work. This is captured in
the semantics by the existence of two stable models. The first one has as con-
sequences the goals G(♦beach) and G(♦bike). The second stable model entails



G(♦work), G(♦(traintbus)), G(ticket B (traintbus)) and G(money B ticket).
Note the fundamental role of complex temporal reasoning in the calculation
of the stable models. For example, in the case of the second stable model,
rule (9) only fires because G(♦ticket) follows from G(ticket B (train tbus)) and
G(♦(train t bus)) together, since {ticket B (train t bus),♦(train t bus)} �LTL

♦ticket . Moreover, since the stable models are closed under consequence and
since {money B ticket ,♦ticket} �LTL ♦money we have that the second stable
model also entails G(♦money).

Adding the fact B(strikeInNews)← to the agent configuration of Ex. 4 does
not affect the first stable model, but it affects the second. With this extra rule
the goals G(♦(traintbus)), G(ticket B (traintbus)) and G(money B ticket) no
longer follow from the second stable model, but now the goal G(♦car) follows.

4 Properties

We can find a number of properties in the literature that a logical language
modeling goals should exhibit. Some are more consensual than others, but that
is not the topic of this paper, we rather point to [18]. The aim of this section is to
show that some common properties of beliefs and goals hold in our framework
and that other approaches that impose additional conditions on the relation
between goals and beliefs can be covered.

A usual property of stable models is that they are minimal.

Proposition 10. Let C be an agent configuration. If T = 〈Tb, Tg〉 is a stable
model of C, then there is no stable model T ′ = 〈T ′b, T ′g〉 of C such that T ′ < T .

Modal logic has been used for modeling beliefs and goals of agents [12,5].
The belief operator is usually described using modal logic KD45 and the goal
operator using the modal logic KD. It is therefore natural to check if these
modal axioms hold in our logic. Note that even though we state the following
propositions for �SM, all of them also hold for �CSM.

Proposition 11. Let C = 〈B,G〉 be an agent configuration. The following holds
for all LTL formulas ϕ and ψ:

(Kb) C �SM B(ϕ⇒ ψ)→ (B(ϕ)→ B(ψ));
(Kg) C �SM G(ϕ⇒ ψ)→ (G(ϕ)→ G(ψ));
(Db) C �SM B(ϕ)→ ¬B(∼ϕ);
(Dg) C �SM G(ϕ)→ ¬G(∼ϕ).

The above proposition states that both the axioms K and D hold for both
the belief and the goal operator in every agent configuration. Note that we do
not consider the modal axioms 4 and 5, which are usually associated with the
belief operator. The reason is that these axioms involve formulas with nested
beliefs, and therefore cannot be represented in our language.

A property that appears for example in [12] is that beliefs and goals should
be closed under implication. Our framework satisfies this property.



Proposition 12. Let C = 〈B,G〉 be an agent configuration. The following holds
for all LTL formulas ϕ and ψ:

– C �SM (B(ϕ⇒ ψ) ∧B(ϕ))→ B(ψ);

– C �SM (G(ϕ⇒ ψ) ∧G(ϕ))→ G(ψ);

Our notion of agent configuration does not have any built-in constraints on
the interaction between beliefs and goals, unlike [12,5]. Our language is designed
to be general, in the sense that we do not impose these restrictions, yet expressive
enough to allow the representation of such constraints if desired.

A constraint that [5,10] impose is the so-called realism constraint. Intuitively
this means that an agent should have as goals all her beliefs. Although [12] con-
siders this too restrictive, if we want to impose such a restriction in a given agent
configuration C = 〈B,G〉, we just need to add to G a rule G(ϕ)← B(ϕ) for every
LTL formula ϕ appearing in C . Let CReal be the resulting agent configuration.

A more or less opposite condition is that an agent should not have a goal
that she believes is already the case. In [18] this property is described as goals
should be unachieved (Un). If we want to impose this restriction in a given agent
configuration C = 〈B,G〉, we just need to substitute every rule G(ϕ)← body of G
by the rule G(ϕ)← body, not B(ϕ). Let CUn be the resulting agent configuration.

Another commonly considered constraint, described in [18] as goals should
be possible (Poss), is that an agent should not have a goal that he believes to
be impossible. This restriction can also be applied to an agent configuration
C = 〈B,G〉 by substituting every rule G(ϕ) ← body of G by the rule G(ϕ) ←
body, not B(∼ϕ). Denote by CPoss the resulting agent configuration.

The following proposition states that the above constructions imply that the
desired properties hold in the modified agent configuration.

Proposition 13. Let C = 〈B,G〉 be an agent configuration. For every LTL for-
mula ϕ, we have that

– CReal �SM B(ϕ)→ G(ϕ).

If ϕ is an LTL formula such that headg(C) \ {ϕ} 2LTL ϕ, then

– CUn �SM G(ϕ)→ ¬B(ϕ);

– CPoss �SM G(ϕ)→ ¬B(∼ϕ);

where headg(C) is the set of all LTL formulas occurring in rule heads in G.

The reason why the latter two conditions only hold for formulas ϕ such that
headg(C) \ {ϕ} 2LTL ϕ, is that only for such formulas can we guarantee that the
rules with head G(ϕ) are the only responsible for G(ϕ) being a consequence of
C. Otherwise G(ϕ) could follow from another rule: consider for example C =
〈{B(p t q)←}, {G(p)←}〉. Then, both B(p t q) and G(p t q) follow from CUn.



5 Decidability and implementation

In this section we discuss the decidability and implementation of the following
simple reasoning tasks:

– Given an agent configuration C, does the belief B(ϕ) follow from C?
– Given an agent configuration C, does the goal G(ϕ) follow from C?

To answer these queries, we need to compute the stable models of C and then
check if they all entail B(ϕ) and G(ϕ), respectively. First of all, we prove that
for a finite agent configuration, each of the above problems is decidable.

Note that, even if we restrict to a finite set of propositional symbols (for
example those that appear in a finite agent configuration), the number of LTL
logical theories over this language is infinite. An immediate consequence is that
the number of possible stable models of a finite agent configuration is poten-
tially infinite. Interestingly, as we show below, this is not the case and therefore
decidability is not compromised. The key idea is the fact that, given a finite
agent configuration C, we are able to prove that only those LTL logical theories
generated by sets of LTL formulas appearing in C can be part of a stable model
of C, and there is only a finite number of them. To make this precise consider the
following sets. Let formb(C) be the set of LTL formulas that occur in the agent
configuration C in the scope of the belief operator, and headb(C) ⊆ formb(C) the
subset of those that occur in the head of a rule. In the same way we can define
formg(C) to be the set of LTL formulas that occur in C in the scope of the goal
operator, and headg(C) ⊆ formg(C) the subset of those that occur in the head
of a rule. Of course, if C is finite then both formb(C) and formb(C) are finite.

Theorem 14. Let C = 〈B,G〉 be a finite agent configuration. If 〈Tb, Tg〉 is a
stable model of C, then there exists Ab ⊆ formb(C) and Ag ⊆ formg(C) such that

Tb = A�LTL

b and Tg = A�LTL
g .

An immediate consequence of the above theorem is that every finite agent
configuration has a finite number of stable models.

Corollary 15. Every finite agent configuration has finitely many stable models.

Our aim now is to define an algorithm that modularly combines an LTL
reasoner and an ASP solver to compute the answers to the above queries. Recall
that the validity problem in LTL is decidable [17]. The advantage of such modular
algorithm is that we can leverage existing LTL and ASP reasoners.

Consider a given finite agent configuration C = 〈B,G〉. We construct the nor-
mal logic program PC obtained from C in which belief and goal atoms containing
LTL formulas are encoded as normal logic program atoms:

PC = B ∪ G ∪ {B(ϕ)← B(ψ1), . . . ,B(ψn) : {ψ1, . . . , ψn} ⊆ headb(C),
ϕ ∈ formb(C) \ {ψ1, . . . , ψn}, {ψ1, . . . , ψn} �LTL ϕ } ∪

∪ {G(ϕ)← G(ψ1), . . . ,G(ψn) : {ψ1, . . . , ψn} ⊆ headg(C),
ϕ ∈ formg(C) \ {ψ1, . . . , ψn}, {ψ1, . . . , ψn} �LTL ϕ }



To distinguish the set of stable models of an agent configuration C, which is
a set of pairs of LTL theories, from the set of stable models of PC , which is a
subset of the set of belief and goal atoms occurring in PC , we denote the later
by AS (PC), and by form(PC) the set of belief and goal atoms appearing in PC .

The key idea underlying the construction of PC is to enrich the original
agent configuration with rules that represent the possible interaction occurring
between the formulas of the program in order to enforce the interdependency
between temporal formulas appearing in the belief and goal atoms. Note that
for a given agent configuration C = 〈B,G〉, the sets SM (C) and AS (B ∪ G)
may not be related, since AS does not take into account the logical inter-
dependency between the formulas appearing in C. As a simple example con-
sider the agent configuration C = 〈∅, {G(�p) ←; G(q) ← G(♦p)}〉. Then,
SM (C) = {〈∅�LTL , {�p,♦p, q}�LTL〉} but AS (B ∪ G) = {{G(�p)}}. This is the
reason why we cannot use an ASP solver directly on the program B ∪ G.

In the case of PC , we have the following strong relation.

Theorem 16. Given a finite agent configuration C = 〈B,G〉, we have that

1. {Tb : 〈Tb, Tg〉 ∈ SM (C)} = {{ϕ : B(ϕ) ∈ A}�LTL : A ∈ AS (PC)}

2. {Tg : 〈Tb, Tg〉 ∈ SM (C)} = {{ϕ : G(ϕ) ∈ A}�LTL : A ∈ AS (PC)}

The above theorem presents a finite representation of the stable models of
an agent configuration: the stable models of the program PC . An immediate
consequence is that the problems of checking if a belief or a goal atom follows
from a finite agent configuration are both decidable.

Corollary 17. Let C be a finite agent configuration and ϕ an LTL formula (not
necessarily appearing in C). Then, the problems of checking if C �SM B(ϕ) and
if C �SM G(ϕ) are both decidable.

The decidability of entailment for belief and goal atoms can be extended for
complex formulas, since these depend only on the atoms appearing in it.

Corollary 18. Let C be a finite agent configuration and δ a complex belief or
goal formula (not necessarily in C). Then, the problem C �SM δ is decidable.

6 Related work

There are several approaches in the literature that use temporal logic to model
goals [5,12,16,7,10]. The work in [10] uses sets of LTL formulas to define both the
belief and the goal bases. These can be easily captured by our non-monotonic
framework, as we now show. Formally, in [10] a belief base is a set Σ ⊆ LLTL, a
goal base is a set Γ ⊆ LLTL, and a mental state is a pair m = 〈Σ,Γ 〉 such that
both Σ and Γ are consistent and Γ �LTL Σ. The reason for the last condition is
to impose the realism principle mentioned in Section 4, i.e., that an agent should
have as goals all her beliefs. In fact, the formula G(ϕ)→ B(ϕ) is valid in their



logic. Their language of beliefs and goals is the same as our language L and the
satisfaction of formulas of LBG by a mental state m is defined in a similar way
as we do for agent configurations. For a given mental state m = 〈Σ,Γ 〉 we can
consider the corresponding (positive) agent configuration Cm = 〈Bm,Gm〉 where
Bm = {B(ϕ)← : ϕ ∈ Σ} and Gm = {G(ϕ)← : ϕ ∈ Γ}. It is immediate to check
that the unique stable model of Cm is precisely 〈Σ�LTL , Γ�LTL〉, and therefore,
for every formula δ of LBG, we have that m  δ iff Cm �SM δ.

The work in [15] defines a framework for conditional goals using a translation
to default logic [14]. Although it does not consider temporal goals, it offers an
interesting non-monotonic framework for modeling goals. In what follows we
briefly sketch the relation between the work in [15] and ours. Let us start with
a very brief presentation of their framework. The language for beliefs and goals
is a restriction of our language LBG, in the sense that in the scope of a belief
or goal operator only propositional formulas without temporal operators are
allowed. Conditional goals are defined through goal inference rules, which are of
the form: β, κ+, κ−⇒ φ, where β, κ+ and κ− are sets of propositional formulas.
In such a goal inference rule, φ represents the goal that can be inferred if the
beliefs in β are true, the goals in κ+ are true and the goals in κ− are not known
to be true. A goal base is a set GI of goal inference rules. A belief base σ is
just a set of propositional formulas. For beliefs, the semantics is easily defined
by 〈σ,GI〉 �d B(ϕ) if σ � ϕ. The semantics of a goal base GI is defined by
translating it to a default theory t(GI). This is done by translating each goal
inference rule r = {β1, . . . , βk}, {α1, . . . , αn}+, {ϕ1, . . . , ϕm}− ⇒ ϕ in GI such
that σ � {β1, . . . , βk} to the default rule t(r) = α1u· · ·uαn :∼ϕ1, . . . ,∼ϕm, ϕ/ϕ.
The (credulous) entailment for goals is then defined as 〈σ,GI〉 �d G(ϕ) if there
exists an extension (in the sense of default logic) E of t(GI) such that E � ϕ.

Given a goal base GI and a belief base σ consider the agent configuration
〈Bσ,GGI〉 such that Bσ = {B(ϕ)← : ϕ ∈ σ} and GGI is obtained by considering,
for each rule r = {β1, . . . , βk}, {α1, . . . , αn}+, {ϕ1, . . . , ϕm}−⇒ϕ in GI, the rule
G(ϕ)← B(β1∧· · ·∧βk),G(α1∧· · ·∧αn), not G(ϕ1), . . . , not G(ϕm), not G(¬ϕ).
Note that we are just using a fragment of our language to embed both σ and
GI. In the case of beliefs, we just need to use facts, and in the case of goals,
we do not use temporal formulas nor default negated beliefs. We can then
prove that 〈σ,GI〉 �d B(ϕ) iff 〈Bσ,GGI〉 �CSM B(ϕ). Also 〈σ,GI〉 �d G(ϕ)
iff 〈Bσ,GGI〉 �CSM G(ϕ). Moreover, a similar result holds between the skeptical
entailment �dd defined in [15] and our skeptical entailment �SM. In the case of
skeptical entailment, the relation is even stronger since it holds for every formula
of LBG. The reason why the above proposition does not follow for any complex
formula of LBG is the fact that the entailment �d of [15] is first defined for belief
and goal atoms, and only then extended to complex formulas. In this way, in
their framework we may have that 〈σ,GI〉 �d G(p)∧G(∼p), even for consistent
σ and GI, since this means that G(p) is true in one stable model and G(∼p) is
true in a different stable model. This is not the case in our framework. Although
this distinguishes our approach from that in [15], a more fundamental difference
is that they adopt a particular entailment over the possible extensions (in the



sense of default logic), thus not making use the full richness of the set of stable
models. On the contrary, we argue that the set of stable models is fundamental
since it can be seen as the set of possible sets of goals an agent can commit to.

Let us now draw some comments on the work of [2]. There, a simple non-
monotonic version of temporal logic for specifying goals is defined. This is done by
extending the language of temporal logic with two operators to model weak and
strong exceptions. Although for lack of space we do not present here the details,
it can be shown that the non-monotonic extension N-LTL of LTL presented in [2]
can be embedded in our framework. This is not surprising since in our framework
the use of default negation allows to model exceptions in a very flexible way.

7 Conclusions and future work

In this paper, we have defined a non-monotonic framework for representing tem-
poral beliefs and goals, along with a stable models like semantics for this ex-
pressive language. We have argued that an ASP view of the stable models of an
agent configuration can bring a novel perspective on dealing with multiple possi-
ble sets of goals. We have proven that some usual properties of beliefs and goals
hold in our framework. Moreover, we have shown that the problem of checking
the entailment of a formula in a given finite agent configuration is decidable, and
we presented an implementation that makes a modular use of an LTL reasoner
and an ASP solver. In the end, we have briefly hinted on how existing work on
the representation of beliefs and goals can be embedded in our framework.

This work raises several interesting directions for future research. Since the
temporal operators can only appear in the scope of belief or goal operators,
our approach does not deal with the evolution of the belief and goal bases.
An interesting idea to cope with such evolution is to use some extension of
dynamic logic programs [1]. Also interesting is to study the connection between
our framework and the general approach of parametrized logic programming [9].

Additionally, our work could be integrated with existing agent programming
languages/architectures, e.g., 2APL [6] and Jason [3], thus increasing their ca-
pabilities to represent and reason about goals.

Finally, we also want to extend our work so that we can consider the currently
adopted intentions and how they can influence the stable models that encode the
new ones to be adopted. This is an interesting problem but rather complex since
we typically would like to keep as many of the current intentions as possible,
i.e., the problem might be solvable by treating current intentions as beliefs, but
it might require a measure of distance and seek for models that encode minimal
change between the current intentions and the goals in possible stable models.
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Niemelä, I. (eds.) JELIA. Lecture Notes in Computer Science, vol. 6341, pp. 182–
194. Springer (2010)

10. Hindriks, K.V., van der Hoek, W., van Riemsdijk, M.B.: Agent programming with
temporally extended goals. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman,
J.S. (eds.) AAMAS (1). pp. 137–144. IFAAMAS (2009)

11. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (Providence, R.I., 1977), pp. 46–57. IEEE Comput.
Sci., Long Beach, Calif. (1977)

12. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Allen, J.F., Fikes, R., Sandewall, E. (eds.) KR. pp. 473–484. Morgan Kaufmann
(1991)

13. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Lesser, V.R.,
Gasser, L. (eds.) ICMAS. pp. 312–319. The MIT Press (1995)

14. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2), 81–132 (1980)
15. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Goals in conflict: semantic foun-

dations of goals in agent programming. Autonomous Agents and Multi-Agent Sys-
tems 18(3), 471–500 (2009)

16. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: a unifying
framework. In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S. (eds.) AAMAS
(2). pp. 713–720. IFAAMAS (2008)

17. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (Jul 1985)

18. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural
goals in intelligent agent systems. In: Fensel, D., Giunchiglia, F., McGuinness, D.L.,
Williams, M.A. (eds.) KR. pp. 470–481. Morgan Kaufmann (2002)
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